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Based on the empirical pseudo-potential method which incorporates compositional disorder as an effective

potential, the band structure of Si1−xGex alloy are calculated for different alloy composition x . The effect of

temperature and pressure on the electronic band structure of the considered alloy has been studied. Monotonic

decreasing and increasing functions are obtained for the temperature and pressure dependent form factors

respectively. Some physical quantities as band gaps, bowing parameters, and the refractive index of the considered

alloy with different Ge concentration and under the effect of temperature and pressure are calculated. The results

obtained are found in good agreement with the experimental and published data.

1. Introduction

Semiconductor alloys plays an important role in the

nanotechnology science and enter in the design of the

optoelectronic devices. Most of alloys have become

important components of the optoelectronic devices such

as light emitting and laser diodes (LEDs and LDs) in green,

blue, and UV regime [1].

There has been a strong revival of interest in the electronic

properties of Si1−xGex alloys in the context of super lattice

physics [2–4]. Therefore, the investigation of the electronic

band structure of Si1−xGex alloys has attracted considerable

interest. They offer the freedom to design material proper-

ties by choosing appropriate alloy constituents. We consider

in this work the binary semiconducting alloy Si1−xGex

which has received extensive attention, as reflected by the

recent experimental, theoretical, and numerical studies.

Therefore, the investigation of the electronic band struc-

ture of Si1−xGex alloys has attracted considerable interest.

The investigation of the pressure and temperature depen-

dence of the energy gaps in semiconductors has been the

subject of many studies in the past three decades [5–13].
In the present work we study the effect of temperature

from (0 to 500K) and pressure from (0 to 120 kbar)
on the electronic band structure and some optoelectronic

properties specifically, the energy band gaps, refractive

index, and dielectric constant at high-symmetry points in

Si1−xGex alloys. Monotonic decreasing and increasing func-

tions are obtained for temperature and pressure dependent

form factors respectively. Our calculations are based on

the local pseudopotential method under the virtual crystal

approximation in which the effect of compositional disorder

is involved. The present calculations are performed by using

an own routine based on the MATLAB program which

based on 65 reciprocal lattice vector G [14–17].

¶ E-mail: kena@mans.edu.eg

2. Theory and calculations

The electronic structure of an alloy has been calculated

using the empirical pseudo-potential method (EMP) [18,19].
The alloy potential V(r) is calculated within the virtual

crystal approximation VVCA(r) which is a periodic potential

and a non-periodic potential Vdis(r) due to the compositional

disorder [20–22]:

V(r) = VVCA(r) + Vdis(r), (1)

VVCA(r) and Vdis(r) could be written as [20–22]

VVCA(r) = xVGe(r) + (1− x)VSi(r), (2)

Vdis(r) = −�
√

x(1− x)
[

VSi(r) − VGe(r)
]

, (3)

where � is treated as an adjustable parameter which equal

to zero when the disorder effect is neglected, and x is the

Ge concentration.

The potential of a pure semiconductors element, V(r),
could be expanded in terms of reciprocal lattice vectors G

as [18]:

V (G) =
∑

G 6=G′

ank(G
′)

[

W s(1G) cos(1G · τ )

+ iW A(1G) sin(1G · τ )
]

, (4)

where W s and W A are the symmetrical and antisymmetrical

form factors respectively, 1G = |G−G
′|, G and G′ are the

reciprocal lattice vectors; τ = (a/8) (1, 1, 1) is the position

vector of each atom in the unit cell and a is the lattice

constant.

The final expression for the pseudo-potential form factors

of the alloy Si1−xGex could be taken as [20–22]

W S,A = xW S,A
Ge +(1−x)W S,A

Si −�
√

x(1−x)
[

W S,A
Si −W S,A

Ge

]

,

(5)
where W S,A

Si and W S,A
Ge are the form factors of the pure Si

and pure Ge respectively.
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The adjustable parameter � is found in the disorder

part in Eq. (5) which is adjusting to give good agreement

with the experimental data. When the VCA is used alone

(without taking into account the disorder effect), � equals

to zero. However, when the compositional disorder is

included, the value of � is ranged about 0.459.

The lattice constant of the alloy is obtained according to

Vegard’s rule [23] by

aSi1−xGex = (1− x)aSi + xaGe, (6)

where aSi and aGe are the lattice constants of the elements

Si and Ge respectively.

The electronic energy spectra of Si and Ge have been

calculated by using the local pseudo-potential method. The

form factors of these elements are adjusted to give good

agreement between the calculated energy gaps and the

corresponding experimental value at high symmetry points

in the Brillouin zone. Once the associated semiconductor

form factors of Si and Ge are determined, then calculations

are done to solve for the band structure. The eigenvalues

and the eigenvectors are found by solving the matrix Eq. (7)

h2

2m
|k + G

′|2An,k(G
′, x) +

∑

G6=G′

An,k(G
′, x),V

(

|G−G
′|, x

)

= Enk(x)An,k(G
′, x), (7)

where ~ is the Plank constant, G are the reciprocal lattice

vectors, k is the wave vector, m is the mass of electron,

V (|G−G
′|) is given in Eq. (5) or solving the secular

determinant [5]

∥

∥

∥

∥

1

2
|k + G

′|2 − Enk(x) +
∑

G6=G′

V (|G−G
′|, x)

∥

∥

∥

∥

= 0. (8)

For different composition x and by varying the adjustable

parameter � until agreement was achieved with the ex-

periments. Since the aim is to study in the effects of

temperature T and pressure P beside the compositional

effect x on the electronic structure of the alloy, Eqs (7),
(8) could be written in general forms as

h2

2m
|k + G

′|2An,k(G
′, x , Z) +

∑

G6=G′

An,k(G
′, x , Z)

×V
(

|G−G
′|, x , Z

)

= Enk(x , Z)An,k(G
′, x), (9)

∥

∥

∥

∥

1

2
|k + G

′|2 − Enk(x , Z) +
∑

G6=G′

V
(

|G−G
′|, x , Z

)

∥

∥

∥

∥

= 0,

(10)
where Z may be T or P .
Eq. (10) could be solved numerically to give the required

eigenvalues for each k and at constant x , Z. Arranging the

obtained eigenvalues and set the top of the valence bands

to zero energy and determines the energy gaps at high

symmetry points in the Brillouin zone.

Comparing the calculated energy gaps with the cor-

responding experimental values, and adjusting the form

factors until we obtain the best values of the energy

gaps. From these calculated energy gaps of the alloy,

some physical properties such as the refractive index of the

considered alloy can be obtained.

The refractive index has been calculated using three

different models that are related directly to the energy band-

gap Eg [24].

1. The Moss formula based on atomic model [25], in which

the refractive index is given by

n = 4

√

θ

Eg
, (11)

where Eg is the energy band gap and θ is a constant equal

to 108 eV [26].

2. The Ravindra et al. expression [27], in which n is given

by

n + α + βEg (12)

with α = 4.084 and β = −0.62 (eV)−1.

3. The empirical relation of Herve and Vandamme [28]

n =

√

1 +

(

A
Eg + B

)2

(13)

with A = 13.6 eV and B = 3.4 eV, where n ≡ n(x , Z).

3. Results and discussion

3.1. Effect of Ge concentration on Enk at constant

temperature and Pressure

The calculations of the energy band structures based on

the local EPM for Si1−xGex alloy is performed by a routine

based on the MATLAB language [14].
Table 1 listed the adjusted symmetrical form factors, (W s

3 ,

W s
8 , W s

11) and the lattice constant of the alloy Si1−xGex ,

for different x , (0 ≤ x ≤ 1) at constant Z (T = 0K and

P = 0 kbar).
Tables 2 and 3 show the direct and indirect energy gaps at

normal pressure for different alloy composition of Si1−xGex

at T = 0 and 300K respectively. The results are compared

with the corresponding published data [29–33] which show

good agreement.

In Fig. 1 we plot the computed electron energy band

structure of Si1−xGex along the high symmetry direction

in the Brillouin zone at T = 0K and P = 0 kbar for two

different values of Ge concentrations, x = 0.1 (solid line)
and x = 0.9 (dashed line). From this Figure we show

that the first conduction energy band is more affected

by composition than the other bands and exhibits more

enhancement at the point Ŵ than any other point k in the

Brillouin zone. The energy shifts the calculated energy

bands from x = 0.1 and x = 0.9 are about 2427.1 meV at
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Table 1. The adjusted symmetric form factors, (W s
3 , W s

8 , W s
11) and lattice constants for Si1−xGex alloy at T = 0K, and P = 0 kbar

x
0 (Ge)Form factors

(Si)
0.1 0.3 0.5 0.7 0.9

1(Ryd)

W s
3 −0.2379777 − − − − − −

− 0.2526042 0.2693807 0.2828663 0.2939940 0.3018309 0.2995111

W s
8 0.0573077 0.0620958 0.0675877 0.0720024 0.0756451 0.0782106 0.0774512

W s
11 0.0660302 0.0507445 0.0332119 0.0191184 0.0074891 − 0.0017234

− − − − − 0.0007010 −

5.4267378m 5.4488780q 5.4931585q 5.5374390q 5.5817194q 5.6259999q 5.6481401m

Notes. m Ref. [19], q Rev. [23].

Table 2. The direct and indirect energy band gaps for Si1−xGex

alloy at T = 0K, and P = 0 kbar

Si1−xGex
EL

g (eV) Ex
g (eV) EŴ

g (eV)T = 0K

(Si) 2.0433 1.2546 3.3304

1.17e

Si0.1Ge0.9 1.7621 1.2309 3.1733

Si0.3Ge0.7 1.4194 1.2024 2.3847

Si0.5Ge0.5 1.1242 1.1656 1.7145

Si0.7Ge0.3 0.8712 1.1293 1.1499

Si0.9Ge0.1 0.6969 1.1140 0.7462

(Ge) 0.7817 1.1749 0.8655

0.744e

Note. e Ref. [29].

Table 3. The direct and indirect energy band gaps for Si1−xGex

alloys at T = 300K, and P = 0 kbar

Si1−xGex
EL

g (eV) Ex
g (eV) EŴ

g (eV)T = 300K

(Si) 2.0486 1.2645, 1.2091d , 3.3324,

1.3c , 1.1e

2.01a 3.37b

Si0.1Ge0.9 1.7677 1.2413 3.1753

Si0.3Ge0.7 1.4258 1.2139 2.3847

Si0.5Ge0.5 1.1313 1.1782 1.17144

Si0.7Ge0.3 0.8790 1.1428 1.1497

Si0.9Ge0.1 0.7052 1.1284 0.7459

(Ge) 0.7905, 0.74b , 1.1900 0.8652

0.66e , 0.7010d 1.26◦ 0.89b

Note. a Ref. [30]; b Ref. [31]; c Ref. [32]; d Ref. [29]; e Ref. [34].

point Ŵ, 1065.2 meV at the point L, and 116.9 meV at the

point X .

The dependence of the direct and indirect band gaps (EŴ
g ,

EL
g and EX

g ) on the alloy composition for Si1−xGex alloys

at T = 0K and P = 0 kbar is shown in Fig. 2. The energy

gaps, EŴ
g , EL

g , and EX
g decreasing from 3.3304, 2.0433, and

1.2546 eV at x = 0 to 0.8655, 0.7817, and 1.1749 eV at

x = 1, respectively. The alloy has two crossovers energy,

the first from Ŵ to X points at about x = 0.76 and energy

1.19 eV, and secondly from L to X points at about x = 0.45

and energy 1.17 eV.

Figure 1. The electronic structure of Si1−xGex at T = 0K and

P = 0 kbar for two different values of Ge concentrations, x = 0.1

(solid line) and x = 0.9 (dashed line).

Figure 2. The direct and indirect energy band gaps for Si1−xGex

at T = 0K, and P = 0 kbar.
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Figure 3. The direct and indirect energy band gaps for Si1−xGex

at T = 300K, and P = 0 kbar.

Fig. 3 shows the direct and indirect energy gaps as

function of Ge concentration at T = 300K and P = 0 kbar.

The effect of variation on Ge concentration in the EŴ
g ,

EL
g , and EX

g shows decreasing from 3.3324, 2.0486, and

1.2645 eV at x = 0 to 0.8652, 0.7905, and 1.19 eV at x = 1,

respectively. The Si1−xGex system goes over from a direct

band gap to an indirect one at X point, this crossover occurs

at about x = 0.73, and at energy 1.15 eV, and goes over

from an indirect band gap at L point to an indirect one at

X point, this crossover occurs at about x = 0.45, and at

energy 1.2 eV.

Table 4. The bowing parameters and Ŵ−X crossover point for

Si1−xGex alloys at T = 300K and P = 0 kbar

Bowing parameter (eV) Ŵ−X crossover (x)

Present work 0.1733 0.73

Experimental data 0.21a 0.85 f

Other calculations 0.169h, 0.0g 0.87i , 0.75g

Notes. a Ref. [30]; f Ref. [34]; i Ref. [35];h Ref. [36]; g Ref. [37].

Table 5. The refractive index for Si1−xGex alloys at T = 300K,

and P = 0 kbar

Composition n Relation (11) Relation (12) Relation (13)

Si 3.0400 3.0824 3.3000, 3.46k

Si0.9Ge0.1 3.0541 3.0962 3.3144

Si0.7Ge0.3 3.0712 3.0962 3.3314

Si0.5Ge0.5 3.0942 3.1344 3.3535

Si0.3Ge0.7 3.1179 3.1563 3.3755

Si0.1Ge0.9 3.1278 3.1654 3.3844

Ge 3.4189 3.3960 3.5939, 4.00k

Note. k Ref. [7].

A best fit of direct and indirect energy gaps yields:

EŴ
g = 3.3324 − 3.7985x + 1.1838x2, (14)

EX
g = 1.2645 − 0.2749x + 0.1733x2, (15)

EL
g = 2.0486 − 2.4883x + 1.184x2. (16)

Table 4 displays a comparison for the values of the

bowing parameters and the Ŵ−X crossover energy of

the Germanium content for the Si1−xGex alloy with the

associated published values at nearly room temperature,

T = 300K and normal atmospheric pressure, P = 0 kbar.

It can be seen from Table 4 and Eq. (16) that the present

results for the bowing parameters and the Ŵ−X crossover of

the Germanium concentration are in close agreement with

the published data [30,34–37].
Table 5 lists that the refractive index for Si1−xGex alloys

at T = 300K, and P = 0 kbar. We note that the refractive

index is increased with increasing the composition. The

present data of refractive index for Si and Ge are in sufficient

agreement with the published data. It seen that from Table 5

that the refractive index which calculated from relation (13)
is more accurate than the other two relations.

3.2. Effect of temperature T on Enk at constant
composition x and pressure P

For a given composition parameter x , and a constant pres-

sure P = 0 kbar the temperature dependent eigenvalues and

eigenvectors are found by solving the secular determinant,

∥

∥

∥

1

2

∣

∣

∣

r

k +
r

G′
∣

∣

∣

2

− Enk(T ) +
∑

G 6=G′

V
(∣

∣

∣
1

r

G
∣

∣

∣
, T

)∥

∥

∥
= 0, (17)

where

V
(∣

∣

∣
1

r

G
∣

∣

∣
, T

)

= W s
(

1
r

G, T
)

cos
(

1
r

G ·
r

τ

)

+ iW a
(

1
r

G, T
)

sin
(

1
r

G ·
r

τ

)

is the temperature dependent empirical local pseudo-

potential and W s ,a (1G, T ) are the symmetric, W s and anti-

symmetric, W a temperature dependent form factors, that

are fitted empirically to obtain the required energy gap for

the associated semiconductors (Si and Ge) and take the

form [15]:

W s ,A
(

1
I

G, T
)

= W s ,a
(

1
I

G, T = 0K
)

− 1s ,a T, (18)

where 1s ,a are the temperature coefficient form factors.

The temperature dependent lattice constant, a(T ), which

is determined from the relation [19]

a(T ) = a(300K)[1 + αth(T − 300K)],

where αth is the linear thermal expansion coefficient and its

value that corresponding to the associated semiconductors
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Si and Ge is listed in Table 6. The energy eigenvalues

Enk(T ) are calculated for different values of temperatures

ranged from 0 to 500K at constant x and P = 0 kbar.

The experimental temperature energy gaps are obtained

from Varshni’s empirical formula as [33]

Eg(T ) = Eg(0) −
αT 2

T + β
.

The values of α and β for the associated semiconductors

Si and Ge are listed in Table 6.

The temperature dependent symmetric form factor pa-

rameters and the lattice constant associated with Si and

Ge as functions of temperatures at P = 0 kbar are listed

in Table 7. It is seen that the temperature dependent

symmetric form factors are linearly decreasing functions

with increasing the temperature. This is due to the fact that,

raising temperature increases the dimension of the crystal,

as observed from the variation of the lattice constant a(T ),
which yields decreasing the potential energy seen by the

electron.

Fig. 4 shows the electronic structure of Si0.5Ge0.5 as a

function of the propagation wave vector k at T = 0K (solid
line) and T = 500K (dashed line) at constant pressure

Table 6. Values of the Varshni’s parameters and the linear thermal

expansion coefficients, and the pressure coefficients associated with

the semiconductors used in these calculations [19]

Parameters Si Ge

α, 10−4 K−2 4.730 4.800

β, K 636 235

αth, 10
−6, K−1 2.616 5.75

c, 10−2 eV/GPa −1.43 4.80

d, 10−4 eV/GPa2 0.00 0.00

B , GPa 97.84 74.70

B ′ 4.24 4.55

Table 7. The temperature dependence symmetric and anti-

symmetric form factor parameters for Si and Ge

Si

Form
a, s ,

T (K)

factors
T · 10−6 K−1 0 300 500(Ryd)

W s
3 (T ) 0.0713333 −0.2379777 −0.2379991 −0.2380134

W s
8 (T ) 0.022 0.0573077 0.0573011 0.0572967

W s
11(T ) 0.001 0.0660302 0.0660299 0.0660297

5.4267378m 5.4310000m 5.4338415m

Ge

W s
3 (T ) 0.0093333 − − −

− 0.2995111 0.2995139 0.2995158

W s
8 (T ) 0.0043333 0.0774512 0.0774499 0.0774490

W s
11(T ) 0.0016667 0.0017234 0.0017229 0.0017226

5.6481401m 5.6579m 5.6644066m

Note. m Ref. [19].

Figure 4. The electronic structure of Si1−xGex at P = 0 kbar,

x = 0.5 for two different values of temperatures: T = 0K (solid
line) and T = 500K (dashed line).

P = 0 kbar. It is seen that the first conduction energy band

is little slightly affected by temperature than the other bands.

The energy differences between the calculated energy bands

at T = 0K and T = 500K are about 0.1502meV at point Ŵ,

11.8meV at the point L, and 21meV at the point X . All

energy bands are showed little varying with increasing the

temperature. It is seen that from Fig. 4 the effect of

temperature on the energy band gaps is small; this means

that this alloy is characterized by having high hardness, low

compressibility, high ionicity, and high thermal conductivity.

Such properties make it a good candidate for optoelectronic

devices operating under extreme conditions [38].

3.3. Effect of pressure P on Enk at constant
composition x and temperature T

For a given composition parameter x and at constant

temperature, T = 300K, the pressure dependent eigenva-

lues and eigenvectors are found by solving the secular

determinant.
∥

∥

∥

1

2

∣

∣

∣

r

k +
r

G′
∣

∣

∣

2

− Enk(P) +
∑

G 6=G′

V
(∣

∣

∣
1

r

G
∣

∣

∣
, P

)∥

∥

∥
= 0, (19)

where

V
(∣

∣

∣
1

r

G
∣

∣

∣
, P

)

= W s
(

1
r

G, P
)

cos
(

1
r

G ·
r

τ

)

+ iW a
(

1
r

G, P
)

sin
(

1
r

G ·
r

τ

)

is the pressure dependent empirical local pseudo-potential,

W s ,a(1G, P) are the pressure-dependent form factors of Si

and Ge that are fitted empirically with the experimental

values to obtain the best energy gap for the associated

semiconductor which considered to take the form [16]

W s ,a(1
τ

G, P) = W s ,a(1
τ

G, P = 0) + 1s ,aP, (20)

where 1s ,a are the pressure coefficient form factors.

Физика и техника полупроводников, 2013, том 47, вып. 10



1302 A.R. Degheidy, E.B. Elkenany

Table 8. The pressure dependence symmetric form factor para-

meters for Si and Ge at T = 300K

Si

Form
s, a ,

P (kbar)

factors
T, 10−6 kbar 0 60 120(Ryd)

W s
3 (P) 0.0433333 −0.2379991 −0.2379965 −0.2379939

W s
8 (P) 0.02 0.0573011 0.0573035 0.0573059

W s
11(P) 86.5383333 0.0660299 0.0712222 0.0764145

5.4310000m 5.3332089m 5.2551267m

Ge

W s
3 (P) 0.04 − −0.2995115 −0.2995091

0.2995139

W s
8 (P) 0.0133333 0.0774499 0.0774507 0.0774515

W s
11(P) 22.1183333 0.0017229 0.0030500 0.0043771

5.6579m 5.5302489m 5.4349933m

Note. m Ref. [19].

The experimental pressure dependent energy gaps are

obtained from the empirical relation [19],

Ed,id
g (P) = Ed,id

g (0) + cP + dP2, (21)

where c and d are the hydrostatic pressure coefficients listed

in Table 6, d and id stand for direct and indirect energy

bands.

The pressure dependence lattice constant has been esti-

mated using the relation given by Adachi [19].

a(P) = a(0)

[

1 +

(

B ′

B

)

P

]−1/3B

,

where B is the bulk modulus, and B ′ is the pressure

derivative of the bulk modulus which are listed in Table 6,

a(0) and a(P) are the lattice parameters at pressures P = 0

and P 6= 0, respectively.

Figure 5. The electronic structure of Si1−xGex at T = 300K and

x = 0.5 for two different values of pressures: P = 0 kbar (solid
line) and P = 30 kbar (dashed line).

Figure 6. The direct and indirect energy band gaps for Si1−xGex

at T = 300K, and x = 0.5.

Figure 7. The bowing parameter for Si1−xGex as a function of

pressure.

The pressure dependent symmetric form factor para-

meters and the lattice constant associated with Si and Ge

as functions of pressure from P = 0 to P = 120 kbar are

listed in Table 8. It is seen from Table 8, that the pressure

dependent symmetric form factors are linearly increasing

functions with increasing the pressure. This is due to the
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fact that, raising pressure decreases the dimension of the

crystal, as observed from the variation of the lattice constant

a(P), which yields increasing the potential energy seen by

the electron.

Fig. 5 displays the electronic structure of Si0.5Ge0.5 alloy

as a function of the propagation wave vector k at P = 0 kbar

(solid line) and P = 120 kbar (dashed line) at constant

temperature T = 300K. It is seen that the first conduction

energy band is more affected by pressure than the others

and exhibits more enhancement at the point Ŵ. The energy

differences between the calculated electronic energies at

P = 0 and P = 120 kbar are about 252.1meV at point Ŵ,

39.2meV at the point L, and 249.7meV at the point X .

The dependence of the direct and indirect band gaps

(EŴ
g , EL

g and EX
g ) of the alloy Si0.5Ge0.5 at T = 300K as

a function of pressure is shown in Fig. 6. The energy bands

are decreased with increasing the pressure at X and L points,

but increased at Ŵ symmetry point.

The bowing parameter for the binary alloys energy gaps

accounts the deviation from the linear interpolation, the

so called virtual crystal approximation between the two

binaries [39]. Fig. 7 show the bowing parameter as function

of pressure at Ŵ, X and L symmetry points; we note that the

bowing parameters are increased with increase the pressure

from 0 up to 120 kbar at L and X points.

4. Conclusions

We have calculated the electronic band structure of

Si1−xGex alloy under the effects of composition x , tem-

perature T , and pressure P based on local empirical

pseudo-potential method, and ignoring the non-local and

the spin-orbit coupling effects. The temperature and pres-

sure dependence of the pseudo-potential is performed by

considering temperature and pressure linearly dependence

of the pseudo-potential form factors, and the lattice constant.

The calculations are performed under the virtual crystal

approximation that takes into account the effect of com-

positional disorder. Temperature and pressure dependences

of electronic band parameters for alloys Si1−xGex have been

investigated in the temperature range from 0 to 500K and

the pressure range from 0 to 120 kbar. The present results

show good agreements with the experimental and published

data.
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