06

Особенности углеродных нанотрубок, синтезированных из метана и ацетилена при использовании катализатора FeCl₃

© А.Г. Редина, ¹ М.В. Авраменко, ¹ Н.В. Лянгузов ^{1,2}

¹ Физический факультет, Южный федеральный университет, 344090 Ростов-на-Дону, Россия

344006 Ростов-на-Дону, Россия e-mail: avramenko.marina@gmail.com

Поступило в Редакцию 4 июня 2020 г.

В окончательной редакции 2 октября 2020 г.

Принято к публикации 6 октября 2020 г.

Сравнены структурные особенности углеродных нанотрубок, синтезированных на одной установке методом каталитического химического осаждения из газовой фазы при использовании двух разных углеродсодержащих прекурсоров и катализатора FeCl₃. В качестве углеродсодержащих прекурсоров применялись метан и ацетилен. Хлорид железа наносился на подложки кремния путем высушивания на их поверхности капли водного раствора. Исследовалось влияние вариации температуры и давления на процесс синтеза. Полученные образцы исследованы с помощью сканирующей электронной микроскопии и спектроскопии комбинационного рассеяния света. Установлена нелинейная связь температуры синтеза со степенью дефектности синтезированных углеродных нанотрубок. Показано влияние типа углеродсодержащего прекурсора на морфологию синтезируемых образцов углеродных нанотрубок.

Ключевые слова: многостенные углеродные нанотрубки, каталитическое химическое осаждение из газовой фазы, сканирующая электронная микроскопия, спектроскопия комбинационного рассеяния света.

DOI: 10.21883/JTF.2021.03.50524.193-20

Введение

Уже более 30 лет углеродные нанотрубки (УНТ) и их разнообразные и уникальные физико-химические свойства активно изучаются учеными со всего мира. Эти новые материалы можно использовать в различных гибких и поддающихся механическому растяжению устройствах, включая аккумуляторы и конденсаторы, солнечные элементы, сенсоры, тонкопленочные транзисторы, дисплеи и многое другое [1–3]. Вследствие высокого аспектного отношения материалы, образованные УНТ, могут иметь различную структурную организацию как по диаметру и/или хиральности нанотрубок (величине их разброса), так и по их упорядоченности (от материалов с произвольной плотностью и ориентацией нанотрубок до волокон и упорядоченных массивов УНТ) [1-3]. В частности, наиболее разупорядоченные материалы, образованные УНТ самых разных диаметров и хиральностей, производятся в форме порошков и используются для усиления композитных материалов, изготовления литий-ионных батарей, проводящих чернил и тонкопленочных транзисторов для гибких электронных устройств, а также при разработке технологий защиты от электромагнитного излучения [4]. Более упорядоченные материалы, имеющие меньший разброс по диаметрам и хиральностям УНТ, могут быть основой для высококачественных композитных материалов, различных полупроводниковых устройств

и сенсоров [4]. Разумеется, каждое конечное применение диктует свои специфические требования к характеристикам материала, образованного УНТ, и, как следствие, к технологиям его синтеза. По этой причине многие научные группы ведут работы по оптимизации режимов синтеза УНТ, стремясь достигнуть наилучшего соотношения между стоимостью производства УНТ и их качеством, требуемым для конкретных применений.

Одним из наиболее популярных методов получения УНТ на сегодняшний день является каталитическое химическое осаждение из газовой фазы [5], который в отличие от своих исторических предшественников разрядно-дугового метода и лазерной абляции [6] позволяет использовать более низкие ($\sim 350-1000^{\circ}\mathrm{C}$) температуры синтеза. Также рассматриваемый метод более удобен, поскольку возможность одновременного варьирования его многочисленных параметров (среди которых химический состав углеродсодержащих прекурсоров и восстановителей, их парциальные давления и фоновое давление в камере синтеза, способы доставки прекурсоров в зону реакции, геометрия реакционного объема, термические режимы, внешние электростатическая и индукционная активации) практически не ограничена [5]. Более того, в рамках данного метода легко реализуется возможность пространственного позиционирования точек зарождения УНТ с помощью нанесения катализаторов роста различными (в том числе литогра-

² Федеральный исследовательский центр Южный научный центр РАН,

фическими) способами. И хотя за последние годы в развитии рассматриваемого метода синтеза УНТ был достигнут определенный прогресс (в частности, удалось понизить температуру роста УНТ до 350°С с использованием железа в качестве катализатора [7], вырастить ориентированные массивы сверхдлинных (до 1 mm) УНТ [8], а также значительно сузить разброс УНТ по хиральностям за счет использования биметаллических катализаторов [9]), установить четкие и однозначные связи между физико-технологическими режимами синтеза УНТ, их реальной структурой и кинетикой роста все еще не удалось, что только подогревает интерес ученых.

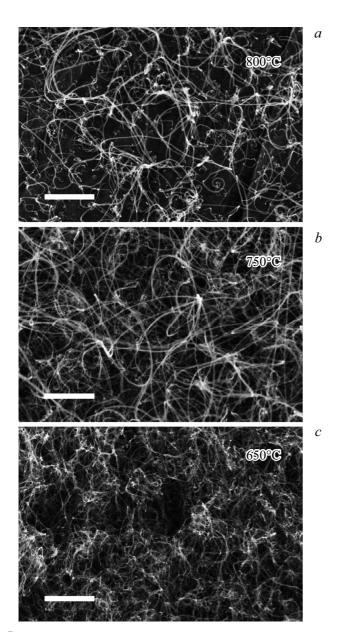
Физико-химические свойства углеродсодержащего прекурсора (УСП) определяют диапазон необходимых температур и давлений, возможные катализаторы, а также целый ряд других параметров каталитического химического осаждения УНТ из газовой фазы [5]. Поэтому переход от одного УСП к другому в рамках даже одной и той же экспериментальной установки может представлять собой нетривиальную задачу. Для практических приложений важно, чтобы при таком переходе менялось минимальное количество параметров синтеза, а качество и количества получаемых УНТ сохранялось. В настоящей работе мы предлагаем очень простой вариант метода синтеза УНТ как из метана, так и из ацетилена. Хлорид железа (III), осажденный на кремниевую подложку в виде капли водного раствора, использовался как катализатор. В рамках данного метода и выбранного сочетания прекурсоров мы провели серию экспериментов, изменяя в широких пределах параметры синтеза УНТ. Полученные образцы были исследованы при помощи спектроскопии комбинационного рассеяния света (КРС), а также сканирующей электронной микроскопии (СЭМ).

1. Экспериментальная часть

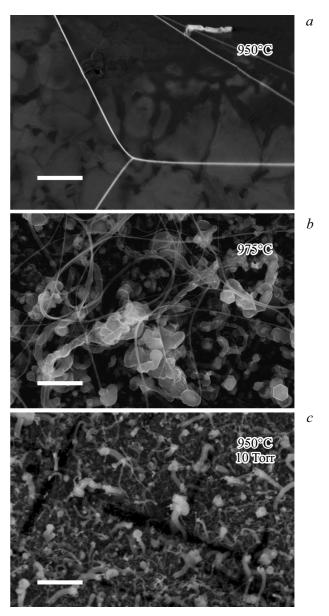
Синтез УНТ был выполнен методом каталитического химического осаждения из газовой фазы [5] на собственной установке кафедры "Нанотехнология" физического факультета Южного федерального университета. В качестве каталитического прекурсора был использован 0.01 M водный раствор хлорида железа (III), осаждаемый в виде капли на кремниевые подложки ориентации (111), которые после высыхания были размещены в кварцевой трубе. Процедура синтеза проводилась с использованием метана или ацетилена в качестве углеродсодержащего прекурсора, водорода как газавосстановителя и аргона как буферного газа (применяемого во время нагрева и охлаждения печи). Данные газы и каталитический прекурсор были выбраны в силу их доступности, метод нанесения каталитического прекурсора удобен своей простотой. Применялось быстрое помещение подложки с катализатором в разогретую до нужной температуры зону реакционного объема с уже уста-

Основные параметры синтеза образцов

Nº	УСП	Параметры фазы синтеза				
		<i>T</i> ,°C	Потоки газов, sccm		Пориотиче Томи	Denotes min
			УСП	H_2	Давление, Torr	Бремя, ппп
$\overline{M_1}$	CH ₄	1050	100	200	760	60
$\overline{M_2}$		1000	100	200		
M_3		975	100	200		
$\overline{M_4}$		950	100	200		
$\overline{M_5}$		925	100	200		
M_6		950	50	50	10.0	10
M_7			40	40	6.3	
M_8			30	30	4.0	
<i>M</i> ₉			10	10	1.6	- 60
A_1	C ₂ H ₂	800	10	10	1.0	
$\overline{A_2}$		750	10	10		20
A_3		725	10	10		10
A_4		700	10	10		60
A_5		650	10	10		10
A_6		500	10	10		10


новившимися температурными и газо-кинетическими условиями [10,11]. Образование наночастиц железа из каталитического прекурсора — хлорида железа (III) — происходит при его термическом разложении в процессе синтеза. После окончания синтеза печь выключается, а УСП и восстановитель заменяются на аргон: таким образом, образец медленно остывает вместе с печью в атмосфере аргона.

Основные параметры проведенных нами экспериментов сведены в таблицу. Каждому образцу присвоено буквенное обозначение в соответствии с использованным УСП ("М" для метана, "А" для ацетилена) и порядковый номер. Ячейки, содержащие номера тех образцов, в которых, согласно последующим исследованиям, не было зафиксировано образования УНТ, выделены серым цветом. Для образцов M_6-M_8 и A_2-A_6 также проводился предварительный отжиг подложки с нанесенным на нее каталитическим прекурсором в атмосфере водорода в течение 15 min, непосредственно предшествовавших фазе синтеза.


Спектры комбинационного рассеяния света (КРС) образцов (в диапазоне $50-3200\,\mathrm{cm^{-1}}$) возбуждались излучением $\mathrm{Ar^{+}}$ лазера с длиной волны $\lambda=514.5\,\mathrm{nm}$ и регистрировались в геометрии обратного рассеяния спектрометром Renishaw inVia Reflex, оснащенным ССD-детектором. Морфология образцов изучена при помощи сканирующего электронного микроскопа Zeiss SUPRA 25.

2. Результаты и обсуждение

На пяти из шести синтезированных из ацетилена образцов (A_1-A_5) по микрофотографиям, выборочно представленным на рис. 1, наблюдается образование многостенных углеродных нанотрубок (МУНТ) и их пучков, что также подтверждается данными спектроскопии КРС, которые будут подробно рассмотрены ниже. Зарегистрировать рост УНТ, синтезированных с использованием метана (рис. 2), удалось для всех образцов, кроме M_8 и M_9 . Вероятно, условия синтеза образца M_7 являются "пороговыми" для получения УНТ при низких давлениях в рамках используемой нами методики.

Рис. 1. СЭМ изображения образцов, синтезированных из ацетилена. Во время фазы синтеза потоки газов составляли для C_2H_2 и H_2 по 10 sccm, давление — 1 Torr. Значения температур указаны на изображениях, масштабный отрезок на каждом соответствует 500 nm.

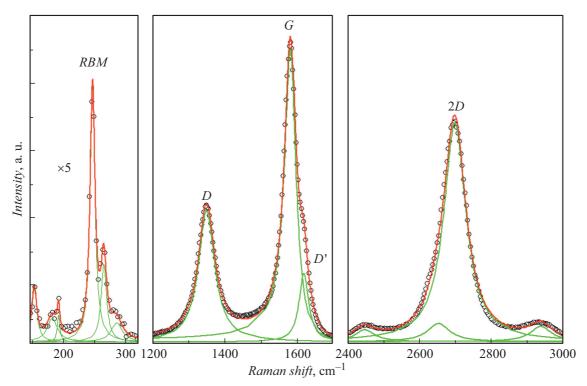
Рис. 2. СЭМ изображения образцов, синтезированных из метана. Во время фазы синтеза для двух образцов (a,b) потоки газов составляли $\mathrm{CH_4}-100\,\mathrm{sccm}$ и $\mathrm{H_2}-200\,\mathrm{sccm}$, давление — 760 Тогг, для третьего образца (c) $\mathrm{CH_4}$ и $\mathrm{H_2}-\mathrm{no}$ 50 sccm, давление — 10 Тогг. Температуры синтеза указаны на изображениях, масштабный отрезок на каждом соответствует 500 nm.

Предварительный отжиг подложки с нанесенным на нее каталитическим прекурсором в атмосфере водорода в течение 15 min привел к меньшей агломерации частиц катализатора и увеличению плотности роста УНТ (рис. 2, c). Из микрофотографий произведена оценка диаметров УНТ: для образцов M_2-M_7, A_1-A_5 они лежат в диапазоне 5-45 nm. В образце M_1 наблюдаются более толстые УНТ — до 60-90 nm в диаметре.

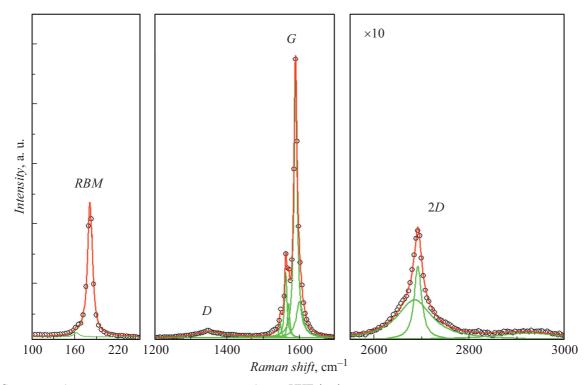
Необходимо отметить, что плотность, характер и морфология распределения УНТ по поверхности подложки

для образцов, синтезированных из разных УСП, отличаются существенно. Полученные из ацетилена УНТ на размерном уровне $\sim 1\,\mu\mathrm{m}$ покрывают поверхность подложки практически однородно, демонстрируя весьма существенные радиусы изгиба, вплоть до закручивания в спирали. При этом они в весьма малой степени агломерируют друг с другом. Синтезируемые из метана УНТ, напротив, распределены неоднородно — присутствуют области со скоплениями и участки с малой плотностью УНТ (рис. 2, a, b), длина которых многократно превосходит размерный уровень $1\,\mu\mathrm{m}$, а радиусы искривления трубок малы.

Спектры КРС образцов $A_1 - A_5$ являются типичными для МУНТ, включая в себя D-, G-, D'- и 2D-области на частотах около 1350, 1580, 1620 и $2700\,\mathrm{cm}^{-1}$ соответственно [12], а также радиальные дыхательные моды (radial breathing modes — RBM) в диапазоне $50-300\,\mathrm{cm}^{-1}$. Пример одного из спектров приведен на рис. 3. Как хорошо известно, радиальные дыхательные моды являются отличительной особенностью УНТ, представляя собой синхронное смещение атомов углерода в нанотрубке в радиальном направлении. Gмода происходит из центра зоны Бриллюэна графенового листа и представляет собой валентные колебания атомов углерода в его плоскости, наблюдаясь с теми или иными особенностями для всех $s p^2$ -углеродных систем. Остальные моды соответствуют процессам двойного резонанса и связаны с точками К обратного пространства графенового листа, представляя собой "дыхательные" колебания гексагонов в его плоскости. D- и D'-моды (запрещенные для идеальных sp^2 -углеродных структур) активируются в присутствии различных дефектов (вакансий, границ, sp^3 -связей с другими атомами), и поэтому могут быть связаны как с дефектами самих углеродных нанотрубок, так и присутствием в каждом образце некоторого количества аморфного углерода, отражая дефектность полученного углеродного наноматериала в целом. 2D(G')-мода, имеющая удвоенную по сравнению с D частоту, наблюдается в спектре вне зависимости от присутствия в образце дефектов и является чувствительной к трехмерному упорядочению $s p^2$ -углеродного материала.


Образцы A_6 и M_9 имеют спектры, типичные для аморфного углерода: очень широкие, сравнимые по пиковой интенсивности и перекрывающиеся друг с другом D- и G-области сопровождаются размытым "куполом" 2D-полосы, не имеющей четко выраженных интенсивных пиков [13]. С образца M_8 получить спектр КРС не удалось по причине сильной люминесценции. Поэтому данные образцы исключаются из дальнейшего рассмотрения.

Отличие спектров КРС образцов МУНТ M_1 — M_7 заключается в том, что для них зачастую оказывалось возможным явно увидеть расщепление G-полосы на несколько компонент (рис. 4). Согласно литературным данным, для УНТ данное явление наблюдается нечасто [14,15]. Оно может быть связано как с выполне-


нием условий резонансного рассеяния, так и с меньшей поверхностной плотностью УНТ. В нашем случае последнее предположение является более вероятным и подтверждается данными электронной микроскопии.

Каждый спектр образцов УНТ был разложен на составляющие компоненты при помощи функций Лоренца для случаев с явным спектральным расщеплением G-полосы, и функции Брейта-Вигнера-Фано (BWF) для случаев без такого расщепления и явной асимметрии спектрального профиля линий. Данный подход является одним из общепринятых в литературе для описания асимметричного профиля G-полосы без спектрального расщепления, обусловленного различными причинами [13]. В нашем случае наиболее вероятная причина высокая плотность распределения УНТ на подложке при синтезе из ацетилена. Пример подобного разложения спектра на составляющие компоненты с использованием функции BWF показан на рис. 3, аппроксимация спектра исключительно при помощи функции Лоренца представлена на рис. 4. После разложения спектров всех образцов данные, характеризующие *D*- и *G*-области, были систематизированы: построены зависимости частот D- и G-пиков, их ширин на половине максимальной высоты (full width at half maximum — FWHM), а также отношения пиковых $\left(I_D/I_G\right)$ и интегральных $\left(A_D/A_G\right)$ интенсивностей от температуры синтеза. В каждой из зависимостей (рис. 5) были проведены аппроксимационные кривые для более удобного и наглядного представления полученных результатов. Отдельно отметим, что во всех спектрах присутствует также до нескольких линий со спектральной шириной $5-10\,\mathrm{cm}^{-1}$ в диапазоне $50-300\,\mathrm{cm}^{-1}$, которые однозначно относятся к радиальным дыхательным модам УНТ.

Рассмотрим зависимости отношений I_D/I_G и A_D/A_G от температуры синтеза. Для образцов $A_1 - A_5$ (рис. 5, a) данные отношения имеют наибольшие значения при температурах 650 и 700°C, значительно уменьшаясь с дальнейшим повышением температуры синтеза. Для образцов $M_1 - M_5$ (рис. 5, b) наблюдаемые зависимости несколько отличаются: на первый взгляд увеличение температуры приводит к увеличению отношения I_D/I_G , в то время как зависимость A_D/A_G в области температур менее 1000°C в целом похожа на те, что приведены на рис. 5, а, с последующим резким возрастанием значения A_D/A_G при 1050°C. Хорошо известно, что в наиболее общем приближении отношения I_D/I_G и A_D/A_G характеризуют степень дефектности углеродного материала: чем меньше эти отношения, тем менее дефектны образцы [12]. Тем не менее существуют и более детальные объяснения наблюдаемого поведения рассматриваемых зависимостей. В частности, авторы [16] вводят понятия структурно разупорядоченной и активированной областей. Первая область содержит дефект и вызванные им локальные искажения кристаллической структуры, вторая же находится вокруг первой, не претерпевая структурных изменений, однако, в силу непосредственной близости разупорядоченной области,

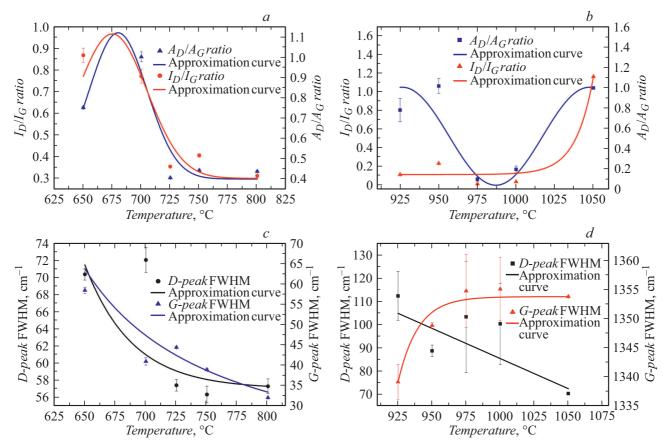

Рис. 3. Спектр комбинационного рассеяния света для образца УНТ (A_4) , синтезированного из ацетилена при температуре 700 $^{\circ}$ С, и его разложение на составляющие компоненты при помощи функций Лоренца и Брейта—Вигнера—Фано.

Рис. 4. Спектр комбинационного рассеяния света для образца УНТ (M_4) , синтезированного из метана при температуре 950°C, и его разложение на составляющие компоненты при помощи функции Лоренца.

комбинационное рассеяние в ней будет также происходить с нарушением правил отбора, т. е. с активацией D-моды. При этом вклад в интенсивность комбинаци-

онного рассеяния первой области значительно меньше, чем аналогичный вклад второй, поскольку в структурно разупорядоченной области нарушается кристаллическая

Рис. 5. Данные спектроскопии КРС и их обработка для образцов $A_1 - A_5$ и $M_1 - M_7$: зависимости от температуры синтеза I_D/I_G и A_D/A_G для $A_1 - A_5$ (a) и $M_1 - M_5$ (b), FWHM D- и G-пиков для $A_1 - A_5$ (c), FWHM и частот D-пика для $M_1 - M_5$ (d).

структура образца как таковая. Поэтому увеличение количества дефектов сначала приводит к увеличению суммарной площади как структурно разупорядоченных областей, так и активированных. Следовательно, увеличивается и интенсивность D-моды. Однако после определенного порога площадь структурно упорядоченных областей начинает существенно превышать площадь активированных, что приводит к уменьшению интенсивности *D*-моды. Следует отметить, что приведенная в работе [16] зависимость отношения I_D/I_G от расстояния между дефектами имеет вид, аналогичный полученным нами зависимостям для I_D/I_G и A_D/A_G от температуры синтеза образцов $A_1 - A_5$ (при $T = 650 - 800^{\circ}$ С) и $M_2 - M_5$ (T = 925 - 1000°C). В силу этого описанное выше пороговое значение расстояния между дефектами можно получить при температуре синтеза в интервалах 650-700 и 925-950°С для ацетилена и метана в качестве УСП соответственно. Более высокие температуры синтеза ведут как к уменьшению количества дефектов, так и к увеличению расстояния между ними. Что касается резкого увеличения отношений I_D/I_G и A_D/A_G для образца M_1 , оно может коррелировать с наблюдаемым на снимках СЭМ существенным утолщением МУНТ по сравнению со всеми остальными образцами, и,

как следствие, резким увеличением суммарной площади активированных областей, а не плотности дефектов.

Теперь рассмотрим зависимости величины FWHM Dи G-пиков. С ростом температуры синтеза для образцов $A_1 - A_5$ данные зависимости носят экспоненциально убывающий характер (рис. 5, c), а для образцов M_1-M_5 заметно изменяется только ширина D-пика, также уменьшаясь при увеличении температуры (рис. 5, d, черные точки и линия). Наблюдаемое явление можно объяснить следующим хорошо известным фактом [12]: беспорядок, вносимый случайным распределением дефектов, вызывает уширение комбинационных мод, т.е. более дефектные материалы обладают большим значением FWHM, что подтверждает сделанный выше вывод о том, что рост температуры синтеза приводит к уменьшению количества дефектов в образцах, а увеличение значений I_D/I_G и A_D/A_G для образца M_1 связано с существенным утолщением МУНТ, а не с увеличением плотности дефектов.

Увеличение температуры синтеза также оказывает влияние на частоты D- и G-мод. В образцах $A_1 - A_5$ положение D-пика претерпевает лишь незначительные изменения в пределах $\pm 1.5\,\mathrm{cm}^{-1}$ от среднего значения в $1346\,\mathrm{cm}^{-1}$. Частота G-моды, напротив, изменяется заметно, уменьшаясь на $8\,\mathrm{cm}^{-1}$ с увеличением темпе-

ратуры синтеза. И поскольку частота G-моды напрямую зависит от длины связи С-С, наблюдаемое явление может иметь несколько возможных объяснений. Вопервых, длина связи С-С чувствительна к изменению межслоевого расстояния в МУНТ [17,18]: чем меньше межслоевое расстояние, тем выше оказывается частота G-моды. Во-вторых, влияние на связь C-C также может оказываться посредством допирования [14,19,20] и явления переноса заряда [21], что в нашем случае может происходить за счет частиц катализатора. В-третьих, хорошо известно явление, когда взаимодействие между G-фононом и экситонами вблизи точки K обратного пространства нанотрубки приводит к сдвигу G-моды в область более низких частот для металлических нанотрубок [22]. Возможно, что изменение температуры синтеза влияет на тип проводимости слоев, образующихся из ацетилена нанотрубок, что отражается на величине экситон-фононного взаимодействия и, как следствие, частоте G-моды. Разумеется, установить, какой именно фактор является решающим для рассматриваемых нами образцов, на текущий момент не представляется воз-

Наконец, в спектрах КРС образцов $M_2 - M_5$ наблюдается явное расщепление G-полосы на несколько компонент, положение и ширина которых не демонстрируют никаких явно выраженных зависимостей. Спектр образца M_1 имеет широкую ($\sim 70\,{\rm cm}^{-1}$) и асимметричную G-полосу, напоминая спектры $A_1 - A_5$. Что касается Dполосы для образцов M_1-M_5 , то ее ширина с ростом температуры синтеза уменьшается (рис. 5, d, черные точки и прямая), как и в случае описанных выше образцов $A_1 - A_5$. В свою очередь, частота D-полосы увеличивается с ростом температуры синтеза (рис. 5, d, красные точки и кривая (в on-line версии)). В случае постоянной длины волны возбуждающего излучения данный факт принято главным образом связывать с изменением типа допирующих примесей в углеродном наноматериале: значительное смещение D-моды в сторону более низких частот говорит о допировании *п*-типа, в сторону более высоких о примесях р-типа [14,23], что в нашем случае также может происходить за счет взаимодействия МУНТ с частицами катализатора. Следует отметить, что большие погрешности в определении характеристик *D*-моды для некоторых образцов, полученных из метана (рис. 5, d), объясняются ее профилем: в соответствующих спектрах она имеет низкую интенсивность и значительную ширину (как на рис. 3), что затрудняет точное определение как ее ширины, так и частотного положения.

Заключение

Таким образом, в работе был предложен простой и гибкий способ синтеза МУНТ методом каталитического химического осаждения из газовой фазы. Показано, что для получения МУНТ при одном и том же катализаторе FeCl₃, а также одинаковом способе его подготовки и нанесения на подложку, при переходе между двумя разными УСП (метаном и ацетиленом) требуются лишь определенные изменения температуры и скорости потока прекурсора. Длительность синтеза можно ограничить даже 10 min — этого времени оказывается достаточно для выращивания МУНТ длиной в десятки μ m. Исследование образцов с помощью СЭМ и спектроскопии КРС позволило показать влияние температуры синтеза на морфологию образцов, дефектность УНТ и параметры спектров их КРС. Установлено, что предварительный отжиг подложки с нанесенным на нее каталитическим прекурсором в атмосфере водорода в течение 15 min приводит к меньшей агломерации частиц катализатора и увеличению плотности роста МУНТ на поверхности подложки. Выявлено, что понижение температур приводит к значительному увеличению дефектности синтезируемых из ацетилена УНТ. Напротив, для синтеза УНТ из метана необходим больший расход газов и более высокие температуры, однако таким путем можно получить низкую дефектность образцов.

Благодарности

Авторы выражают благодарность к.ф.-м.н. Левшову Д.И. за помощь в обсуждении результатов по спектроскопии комбинационного рассеяния света.

Финансирование работы

Работа выполнена при поддержке Российского фонда фундаментальных исследований в рамках проекта № 18-29-19043 мк.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] R.H. Baughman, A.A. Zakhidov, W.A. De Heer. Science, 297 (5582), 787 (2002). DOI: 10.1126/SCIENCE.1060928
- [2] M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart. Science, 339 (6119), 535 (2013). DOI: 10.1126/SCIENCE.1222453
- [3] Y. Li. ACS Nano, **11** (1), 1 (2017). DOI: 10.1021/ACSNANO.7B00232
- [4] R. Rao, C.L. Pint, A.E. Islam, R.S. Weatherup, S. Hofmann, E.R. Meshot, F. Wu, C. Zhou, N. Dee, P.B. Amama, J. Carpena-Nuñez, W. Shi, D.L. Plata, E.S. Penev, B.I. Yakobson, P.B. Balbuena, C. Bichara, D.N. Futaba, S. Noda, H. Shin, K. Su Kim, B. Simard, F. Mirri, M. Pasquali, F. Fornasiero, E.I. Kauppinen, M. Arnold, B.A. Cola, P. Nikolaev, S. Arepalli, H.-M. Cheng, D.N. Zakharov, E.A. Stach, J. Zhang, F. Wei, M. Terrones, D.B. Geohegan, B. Maruyama, S. Maruyama, Y. Li, W.W. Adams, A.J. Hart. ACS Nano, 12 (12), 11756 (2018). DOI: 10.1021/ACSNANO.8B06511
- [5] V. Jourdain, C. Bichara. Carbon, **58**, 2 (2013). DOI: 10.1016/J.CARBON.2013.02.046

- J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek,
 V. Adamc, R. Kizek. J. Mater. Chem., 21 (40), 15872 (2011).
 DOI: 10.1039/C1JM12254A
- [7] M. Cantoro, S. Hofmann, S. Pisana, V. Scardaci, A. Parvez, C. Ducati, A.C. Ferrari, A.M. Blackburn, K.-Y. Wang, J. Robertson. Nano Lett., 1107 (2006). DOI: 10.1021/nl060068y
- [8] D.N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumura, S. Iijima. J. Phys. Chem. B, 110 (15), 8035 (2006). DOI: 10.1021/JP060080E
- [9] F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J.-Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, Y. Li. Nature, 510 (7506), 522 (2014). DOI: 10.1038/NATURE13434
- [10] X. T. Than. Univ. Montpellier II 2011. Available: http://www.theses.fr/2011MON20110.
- [11] B.T. Nguyen, X.T. Than, V.C. Nguyen, T.T. Tam Ngo, H.T. Bui, X.N. Nguyen, H.K Phan, N.M. Phan. Adv. Nat. Sci. Nanosci. Nanotechnol., 3 (2), (2012). DOI: 10.1088/2043-6262/3/2/025010
- [12] R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio,
 M.S. Dresselhaus. Adv. Phys., 60 (3), 413 (2011).
 DOI: 10.1080/00018732.2011.582251
- [13] A.C. Ferrari, J. Robertson. Phys. Rev. B, 31 (2), 632 (2011). DOI: 10.1007/BF02543692
- [14] H. Murphy, P. Papakonstantinou, T.I.T. Okpalugo. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct, 24 (2), 715 (2006). DOI: 10.1116/1.2180257
- [15] X. Zhao, Y. Ando, L.C. Qin, H. Kataura, Y. Maniwa, R. Saito. Appl. Phys. Lett., 81 (14), 2550 (2002). DOI: 10.1063/1.1502196
- [16] M.M. Lucchese, F. Stavale, E.H. Martins Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio. Carbon N.Y., 48 (5), 1592 (2010). DOI: 10.1016/J.CARBON.2009.12.057
- [17] B.P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio. Adv. Mater., (10), 750 (2000).
- [18] V.N. Popov, D.I. Levshov, J.L. Sauvajol, M. Paillet. Phys. Rev. B, 97 (16), 1 (2018). DOI: 10.1103/PHYSREVB.97.165417
- [19] H. Shiozawa, T. Pichler, A. Grüneis, R. Pfeiffer, H. Kuzmany, Z. Liu, K. Suenaga, H. Kataura. Adv. Mater., 20 (8), 1443 (2008). DOI: 10.1002/ADMA.200701466
- [20] H. Shiozawa, T. Pichler, C. Kramberger, A. Grüneis, M. Knupfer, B. Büchner, V. Zólyomi, J. Koltai, J. Kürti, D. Batchelor, H. Kataura. Phys. Rev. B, 77 (15), 3 (2008). DOI: 10.1103/PHYSREVB.77.153402
- [21] V. Zólyomi, J. Koltai, Á. Rusznyák, J. Kürti, Á. Gali, F. Simon, H. Kuzmany, Á. Szabados, P.R. Surján. Phys. Rev. B, 77 (24), 1 (2008). DOI: 10.1103/PHYSREVB.77.245403
- [22] H. Farhat, H. Son, G.G. Samsonidze, S. Reich, M.S. Dresselhaus, J. Kong. Phys. Rev. B, 99 (14), 1 (2007). DOI: 10.1103/PHYSREVLETT.99.145506
- [23] J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, S. Fan. Nano Lett., 13 (12), 6170 (2013). DOI: 10.1021/NL4035048