03,11

Станнид Mg₂Sn под давлением: результаты эволюционного поиска из первых принципов

© Ю.В. Луняков

Институт автоматики и процессов управления ДО РАН,

Владивосток, Россия

E-mail: luniakov@mail.ru

Поступила в Редакцию 9 декабря 2020 г. В окончательной редакции 14 декабря 2020 г. Принята к публикации 17 декабря 2020 г.

С помощью пакета программ, реализующих эволюционные алгоритмы на базе теории функционала плотности (ТФП), был проведен поиск оптимальных структур станнида магния Mg_2Sn . Показано, что под давлением $P\sim5.2\,\mathrm{GPa}$ хорошо известная гексагональная структура симметрии $P6_3/mmc$ является нестабильной и переходит в орторомбическую структуру симметрии Pmmm. Последняя является устойчивой до высоких давлений $P\sim250\,\mathrm{GPa}$ и может существовать вместе с орторомбической структурой симметрии Cmmm.

Ключевые слова: Mg₂Sn, кристаллическая структура, фазовые переходы, гидростатическое давление, эволюционный поиск, метод функционала плотности.

DOI: 10.21883/FTT.2021.04.50708.257

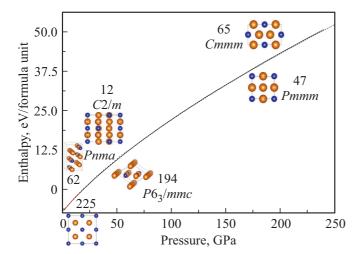
1. Введение

Одним из наиболее интенсивно исследуемых в последние годы соединений магния, наряду с силицидом Mg_2Si ([1–4]) и германидом Mg_2Ge , ([5–6]) является станнид Mg_2Sn ([7–11]). В связи с относительно высокой температурой плавления $T=1030\,\mathrm{K}$ [12] и хорошей электропроводимостью станнид Mg_2Sn подходит для использования в качестве термоэлементов в промышленном производстве [13,14]. По причине достаточно узкой запрещенной зоны $E_g=0.36\,\mathrm{eV}$ станнид Mg_2Sn также может быть использован для инфракрасных детекторов с длиной волны $\sim 1.5\,\mu\mathrm{m}$ в оптоволоконной оптике [15].

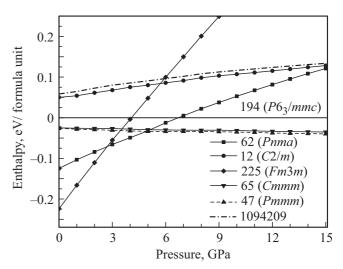
Как и многие оксиды и сульфиды редкоземельных металлов, Li_2O , Na_2S , K_2S , Li_2S и Rb_2S , станнид Mg₂Sn при нормальных условиях имеет простую кубическую структуру типа антифлуорита симметрии Fm3m. Первые эксперименты более чем 40-летней давности показали, что силицид магния Mg2Si со структурой антифлуорита характеризуются следующими структурными фазовыми переходами под давлением: антифлуорит $(Fm3m) \rightarrow$ антикоттунит $(Pnma) \rightarrow$ гексагональная структура типа Ni₂In $(P6_3/mmc)$ [16]. F. Yu. [17] промоделировал поведение германида Mg2Ge и станнида Mg_2Sn при гидростатическом давлении $0 \le P \le 100$ GPa и получил следующие значения давлений фазовых переходов в приближении обобщенного градиента (ПОГ). Для фазового перехода антифлуорит → антикоттунит давление составило P = 5.26 GPa, для перехода антикоттунит \rightarrow структура типа Ni₂In — P = 18.4 GPa. В 2017 г. аналогичное исследование проводили алжирские ученые [18]. Для перехода из антифлуорит в антикоттунит они получили давление $P = 3.77\,\mathrm{GPa}$ в ПОГ и

 $P=4.88\,\mathrm{GPa}$ в приближении локальной электронной плотности (ПЛП). Для давления перехода из антикоттунита в структуру типа $\mathrm{Ni_2In}$ было получено значение $P=10.41\,\mathrm{GPa}$ в ПОГ и $P=8.89\,\mathrm{GPa}$ в ПЛП. Недавние теоретические исследования отечественных и зарубежных авторов показали [19,20], что у изоморфа $\mathrm{Mg_2Si}$ может быть еще моноклинная структура C2/m и орторомбическая структура Pmmm при давлениях $P>40\,\mathrm{GPa}$ и $P>76\,\mathrm{GPa}$, соответственно.

Целью настоящей работы является проведение аналогичных расчетов станнида магния Mg_2Sn при высоких давлениях с помощью методов эволюционного поиска и сравнение с результатами других исследований [17,18], в том числе и с теми, что находятся в открытой базе данных Material Project www.materialsproject.org [21].


2. Методика расчетов

Для определения оптимальных структур с минимальной энтальпией были использованы современные методы эволюционного поиска, реализованные в комплексе программ Universal Structure Predictor: Evolutionary Xtallography (USPEX) [22-25]. В процессе эволюционного поиска было генерировано от 20 до 40 поколений в зависимости от сходимости — по 24 структуры в каждом, кроме первого поколения (120 структур). В первом поколении структуры выбирались случайным образом с произвольной пространственной симметрией, в последующих поколениях было использовано 60% структур предыдущего поколения с наименьшей энтальпией. (70% из них генерировались оператором наследования, и 30% — применением оператора мутации решетки.) Сходимость считалась достигнутой, если наиболее выгодная по энергии структура сохраняется в течение двадцати поколений подряд. Оптимизация геометрии полученных структур выполнялась с использованием метода сопряженных градиентов, реализованном в программе VASP [26], с точностью по энергии $\sim 0.1\,\mathrm{meV}$ на ячейку. Энергия обрезания плосковолнового базиса при этом составляла $E_{\rm cut} = 520\,{\rm eV}$ (для сопоставления с данными из базы [21]), обменно-корреляционный потенциал был выбран в параметризации Пердью-Бурке-Эрнзерхофа [27] в приближении обобщенного градиента. Для численного интегрирования в процессе эволюционного поиска плотность к-точек была задана равной $2\pi \sim 0.05 \, {\rm \AA}^{-1}$. Для энтальпии использовалось следующее определение при нулевой температуре: F = E + PV, где E — полная энергия, P — внешнее давление, V объем примитивной ячейки. Внешнее гидростатическое давление было задано в диапазоне от $0 \le P \le 250 \, \mathrm{GPa}$.


3. Результаты и обсуждение

В результате эволюционного поиска было получено несколько тысяч оптимальных структур станнида Mg_2Sn аналогично результатам моделирования силицида Mg_2Si (рис. 1 работы [20]). Через наиболее энергетически выгодные структуры — Pnma, Fm3m, C2/m, $P6_3/mmc$, Pmmm и Cmmm — построены линии, которые приведены на рис. 1. Все они расположены достаточно близко друг к другу, наибольшее расхождение на 5.1% наблюдается между Pnma и Pmmm. Линии, соответствующие структурам Pmmm, C2/m, $P6_3/mmc$, Pmmm и Cmmm, различаются не более чем на 0.8% и почти совпадают, что несколько затрудняет их сравнение и анализ.

На рис. 2 энтальпия построена как функция давления относительно эталонной структуры, в качестве которой выбрана структура $P6_3/mmc$ группы симметрии 194. Поскольку все известные фазовые переходы в станниде магния Mg_2Sn должны происходить при достаточно небольших давлениях $P \leq 15$ GPa,

Рис. 1. Зависимость от давления энтальпии наиболее стабильных структур станнида Mg_2Sn .

Рис. 2. Сравнение энтальпии наиболее энергетически выгодных структур станнида Mg_2Sn .

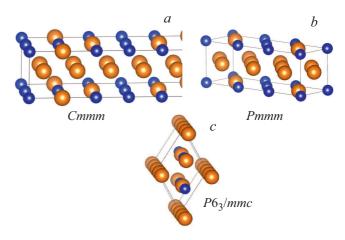
на рис. 2 показан именно этот диапазон. Результаты данных расчетов воспроизводят известные фазовые переходы антифлуорит $(Fm3m) \rightarrow$ антикоттунит $(Pnma) \rightarrow \text{Ni}_2\text{In}~(P6_3/mmc)$ и позволяют предсказать неизвестные фазовые переходы: $Pnma \rightarrow Cmmm$ и $Pnma \rightarrow Pmmm$. Давление перехода из антифлуорит в антикоттунит составляет 2.71 GPa и согласуется со значениями 3.77 и 5.26 GPa, полученными в других работах [17,18]. Давление перехода из структуры антикоттунита Pnma в структуру типа Ni_2In равно 6.7 GPa в сравнении с соответствующими значениями 10.40 и 18.4 GPa, полученными авторами работ [17,18].

Чтобы понять возможную причину расхождений давлений фазовых переходов, полученных в разных работах, были рассчитаны наиболее энергетически выгодные структуры станнида Mg₂Sn № 1018795, 1094192, 1094196, 1094197, 1094209, 1094221, 1094236, 1094242, 1094517, 1094518, 1094529, и 1094543 из базы данных [21]. Зависимость энтальпии от давления была рассчитана отдельно для каждой структуры из [21] с соответствующими параметрами. Энтальпия этих структур в большинстве случаев заметно превышает энтальпию структур, полученных в результате эволюционного поиска, т.е. все они являются менее энергетически выгодными. Например, штрих-пунктирная линия на рис. 2 соответствует структуре № 1094209 из базы данных [21]. Энтальпия этой структуры более чем на 10 meV превышает энтальпию соответствующей структуры симметрии C2/m во всем диапазоне давлений $0 \le P \le 15\,\mathrm{GPA}$. Точка пересечения с кривой, соответствующей стабильной при нормальных условиях структуре Fm3m, оказывается выше, чем точка пересечения кривых, соответствующих структурам C2/m и Fm3m. То есть чем выше расположена кривая энтальпии некоторой структуры, тем выше давление перехода в эту структуру из структуры, более стабильной при низком давлении. Таким образом, можно **454 Ю.В.** Луняков

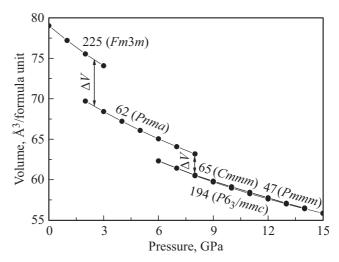
Положения	базисных	атомов	В	ячейках	$Mg_2Sn \\$	различной
симметрии						

Параметры решетки	Структура	Атом	Координаты		
a = 19.4 Å b = 6.5 Å c = 4.4 Å	<i>Cmmm</i> (65)	Sn1(1b) Sn2(1a) Sn3(2mm) Mg1(m) Mg ₂ (2mm) Mg3(2mm)	$ \begin{array}{c} 1/2 \\ 0 \\ \pm x \\ \pm x \\ \pm x \\ 1/4 \end{array} $	0 0 0 ±y 0 1/4	0 0 0 1/2 0 1/2
a = 3.2 Å b = 3.3 Å c = 9.7 Å	<i>Pmmm</i> (47)	Sn1(2i) Sn2(1f) Sn3(1a) Mg1(2k) Mg2(1d) Mg3(2l) Mg4(2j) Mg5(1g)	x 1/2 0 x 1/2 x x 0	0 1/2 0 1/2 0 1/2 0 1/2	0 0 0 0 1/2 1/2 1/2 1/2

объяснить широкий разброс давлений фазовых переходов, полученных в разных работах. Нужно отметить, что в базе данных [21] есть структуры, которые получались немного выгоднее по энергии, чем структуры, полученные в настоящей работе. Например, это структура $N_{\rm P} = 1018795$ симметрии $P6_3/mmc$ — по сравнению со структурой типа Ni_2Si , взятой за эталонную. Однако различие энтальпий между этими структурами составляет всего лишь от 0.03 до 0.29% во всем диапазоне давлений на рис. 2, что делает соответствующие линии на графике практически неразличимыми.


Как видно на рис. 2, орторомбические структуры — Сттт и Рттт, полученные методами эволюционного поиска, имеют достаточно близкие энергии с небольшим преимуществом в пользу структуры симметрии Рттт. Под давлением $P > 5.2\,\mathrm{GPa}$ эти две структуры становятся самыми энергетически выгодными, оставаясь стабильными во всем диапазоне давлений и делая фазовый переход $Pnma \to P6_3/mmc$ практически не наблюдаемым экспериментально.

При рассмотрении элементарных ячеек разной симметрии (таблица) можно заметить, что атомы Sn1, Sn2 ${\rm Mg_2}$, которые в ячейке ${\it Cmmm}$ занимают высокосимметричные позиции ${\it 1a}$, ${\it 1b}$ и ${\it 2mm}$, переходят в соответствующие высокосимметричные позиции ${\it 1f}$, ${\it 1a}$ и ${\it 1g}$ атомов Sn2, Sn3 и Mg5, в ячейке ${\it Pmmm}$. Аналогично, атомы, смещенные из высокосимметричного положения вдоль одного-двух направлений в ячейке ${\it Cmmm}$, например, Sn3, переходят в положения Sn1, смещенные из высокосимметричного положения (0,0,0) в ячейке ${\it Pmmm}$. То есть атомное строение орторомбических структур ${\it Cmmm}$ и ${\it Pmmm}$ почти одинаково.


На рис. 3, a и b показаны элементарные ячейки структур Cmmm и Pmmm, стабильных под давлением P > 5.2 GPa, и ячейка гексагональной структуры $P6_3/mmc$, стабильной под давлением P > 3.7 GPa. Мы

видим, что сбоку они выглядят практически одинаково — ряд Mg посередине и чередующиеся ряды Sn и Mg2Sn сверху и снизу. Различия заключаются только в форме ячейки и параметрах решетки. Ячейку структуры $P6_3/mmc$, которая показана на рис. 3, c, можно рассматривать как фрагмент ячейки структуры Pmmm или Cmmm. Следовательно, фазовый переход $P6_3/mmc \rightarrow Pmmm$ может происходить без изменения объема, приходящегося на одну формульную единицу станнида Mg_2Sn .

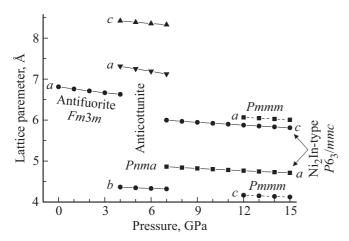

Зависимость от давления объема элементарной ячейки, приходящегося на одну формульную единицу, показана на рис. 4. Мы видим, что при фазовых переходах первого рода $Fm3m \to Pnma$ и $Pnma \to P6_3/mmc$ наблюдаются разрывы в первых производных термодинамического потенциала, в нашем случае — объеме как функции давления. На рис. 4 видно, что объем элементарной ячейки при переходе $P6_3/mmc \to Pmmm$

Рис. 3. Сравнение элементарных ячеек станнида Mg₂Sn различной симметрии: орторомбической структуры Cmmm~(a), структуры Pmmm~(b) и гексагональной структуры $P6_3/mmc~(c)$.

Рис. 4. Объем элементарной ячейки различных структур Mg₂Sn в зависимости от давления.

Рис. 5. Структурные параметры разных элементарных ячеек Mg₂Sn с кубической, гексагональной и орторомбической структурой в зависимости от давления.

и $P6_3/mmc \rightarrow Cmmm$ почти не меняется. Следовательно, такой фазовый переход является переходом второго рода. Кривые зависимости от объема структур Рттт и Сттт практически совпадают с кривой зависимости от объема структуры типа Ni₂In 194 группы симметрии. Фазовый переход $Fm3m \rightarrow Pnma$ характеризуется уменьшением объема на 8.3%, что согласуется с данными других работ — 7.4% [17] и 8.2% [18]. Фазовый переход $Pnma \rightarrow P6_3/mmc$ характеризуется уменьшением объема на 4.6%, что тоже согласуется с данными работы [17], в которой уменьшение объема составляет ~ 3.1%. Однако, согласно результатам работы [18], уменьшение объема для фазового перехода $Pnma \rightarrow P6_3/mmc$ может доходить до 15.4%. Эти расхождения могут быть связаны с отличающимися параметрами решетки, которые получаются в работе [18].

Как показано на рис. 5, для простой кубической ячейки Fm3m постоянная решетки a меняется в диапазоне от 6.8 до 6.6 Å при увеличении давления до 3 GPa, что согласуется с данными на рис. З в работе [17], где $6.75 \,\text{Å} < a < 6.4 \,\text{Å}$. Для орторомбической ячейки *Pnma* параметр a уменьшается от 7.3 до 7.1 Å, параметр b от 4.4 Å до 4.3 Å, а параметр c — от 8.4 Å до 8.3 Å для $3 \le P \le 6$ GPa, что также хорошо согласуется с результатами [17]. В работе Гюзлейна с коллегами [18] для ячейки симметрии Pnma при $P=3.8\,\mathrm{GPa}$ получаются большие значения параметров решетки $a = 7.5 \,\mathrm{A}$, $b = 4.5 \,\text{Å}, \ c = 8.5 \,\text{Å}.$ Соответственно, объем орторомбической ячейки симметрии Рпта также получается больше, что приводит к увеличению изменения объема при фазовом переходе $Pnma \to P6_3/mmc$. Для гексагональной структуры типа Ni₂In параметр а меняется в пределах от 4.9 Å до 4.7 Å, а параметр c — в пределах от 6.0 Å до 5.8 Å при 7 GPa $\leq P \leq$ 15 GPa, что вполне согласуется с результатами расчетов [17] ($a \sim 4.6 \,\text{Å}$ и $c \sim 5.8 \,\text{Å}$ при $P = 18 \,\text{GPa}$). Что касается работы [18], то мы можем только сравнить их данные при фиксированном давлении P=0 и $P=10.4\,\mathrm{GPa}$ (давление перехода $Pnma\to P6_3/mmc$). При P=0 в работе [18] получилось $a\sim 5.0\,\mathrm{\AA},\ c\sim 6.5\,\mathrm{\AA}$ в сравнение с нашими данными $a=5.1\,\mathrm{\AA}$ и $c=6.2\,\mathrm{Å}$. При $P=10.4\,\mathrm{GPa}$ эти значения составляют $a\sim 4.8\,\mathrm{\AA}$ и $c\sim 6.1\,\mathrm{Å}$ [18] в сравнение с $a=4.8\,\mathrm{\AA}$ и $c=5.9\,\mathrm{Å}$. Для орторомбической структуры Pmmm группы симметрии 47 параметр решетки a меняется от $18.8\,\mathrm{Å}$ до $18.0\,\mathrm{Å}$, параметр решетки b от $6.2\,\mathrm{Å}$ до $6.0\,\mathrm{Å}$, а параметр ячейки c от $4.3\,\mathrm{Å}$ до $4.1\,\mathrm{Å}$ при изменении давления от $6\,\mathrm{Å}$ до $15\,\mathrm{Å}$. При этом с точностью $\sim 1\%$ параметр решетки a в три раза больше параметра b во всем диапазоне исследуемых давлений, поэтому он и не показан на рис. 5. Аналогичная зависимость наблюдается и для орторомбической структуры Cmmm группы симметрии 65.

4. Заключение

Результаты эволюционного моделирования достоверно воспроизводят известные фазовые переходы в станниде магния Mg₂Sn антифлуорит $(Fm3m) \rightarrow$ антикоттунит $(Pnma) \rightarrow Ni_2In$ $(P6_3/mmc)$ и позволяют предсказать новые фазовые переходы под давлением $P \sim 5.2\,\mathrm{GPa}$. Наиболее устойчивой структурой, которая может существовать в широком диапазоне давлений, является орторомбическая структура Рттт. Эта структура является более энергетически выгодной, чем известная гексагональная структура типа Ni₂In. При давлениях $P > 5.2\,\text{GPa}$ может также существовать орторомбическая структура симметрии Сттт, которая имеет почти такую же энтальпию, что и структура симметрии Рттт. Данные структуры имеют похожий локальный порядок расположения атомов и характеризуются чередующимися рядами атомов Mg, Sn и MgSn.

Финансирование работы

Работа выполнена при финансовой поддержке программы фундаментальных исследований ДВО РАН Дальний Восток, грант № 18-3-022 в рамках гос. задания № 0262-2019-0002 с использованием оборудования ЦКП Дальневосточный вычислительный ресурс www.cc.dvo.ru

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] A. Vantomme, G. Lanouche, J.E. Mahan, J.P. Becker. Microelectron. Eng. **50**, 237 (2000).
- [2] A.S. Gouralnik, S.A. Dotsenko, N.G. Galkin. Phys. Status Solidi 10, 1742 (2013).
- [3] S.A. Dotsenko, Yu.V. Luniakov, A.S. Gouralnik, A.K. Gutakovskii, N.G. Galkin. J. Alloys Compd. 778, 514 (2019).

456 Ю.В. Луняков

[4] A. Shevlyagin, I. Chernev, N. Galkin, A. Gerasimenko, A. Gutakovskii, H. Hoshida, Y. Terai, N. Nishikawa, K. Ohdaira. Solar. Energy 211, 383 (2020).

- [5] J. Tani, M. Takahashi, H. Kido. J. Alloys Compd. 485, 764 (2009).
- [6] M. Cahana, Y. Gelbstein. Intermetallics 120, 106767 (2020).
- [7] G. Murtaza, A. Sajid, M. Rizwan, Y. Takagiwa, H. Khachai, M. Jibran, R. Khenata, S.B. Omran. Mater. Sci. Semicond. Process 40, 429 (2015).
- [8] R. Varma, S. Kada, M. Barnett, J. Magnes. Alloys. In press (2020).
- [9] Y. Zhu, Z. Han, F. Jiang, E. Dong, B.P. Zhang, W. Zhang, W. Liu. Mater. Today Phys. 16, 100327 (2020).
- [10] G. Castillo-Hernandez, M. Yasseri, B.Klobes, S. Ayachi, E. Müller. J. de Boor. J. Alloys Compd. 845, 156205 (2020).
- [11] H.T. Chen, Z.Z. Shi. Mater. Lett. 281, 128648 (2020).
- [12] A.A. Nayeb-Hashemi, J.B. Clark. Bull. Alloy Phase Diagrams 5, 466 (1984).
- [13] M. Iida, T. Nakamura, K. Fujimoto, Y. Yamaguchi, R. Tamura, T. Iida, K. Nishio. MRS Advances 1.60, 3971 (2016).
- [14] M. Akasaka, T. Lida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, N. Hamada. J. Appl. Phys. 104, 13703 (2008).
- [15] A. Vantomme, J.E. Mahan, G.L. James, P.B. Margriet, V. Bael, K. Temst, C.V. Haesendonck. Appl. Phys. Lett. 70, 1086 (1997).
- [16] P. Cannon, E.T. Conlin. Science 145, 487 (1964).
- [17] F. Yu, J.-X. Sun, T.-H. Chen. Physica B 406, 1789 (2011).
- [18] M. Guezlane. H. Baaziz, Z. Charifi, A. Belgacem-Bouzida, Y. Djaballah. J. Sci. Adv. Mater. Devices 2, 105 (2017).
- [19] T.D. Huan, V.N. Tuoc, N.B. Le, N.V. Minh, L.M. Woods. Phys. Rev. B 93, 094109 (2016).
- [20] Ю.В. Луняков. ФТТ 62, 783 (2020).
- [21] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, Sh. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson. APL Mater. 1, 011002 (2013).
- [22] C.W. Glass, A.R. Oganov, N. Hansen. Comp. Phys. Commun. **175**, 713 (2006).
- [23] A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu. Comp. Phys. Commun. 184, 1172 (2013).
- [24] A.R. Oganov, Y.M. Ma, Y. Xu, I. Errea, A. Bergara, A.O. Lyakhov. Proc. Natl. Acad. Sci. 107, 7646 (2010).
- [25] A.R. Oganov, A.O. Lyakhov, M. Valle. Acc. Chem. Res. 44, 227 (2011).
- [26] G. Kresse, J. Furthmuller. Phys. Rev. B 54, 11169 (1996).
- [27] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).

Редактор Т.Н. Василевская