Упругие и диэлектрические характеристики графеноподобных соединений $A_N - B_{8-N}$

© С.Ю. Давыдов¶

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 4 марта 2013 г. Принята к печати 4 апреля 2013 г.)

Методом связывающих орбиталей Харрисона рассмотрены графен, силицен, гексагональный нитрид бора и еще 14 гипотетических графеноподобных структур бинарных соединений IV–IV, III–V, III–VI. Получены аналитические выражения для силовых констант центрального (k_0) и нецентрального (k_1) взаимодействий, линейных диэлектрических восприимчивостей электронной $(\chi_1^{\rm el})$ и ионной $(\chi_1^{\rm ion})$ подсистем. Расчеты показали, что в рамках использованной расчетной схемы двумерная гексагональная структура для ZnS и ZnSe не реализуется $(k_1 < 0)$. Сопоставление (там, где это возможно) вычисленных значений силовых констант и диэлектрических проницаемостей (высокочастотной, ε_{∞} , и статической, ε_0) с их значениями для соответствующих трехмерных соединений показывает, что полученные нами результаты вполне разумны.

1. Введение

Уникальные свойства графена [1,2] вызвали интерес к другим аналогичным двумерным (2D) структурам — графеноподобным материалам. Среди таковых первое место по изученности занимает силицен [3], за которым следуют гексагональный нитрид бора (BN-h) [3] и другие 2D бинарные соединения, такие как IV-IV, III-V, II-V, II-V, IIO, BeO, III-V, II

Простая схема расчета высокочастотной диэлектрической проницаемости ε_{∞} для тетраэдрических бинарных кристаллов была впервые предложена Харрисоном в [9] и в дальнейшем совершенствовалась автором в работах [10–12] на основе различных модификаций метода связывающих орбиталей (МСО) [13]. В работе [14] при расчете ε_{∞} в рамках МСО впервые была учтена металличность связей, а в [15] — вклад решетки, что позволило вычислить статическую диэлектрическую проницаемость ε_0 . Тот же подход использовался в [15,16] для расчета квадратичной диэлектрической восприимчивости, фотоупругих модулей p_{ij} и линейного электрооптического коэффициента r_{14} . Зависимость диэлектрических и оптических характеристик от давления исследовалась в работе [11]. Таким образом, МСО хорошо зарекомендовал себя при изучении бинарных полупроводников $A_N B_{8-N}$. К тому же к достоинствам МСО следует, во-первых, отнести то обстоятельство, что для всех упомянутых выше характеристик этот метод позволяет получить аналитические выражения. Во-вторых, все описание основано на трех параметрах: расстоянии между ближайшими соседями а, которое берется из эксперимента, и энергиях ε_s и ε_p , отвечающих s- и p-состояниям оболочек атомов A и B, приведенных в таблицах атомных термов [13,18]. Отметим

в качестве курьеза, что расчет многих характеристик двумерного гексагонального нитрида бора был впервые предложен в [13] в качестве упражнений для закрепления теоретического материала задолго до открытия графена. Подчеркнем также, что МСО уже применялся нами для описания упругих характеристик графена и силицена [19–22].

2. Энергия связи и упругие константы

По аналогии с работами для 2D структур [21,22] энергию E_b (в расчете на два электрона, приходящихся на σ -связь) в отсутствие электрического поля можно представить в виде суммы

$$E_b = -2\sqrt{V_2^2 + V_3^2} + 2SV_2 - \frac{4}{3}\alpha_c^3 \frac{V_1^2}{V_2}.$$
 (1)

Здесь первый член есть зонная энергия, второй энергия отталкивания, третий — энергия металлизации; $V_2 = 3.26(\hbar^2/ma^2)$ — ковалентная энергия σ -связи sp^2 орбиталей атомов А и В (\hbar — приведенная постоянная Планка, m — масса свободного электрона, a — расстояние между ближайшими соседями); $V_3=(\varepsilon_h^{\rm A}-\varepsilon_h^{\rm B})/2$ — полярная энергия $(\varepsilon_h^{\rm A,B}=(\varepsilon_s^{\rm A,B}+2\varepsilon_p^{\rm A,B})/3$, где $\varepsilon_{s(p)}^{\rm A(B)}$ энергия s(p)-состояния атома A(B); в дальнейшем под Aпонимаем катион, а под B анион, так что $V_3 > 0$); S — интеграл перекрытия; $lpha_c = V_2/\sqrt{V_2^2 + V_3^2}$ — ковалентность связи; $V_1 = \sqrt{[(V_1^{
m A})^2 + (V_1^{
m B})^2]/2}$ — энергия металлизации, $V_1^{
m A,B}=(arepsilon_p^{
m A,B}-arepsilon_s^{
m A,B})/4$. Отметим, что мы рассматриваем здесь sp^2 -орбитали¹ и, в отличие от [22], используем точное (а не упрощенное) выражение для энергии металлизации, короткодействующую часть энергии отталкивания ΔE_{rep} опускаем. При таком подходе выражение для интеграла перекрытия S определяется

 $[\]P$ E-mail: Sergei_Davydov@mail.ru

 $^{^1}$ Отметим, что для sp^3 -орбиталей численный множитель, входящий в выражение для V_2 , равен 3.22, причем это единственное отличие, вносимое в выражение (2) заменой типа гибридизации [23,24].

1066 С.Ю. Давыдов

Соединение	Gr	Sl	Gm	SiC	GeC	GeSi	ZnS	ZnSe
a, Å	1.42	2.23	2.31	1.79	1.83	2.28	(2.19)	(2.21)
V_2 , $\ni B$	12.32	5.00	4.66	7.75	7.42	4.78	5.18	5.09
V_3 , $\ni B$	0	0	0	1.93	1.95	0.03	5.22	4.72
V_1 , $\ni B$	2.08	1.80	1.96	2.10	2.02	1.88	2.31	2.26
$lpha_c$	1	1	1	0.97	0.97	1	0.70	0.73
$lpha_p$	0	0	0	0.24	0.25	0	0.71	0.68
$-E_b$, эВ	25.41	11.43	11.13	7.03	6.73	4.40	10.15	9.30
k_0 , H/m ²	355	92	89	112	102	29	4	11
k_1 , H/m ²	78	20	20	23	20	6	-1	-1
$\chi_x^{\rm el} \ (\gamma = 1)$	_	_	_	0.49	0.50	0.53	0.33	0.33
$\chi_x^{\text{ion}} \ (\gamma = 1)$	_	_	_	0.13	0.15	0	5.92	1.27
$\varepsilon_{\infty} \ (\gamma = 1)$				7.16	7.28	7.66	5.15	5.15
$\varepsilon_0 \ (\gamma = 1)$				8.79	9.17	7.66	_	_

Таблица 1. Параметры и результаты расчета для соединений IV-IV и II-VI

Примечание. Значения длин связи a, приведенные без скобок, взяты из работы [6], значения в скобках — из [8]; при расчете V_2 значения a брались из [6], а там, где таковые отсутствуют, — из [8]; значения ε_s и ε_p , необходимые для расчета V_3 и V_1 , брались из [24]; Gr — графен, Sl — силицен, Gm — германин.

					_				
Соединение	BN	BP	BAs	AlN	AlP	AlAs	GaN	GaP	GaAs
a, Å	1.45	1.87	1.93	(1.78)	2.28	2.34	(1.82)	2.23	2.29
V_2 , эВ	11.82	7.10	6.67	7.84	4.78	4.54	7.50	5.00	4.74
V_3 , $\ni B$	3.93	1.305	1.09	5.30	2.70	2.46	5.17	2.57	2.33
V_1 , эВ	2.36	1.93	1.97	2.36	1.93	1.97	2.42	2.00	2.04
$lpha_c$	0.95	0.98	0.99	0.83	0.87	0.88	0.82	0.89	0.90
α_p	0.32	0.18	0.16	0.56	0.49	0.47	0.57	0.46	0.44
$-E_b$, эВ	10.70	6.23	5.79	11.90	6.25	5.88	10.61	6.22	5.90
k_0 , H/ M^2	257	96	81	62	28	29	55	36	33
k_1 , H/ M^2	52	21	18	7	3	3	5	4	3
$\chi_x^{\rm el} \ (\gamma = 1)$	0.36	0.52	0.53	0.36	0.53	0.56	0.37	0.53	0.55
$\chi_x^{\text{ion}} \ (\gamma = 1)$	0.23	0.10	0.15	0.69	0.30	0.11	0.36	0.18	0.29
$\varepsilon_{\infty} \ (\gamma = 1)$	5.52	7.53	7.66	5.52	7.66	8.04	5.65	7.66	7.91
$\varepsilon_0 \ (\gamma = 1)$	8.41	8.79	9.55	14.14	11.43	9.42	10.17	9.92	11.56

Таблица 2. Параметры и результаты расчета для соединений III-V

Примечание. Значения длин связи a, приведенные без скобок, взяты из работы [6], значения в скобках — из [8]; при расчете V_2 значения a брались из [6], а там, где таковые отсутствуют, — из [8]; значения ε_s и ε_p , необходимые для расчета V_3 и V_1 , брались из [24].

условием равновесия $(\partial E_b/\partial a)_{\bar{a}}=0$, где \bar{a} — равновесное значение расстояния между ближайшими соседями в отсутствие электрического поля. Тогда с учетом того, что $V_2 \propto a^{-2}$ и $S \propto a^{-1}$, получим

$$\bar{S} = \frac{2}{3}\,\bar{\alpha}_c \left[1 - \frac{2}{3}\,\bar{\alpha}_c^2 (1 - 3\bar{\alpha}_p^2) \frac{V_1^2}{\bar{V}_2^2} \right],\tag{2}$$

где $\bar{\alpha}_p = \bar{V}_3/\sqrt{\bar{V}_2^2 + \bar{V}_3^2}$ — полярность связи, черта над символами означает, что электрическое поле F отсутствует и расчет идет при равновесном значении \bar{a} . Подставляя (4) в (3), найдем энергию двухэлектронной σ -связи:

$$\bar{E}_b = -\frac{2\bar{V}_2}{\bar{\alpha}_c} \left[1 - \frac{2}{3} \,\bar{\alpha}_c^2 + \frac{2}{9} \,\bar{\alpha}_c^4 (6\bar{\alpha}_c^2 - 1) \,\frac{V_1^2}{\bar{V}_2^2} \right]. \tag{3}$$

В дальнейшем (там, где не оговорено обратное) мы будем опускать черту над символами, полагая, что все

величины, входящие в итоговые выражения, относятся к случаю F=0.

Расчетные значения энергии связи E_b представлены в табл. 1 и 2. Оценки показывают, что отношение третьего слагаемого, стоящего в квадратных скобках в (3), к первым двум для соединений II—VI и нитридов V группы $\ll 1$, для остальных соединений III—V, SiC и GeC это отношение приблизительно равно 0.2, тогда как для GeSi 0.5.

Определим силовую константу центрального вазимодействия как $k_0=(\partial^2 E_b/\partial a^2)_{\bar{a}}.^2$ Тогда получим

$$k_0 = \frac{4}{a^2} \alpha_c V_2 \left[1 - 2\alpha_p^2 - \frac{10}{3} \alpha_c^2 \left(1 - 6\alpha_c^2 \alpha_p^2 - \frac{6}{10} \alpha_p^2 \right) \frac{V_1^2}{V_2^2} \right]. \tag{4}$$

 $^{^2}$ Здесь мы определяем константу k_0 в расчете на двухэлектронную σ -связь, тогда как иногда эта константа нормировалась нами на один электрон или на атом (как и $E_b)$. Для структуры графена и BN-h в первом случае значение k_0 будет в 2 раза меньше полученного здесь, во втором — в 1.5 раза больше.

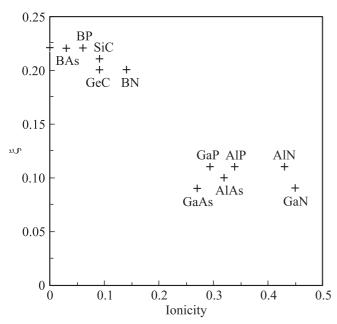


Рис. 1. Зависимость отношения $\xi = k_1/k_0$ от ионности структуры по Филлипсу.

Константу нецентрального взаимодействия определим как $k_1=a^{-2}(\partial^2 E_b/\partial \vartheta^2)_0$, где ϑ — угол разориентации соседних sp^2 -орбиталей, образующих σ -связь [13]. Как показано в [19] для графена и силицена, $k_1=(\lambda/3)k_0$, где $\lambda=0.66$. В случае отличной от нуля полярности связей получим

$$k_1 = \frac{4\lambda}{3a^2} \alpha_c V_c \left[1 - 2\alpha_p^2 - \frac{2}{3} \alpha_c^2 (6\alpha_c^4 + 3\alpha_p^2 - 1) \frac{V_1^2}{V_2^2} \right]. \quad (5)$$

При $\alpha_c=1$, $\alpha_p=0$ значения k_0 и k_1 совпадают с полученными ранее в [19]. Отметим, что в случае пренебрежения металличностью связи $(V_1=0)$ соотношение $k_1=(\lambda/3)k_0$ выполняется при произвольных значениях α_p . Так как $V_2 \propto a^{-2}$, из выражений (4) и (5) следует, что силовые константы $k_{0,1} \propto a^{-4}$.

Результаты расчета силовых констант представлены в табл. 1 и 2. Из табл. 1, в частности, следует, что для соединений ZnS и ZnSe значения k_1 отрицательны. Следовательно, данные соединения неустойчивы, или, другими словами, двумерная гексагональная структура ZnS и ZnSe не реализуется. С учетом относительной малости последнего слагаемого в квадратных скобках выражения (5) максимальное значение полярности связи α_p , при котором графеноподобная структура является устойчивой, равно $\alpha_p^* \approx 1/\sqrt{2}$; при этом $\alpha_c^* \approx 1/\sqrt{2}$. Таким образом, при $\alpha_p > \alpha_p^*$ или $\alpha_c < \alpha_c^*$ двумерная гексагональная структура отсутствует. Надо также отметить, что для соединений алюминия и галлия (табл. 2) значения k_1 представляются слишком малыми, так что и их графеноподобный вариант находится, по-видимому, под вопросом. Здесь, однако, нельзя исключать, что подобный результат характерен лишь для использованной нами модели (см. далее).

Интересно сопоставить полученные здесь результаты с результатами, полученными для трехмерных аналогов. Так, для двухэлектронной связи в алмазе получим $k_0=218\,\mathrm{H/m},\ k_1=67\,\mathrm{H/m},\$ тогда как для кремния $k_0=20\,\mathrm{H/m},\ k_1=6\,\mathrm{H/m}.$ Сравнение с данными табл. 1 показывает, что двумерная структура "острее" реагирует на внешнее механическое возмущение. Добавим, что с увеличением ионности константы k_0 и k_1 в целом уменьшаются.

На рис. 1 изображено отношение $\xi=k_1/k_0$ как функция ионности связи по Филлипсу $f_i=1-\alpha_c^3$ [9,25]. Видно, что ξ для соединений алюминия и галлия приблизительно в 2 раза меньше, чем для соединений IV группы и бора. Можно сказать, что с ростом ионности отношение ξ убывает. Аналогичная зависимость наблюдалась и для объемных полупроводников [25] в рамках модели силовых констант Китинга—Ван Вехтена. Отметим в этой связи, что критическая ионность по Филлипсу, выше которой графеноподобные соединения не реализуются, равна $f_i^*\approx 1-1/2\sqrt{2}$.

3. Диэлектрическая проницаемость

Плотность поляризации кристалла ${\bf P}$ может быть представлена в виде ряда по степеням электрического поля ${\bf F}$ [26]:

$$P_i = \chi_{ij}^{(1)} F_j + \chi_{ijk}^{(2)} F_j F_k + \dots,$$
 (6)

где i отвечает координатам x и y, определяющим лист графена, $\chi^{(1)}$ — линейная диэлектрическая восприимчивость, $\chi^{(2)}$ — квадратичная диэлектрическая восприимчивость и т.д. Будем считать в дальнейшем, что лист графена совмещен с плоскостью (x,y,0) (рис. 2), в которой также лежат векторы электрического поля ${\bf F}$ и поляризации ${\bf P}$. Легко показать [26-28], что в случае $2{\bf D}$ гексагональной структуры имеется только одна линейная диэлектрическая восприимчивость $\chi_1 \equiv \chi_{11}^{(1)}$, связанная с соответствующей диэлектрической проницаемостью соотношением $\varepsilon_1 = 1 + 4\pi\chi_1$. Далее мы покажем эту симметрию для двух частных, но практически важных случаев.

Начнем, как и в [9,13], с определения дипольных моментов связей **р**:

$$\mathbf{p} = -\frac{\partial E_b}{\partial \mathbf{F}}.\tag{7}$$

Как показано в [14], в отстуствие внешнего поля дипольный момент связи с учетом металлизации равен

$$\mathbf{p}^{(0)} = (e\gamma)\alpha_p g^{(0)}\mathbf{a},$$

$$g^{(0)} = 1 - 2\alpha_c^4 \frac{V_1^2}{V_2^2}. (8)$$

Если не учитывать металлизацию, т.е. рассматривать связь AB как двухатомную молекулу, положив $V_1=0$,

1068 С.Ю. Давыдов

то выражение (8) сведется к простой формуле диполя $\mathbf{p}^{(0)} = (e\gamma)\alpha_{p}\mathbf{a}$, где полярность α_{p} играет роль заряда.

Пусть теперь графен помещают в однородное (параллельное листу) электрическое поле с напряженностью $\mathbf{F}=(F_x,F_y)$. Сначала рассмотрим реакцию на \mathbf{F} электронной подсистемы. Будем характеризовать связь AB вектором \mathbf{a} , направленным от аниона к катиону. Тогда к полярной энергии V_3 добавится слагаемое $(1/2)e\gamma(\mathbf{aF})$ (e-3 заряд позитрона, $\gamma-$ масштабный безразмерный множитель порядка единицы — см. подробнее в [9,13]), так что теперь полярную энергию V_3 нужно заменить на $\tilde{V}_3 \equiv V_3 + (1/2)e\gamma(\mathbf{aF})$. Можно показать, что при наличии поля выражение (6) переходит в \mathbf{p} при замене α_p и α_c на $\tilde{\alpha}_p$ и $\tilde{\alpha}_c$, где тильда означает, что соответствующая величина определена для $F \neq 0$. Полагая $e\gamma|\mathbf{aF}| \ll V_3$, получим в первом приближении по полю:

$$\tilde{\mathbf{p}}^{(1)} = (e\gamma)^2 \alpha_c^3 g^{(1)} \frac{(\mathbf{aF})}{2V_2} \mathbf{a},$$

$$g^{(1)} = 1 - 2\alpha_c^2 (1 - 5\alpha_p^2) \frac{V_1^2}{V_2^2}.$$
 (9)

В соответствии с рис. 2 направления связей атомов 01, 02 и 03 есть $\mathbf{a}_1=\frac{1}{2}\,a(-\sqrt{3},\,1),\ \mathbf{a}_2=\frac{1}{2}\,a(\sqrt{3},\,1)$ и $\mathbf{a}_3=a(0,\,-1)$ соответственно. Тогда для величин (\mathbf{aF}) \mathbf{a} получим соответственно:

$$(\mathbf{a}_1\mathbf{F})\mathbf{a}_1 = \frac{1}{4}a^2(-F_x + F_y)(-\sqrt{3}, 1),$$

$$(\mathbf{a}_2\mathbf{F})\mathbf{a}_2 = \frac{1}{4}a^2(F_x + F_y)(\sqrt{3}, 1), \quad (\mathbf{a}_3\mathbf{F})\mathbf{a}_3 = a^2F_y(0, 1).$$

Рассмотрим два конкретных случая: 1) $F_x \neq 0$, $F_y = 0$ и 2) $F_x = 0$, $F_y \neq 0$. Если перейти на язык двумерных лент, то первый случай соответствует полю, параллельному зигзагообразному краю ленты, второй — полю, паралельному креслообразному краю (см. рис. 2). Тогда суммарный дипольный момент в первом случае есть

$$\tilde{p}_x^{(1)} = [(e\gamma)^2 \alpha_c^3 g/2V_2](3a^2 F_x/2).$$

Аналогичным образом легко показать, что и во втором случае имеем тот же результат с естественной заменой F_x на F_y . В дальнейшем координатные индексы опускаем.

Для нахождения соответствующих линейной восприимчивости $\chi_1^{\rm el}$ нужно значение $\tilde{p}^{(1)}$ поделить на объем Ω_a , занимаемый одним атомом. Положим $\Omega_a = S_a h$,

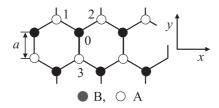


Рис. 2. Структура 2D кристалла $A_N - B_{8-N}$. В — анионы, A — канионы, a — длина связи AB.

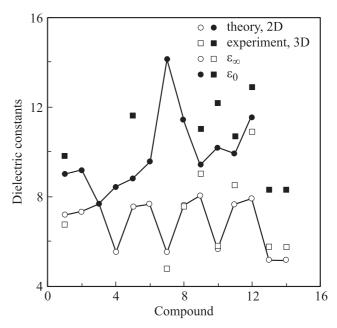


Рис. 3. Теоретические для двумерных (2D) структур и экспериментальные для трехмерных (3D) структур значения высокочастотной (ε_{∞}) и статической (ε_{0}) диэлектрических проницаемостей. 1 — SiC, 2 — GeC, 3 — GeSi, 4 — BN, 5 — BP, 6 — BAs, 7 — AIN, 8 — AIP, 9 — AlAs, 10 — GaN, 11 — GaP, 12 — GaAs, 13 — ZnS, 14 — ZnSe.

где $S_a = 3\sqrt{3}a^2/4$ — площадь, приходящаяся на один атом, h — "толщина" двумерной гексагональной структуры. Положим для простоты h = a, что, разумеется, является определенным произволом.³ Тогда из (7) получим

$$\chi_1^{\text{el}} = \frac{1}{\sqrt{3}} \frac{(e\gamma)^2 \alpha_c^3 g}{V_2 a},\tag{10}$$

где мы опустили индекс первого приближения у множителя g. Напомним, что высокочастотная диэлектрическая проницаемость, отвечающая реакции электронной подсистемы на внешнее поле, есть $\varepsilon_{\infty}=1+4\pi\chi_1^{\rm el}$.

Рассмотрим теперь реакцию решетки (ионной подсистемы) на внешнее поле. Вариацию i-й связи δa_i под действие силы $e\gamma \mathbf{F}$ легко найти из закона Гука: $(e\gamma \mathbf{F} \widehat{\mathbf{e}}_i) = k_0(\delta \mathbf{a}_i \cdot \widehat{\mathbf{e}}_i)$, где $\widehat{\mathbf{e}}_i$ — единичный орт в направлении вектора \mathbf{a}_i , k_0 — как и ранее, силовая константа центрального взаимодействия (возможными изменениями углов между связями пренебрегаем). В дальнейшем под δa_i будем понимать растяжение $(\delta a_i > 0)$ или сжатие $(\delta a_i < 0)$ i-й связи, так что $\delta a_i = e\gamma(\mathbf{F} \widehat{\mathbf{e}}_i)/k_0$. Заменим в формуле (8) a на $a' = a + \delta a$ и соответственно α_p , α_c на α'_p , α'_c , V_2 на V'_2 и разложим трансформированное таким образом выражение (8) до членов первого порядка по δa . Получим

$$\delta \mathbf{p}'_{i} = \frac{(e\gamma)^{2} \alpha_{p}}{k_{0}} \left[1 + 2\alpha_{c}^{2} - 4\alpha_{c}^{4} (1 + 5\alpha_{c}^{2}) \frac{V_{1}^{2}}{V_{2}^{2}} \right] (\mathbf{F} \hat{\mathbf{e}}_{i}) \hat{\mathbf{e}}_{i}.$$
 (11)

 $^{^3}$ При наличии соответствующей экспериментальной информации можно рассматривать в качестве подгоночного параметра отношение $\gamma/h.$

Вновь рассмотрим два направления электрического поля: 1) $F_x \neq 0$, $F_y = 0$ и 2) $F_x = 0$, $F_y \neq 0$. Повторяя то же рассмотрение, что и при выводе χ_1^{el} , получим решеточную (ионную) составляющую линейной диэлектрической восприимчивости в виде

$$\chi_1^{\text{ion}} = \frac{2(e\gamma)^2 \alpha_p}{k_0 a^3 \sqrt{3}} \left[1 + 2\alpha_c^2 - 4\alpha_c^4 (1 + 5\alpha_c^2) \frac{V_1^2}{V_2^2} \right]. \tag{12}$$

Результаты расчетов высокочастотной, $\varepsilon_{\infty}=1+4\pi\chi_1^{\rm el},$ и статической, $\varepsilon_0=1+4\pi(\chi_1^{\rm el}+\chi_1^{\rm ion}),$ диэлектрических проницаемостей (при $\gamma=1$) представлены на рис. 3. Там же приведены экспериментальные значения ε_{∞} и ε_0 для соответствующих объемных соединений, взятые главным образом из справочника [29] (для ZnS и ZnSe — из [30], для AlN — из [13]). Подчеркнем, что полярность α_p для GeSi не равна в точности нулю ($\alpha_p\approx0.005$), поэтому в табл. 1 для восприимчивостей не стоит прочерк, а приведены соответствующие числа. Там же приведены и результаты расчета $\chi_i^{\rm el}$ для ZnS и ZnSe, хотя в рамках использованной нами схемы такие соединения не реализуются в двумерной структуре.

Сопоставление полученных нами результатов с существующими экспериментальными данными для трехмерных (3D) структур показывает, что те и другие различаются не слишком сильно, а в ряде случаев практически совпадают (см. рис. 3).

4. Заключительные замечания

В настоящей работе мы использовали одну из расчетных схем метода связывающих орбиталей, а именно считали, что отталкивание описывается членом $V_{\rm rep} = SV_2 \propto a^{-3}$ (см. (1)). В ряде более ранних работ и Харрисоном, и автором данной работы использовалась энергия отталкивания $V_{\rm rep} \propto a^{-4}$ (см. например, работы [9,14–17,23] и ссылки, приведенные там). В последнее время чаще применялось выражение вида $SV_2 + \Delta E_{\rm rep}$, где короткодействующая часть $\Delta E_{\rm rep} \propto a^{-12}$ [19,20,22,31,32]. Для кристаллов с высокой степенью ионности использовался также потенциал $V_{\rm rep} \propto a^{-8}$ [33,34]. В свете сказанного нельзя исключать, что вывод настоящей работы о неустойчивости двумерных соединений ZnS и ZnSe связан с выбором энергии отталкивания. Вычисленные значения характеристик также, естественно, связаны с конкретным видом $V_{\rm rep}$.

В ситуации, когда экспериментальные данные отсутствуют, а к расчету данной конкретной характеристики можно подходить по-разному, наилучшим представляется рассмотрение длинного ряда схожих по природе соединений и выявление (на базе такого рассмотрения) тенденции изменения характеристики в этом ряду. Такой подход и был реализован в настоящей работе.

Работа выполнена в рамках программ президиума РАН "Квантовая физика конденсированных сред", "Основы фундаментальных исследований нанотехнологий и

наноматериалов" и поддержана грантами РФФИ (проекты № 11-02-00662а и 12-02-00165а).

Список литературы

- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys., 81, 109 (2009).
- [2] V.N. Kotov, B. Uchoa, V.M. Pereira, A.H. Castro Neto. F. Guinea. Rev. Mod. Phys., 84, 1067 (2012).
- [3] A. Kara, H. Enriquez, A.P. Seitsonen, L.C. Lew Yan Voon, S. Vizzini, B. Aufray, H. Oughaddou. Surf. Sci. Rep., 67, 1 (2012).
- [4] A.H. Cadtro Neto, K. Novosrlov. Rep. Progr. Phys., 74, 082 501 (2011).
- [5] C.L. Freemen, F. Cleyessens, N.L. Allen, J.H. Harding. Phys. Rev. Lett., 96, 066 102 (2006).
- [6] T. Suzuki, Y. Yokomizo. ar.Xiv: 1004.3638.
- [7] Z.C. Tu. ar.Xiv: 0901.1112.
- [8] G. Mukhopadhyay, H. Behera. ar.Xiv: 1210.3308.
- [9] W.A. Harrison. Phys. Rev. B, 8, 4487 (1973).
- [10] W.A. Harrison. Phys. Rev. B, 24, 4487 (1981).
- [11] W.A. Harrison, J.E. Klepeis. Phys. Rev. B, 37, 864 (1988).
- 12 W.A. Harrison. Phys. Rev. B, 74, 205 101 (2006).
- [13] У. Харрисон. Электронная структура и свойства твердых тел (М., Мир, 1983) т. 1.
- [14] С.Ю. Давыдов, Е.И. Леонов. ФТТ, 29, 2890 (1987).
- [15] С.Ю. Давыдов, Е.И. Леонов. ФТТ, 30, 1326 (1988).
- [16] С.Ю. Давыдов, С.К. Тихонов. ФТП, 31, 823 (1997).
- [17] С.Ю. Давыдов, С.К. Тихонов. ФТП, 32, 1057 (1998).
- [18] W.A. Harrison. Phys. Rev. B, 31, 2121 (1985).
- [19] С.Ю. Давыдов. ФТТ, 52, 172 (2010).
- [20] С.Ю. Давыдов. ФТТ, 52, 1815 (2010).
- [21] С.Ю. Давыдов. ФТТ, 54, 609 (2012).
- [22] С.Ю. Давыдов. ФТТ, 54, 821 (2012).
- [23] W.A. Harrison. Phys. Rev. B, 27, 3592 (1983).
- [24] W.A. Harrison. Phys. Rev. B, 31, 2121 (1985).
- [25] J.C. Phillips. Rev. Mod. Phys., 42, 317 (1970).
- [26] Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика, т. VIII: Электродинамика сплошных сред (М., Наука, 1982).
- [27] Дж. Най. *Физические свойства кристаллов* (М., Мир, 1967).
- [28] Ю.И. Сиротин, М.П. Шаскольская. *Основы кристалло-* физики (М., Наука, 1975).
- [29] Физические величины. Справочник, под ред. И.С. Григорьева, Е.З. Мейлихова (М., Энергоатомиздат, 1991).
- [30] В.И. Гавриленко, А.М. Грехов, Д.В. Коробутяк, В.Г. Литовченко. *Оптические свойства полупроводников* (Киев, Наук. думка, 1987).
- [31] W.A. Harrison, E.A. Kraut. Phys. Rev. B, 37, 8244 (1988).
- [32] F. Bechstedt, W.A. Harrison. Phys. Rev. B, 39, 5041 (1989).
- [33] W.A. Harrison. Phys. Rev. B, 34, 2787 (1986).
- [34] С.Ю. Давыдов, Е.И. Леонов. ФТТ, 30, 374 (1988).

Редактор Л.В. Шаронова

1070 С.Ю. Давыдов

Elastic and dielectric characteristics of the graphene-like A_N-B_{8-N} compounds

S.Yu. Davydov

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Harrison's bond orbital method is applied to the consideration of graphene, silicone, hexagonal NB and 14 hypothetical graphene-like IV–IV, III–V and II–VI compounds. Simple analytical formulas for the central (k_0) and noncentral (k_1) force constants, linear dielectric susceptibilities for the electronic $(\chi_1^{\rm el})$ and ionic $(\chi_1^{\rm ion})$ subsystems are obtained. Calculations show, that within the scope of the applied theory the 2D hexagonal structure for ZnS and ZnSe is unstable $(k_1 < 0)$. Comparison of the calculated values of the high-frequency (ε_∞) and static (ε_0) dielectric constants with the available experimental data for the corresponding 3D compounds demonstrates quite reasonable agreement.