06

Оптимальные условия легирования никелем для повышения эффективности кремниевых фотоэлементов

© М.К. Бахадырханов, ¹ З.Т. Кенжаев ²

¹ Ташкентский государственный технический университет, 100095 Ташкент, Узбекистан

e-mail: zoir1991@bk.ru

Поступило в Редакцию 2 декабря 2020 г. В окончательной редакции 2 декабря 2020 г. Принято к публикации 8 декабря 2020 г.

> Исследована стабильность обогащенного никелем поверхностного слоя кремния при термообработках. При термообработках ниже 900° С обогащенный никелем слой сохраняется. Установлено, что легирование кремниевого фотоэлемента никелем приводит к улучшению эффективности независимо от глубины залегания p-n-перехода. Оптимальные условия диффузии никеля в кремний — $T=800-850^{\circ}$ С, $t=30\,\mathrm{min}$. Наблюдался рост тока короткого замыкания фотоэлементов, легированных никелем, во всей исследованной области спектра. Показано, что легирование никелем до формирования p-n-перехода фотоэлемента является более эффективным и технологичным. Улучшение параметров фотоэлемента при легировании никелем в основным связано с свойствами поверхностного слоя.

> **Ключевые слова:** кремний, фотоэлемент, легирование никелем, диффузия, термоотжиг, кластер, поверхностный слой.

DOI: 10.21883/JTF.2021.06.50868.332-20

Введение

В работах [1,2] было показано, что формирование обогащенного никелем слоя в приповерхностной области кремниевых фотоэлементов (Φ Э) с глубоким p-n-переходом приводит к улучшению их параметров. В этих работах легирование кремния никелем проводилось при достаточно высокой температуре ($T=1200^{\circ}\mathrm{C}$), и после формирования p-n-перехода может ухудшать эффективность фотоэлемента из-за разгонки фосфора.

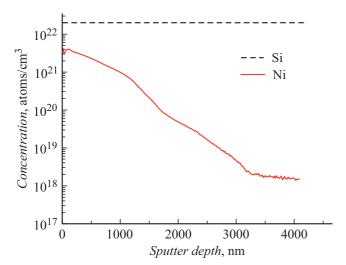
Целью настоящей работы являлось изучение особенностей влияния легирования никелем, в том числе приповерхностного обогащенного никелем слоя на параметры фотоэлемента и определение оптимальных технологических условий легирования, пригодных для использования в промышленном производстве фотоэлементов.

При диффузионном легировании никель имеет достаточно высокую объемную растворимость ($n\sim 10^{18}~{\rm cm^{-3}}$). В то же время в приповерхностной области ($d=2-3~\mu{\rm m}$) его концентрация может достигать $n_S\sim 10^{20}-10^{21}~{\rm cm^{-3}}$ [3,4].

Основная часть растворенных атомов — 99.999%, а в приповерхностной области еще больше, находятся в электронейтральном состоянии в междоузлиях, и при определенных условиях термообработки могут формировать кластеры [5].

Указанные выше кластеры, расположенные в дефектных приповерхностных слоях, на лицевой и тыльной сто-

ронах Φ Э могут действовать как эффективные центры геттерирования для рекомбинационных неконтролируемых примесных атомов и кислорода [6,7]. Кроме того, они могут за счет своей "металлической" проводимости эффективно уменьшать поверхностное сопротивление лицевого n-слоя Φ Э, что приводит к уменьшению последовательного сопротивления.


В связи с этим были поставлены следующие задачи.

- 1. Исследовать стабильность обогащенного никелем слоя кремния.
- 2. Определить оптимальную температуру легирования никелем.
- 3. Оценить эффективность легирования никелем для фотоэлементов с различной глубиной p-n-перехода.
- 4. Исследовать возможность легирования никелем до формирования p-n-перехода $\Phi \Im$.
- 5. Результаты таких исследований могут быть непосредственно применены в технологии производства кремниевых Φ Э.

1. Исследование стабильности обогащенного никелем слоя кремния

Для проверки стабильности приповерхностного обогащенного никелем слоя, образующегося в условиях промышленной технологии ФЭ, была проведена диффузия

² Каракалпакский государственный университет, 230112 Нукус, Узбекистан

Рис. 1. Распределение атомов никеля в поверхностном слое кремния.

никеля из металлической пленки в кремниевые пластины p-типа с удельным сопротивлением $0.5\,\Omega\cdot\mathrm{cm}$, толщиной $380\,\mu\mathrm{m}$ и диаметром $76\,\mathrm{mm}$ при $T_{diff}=1200\,^\circ\mathrm{C}$, в течение $30\,\mathrm{min}$. На рис. 1 показано распределение атомов никеля в приповерхностном слое кремния, полученное на CAMECA IMS-6f Magnetic Sector SIMS.

Как видно из рисунка, поверхностная концентрация никеля $n_S \sim 4 \cdot 10^{21} \, {\rm cm}^{-3}$, а толщина обогащенного слоя $d \sim 3-3.2 \, \mu {\rm m}$. Эксперимент показал, что при последующих термообработках с температурой ниже 900°C обогащенный слой сохраняется. Это видимо обусловливается тем, что дефекты приповерхностного слоя являются центрами преципитации атомов никеля. Также экспериментально установлено, что максимальная концентрация никеля в приповерхностном обогащенном слое слабо зависит от температуры диффузии.

Измерения поверхностного сопротивления четырехзондовым методом, выполненные при послойном шлифовании образцов (по $10\,\mu\text{m}$), показали незначительное влияние никеля на удельное сопротивление объема кремния, подтверждая результаты работ [8,9].

2. Определение оптимальной температуры легирования никелем

Исходные p-n-структуры ФЭ создавались диффузией фосфора в кремниевые пластины p-типа с удельным сопротивлением $0.5~\Omega$ cm при $T_{diff}=1000^{\circ}$ C в течение t=0.5 h. Далее полученная структура разрезалась на отдельные образцы размером 1×1 cm. Параметры всех полученных фотоэлементов были практически одинаковы. На поверхность диффузионного слоя n-типа (на лицевую сторону фотоэлемента) в вакууме напылялся слой чистого никеля толщиной $1~\mu$ m. С учетом коэффициента диффузии Ni в кремний было рассчитано

оптимальное время диффузии для каждой температуры [3,10,11]. Диффузия никеля проводилась в интервале температур $T_{diff}=700-1300^{\circ}\mathrm{C}$, с шагом 50°C. Все образцы проходили дополнительный термоотжиг при $T_{ann}=750-800^{\circ}\mathrm{C}$ в течение $t=30\,\mathrm{min}$ после диффузии никеля с целью активации процесса геттерирования [12–14] неконтролируемых рекомбинационных примесей.

Для контроля изготавливались образцы Φ Э, у которых этапы, связанные с диффузией никеля и дополнительным термоотжигом, не проводились. Полученные контрольные образцы примерно соответствуют конструкции типового промышленного Φ Э без просветляющего покрытия.

После каждого технологического этапа проводилась очистка поверхности и химическая обработка, чтобы снять остатки никеля и оксид кремния с поверхности. Затем напылением никеля создавались омические контакты. На тыльной стороне напылялся сплошной контакт, а на лицевой — через трафарет. Просветляющее покрытие на поверхности элементов отсутствовало. После получения контактов для всех образцов при одинаковых условиях были измерены ВАХ фотоэлементов и определены параметры — напряжение холостого хода V_{oc} и плотность тока короткого замыкания J_{sc} , максимальная отдаваемая мощность $P_{\rm max}$ и коэффициент заполнения ВАХ ξ ($\xi = P_{\rm max}/J_{sc}V_{oc}$). В табл. 1 представлены основные параметры полученных фотоэлементов.

Как видно из табл. 1, с понижением температуры диффузии никеля происходит практически монотонное улучшение параметров J_{sc} и V_{oc} . Следует отметить, что значение J_{sc} увеличилось больше чем на 56%, а V_{oc} на 9.1% (при температуре диффузии никеля $T_{diff}=800^{\circ}\mathrm{C}$) по отношению к ФЭ, в которых диффузия никеля проводилась при 1300° С. В то же время при сравнении с контролем ($J_{sc}=32\,\mathrm{mA/cm^2}$, $V_{oc}=590\,\mathrm{mV}$, $\xi=0.64$, $P_{\mathrm{max}}=12.08\,\mathrm{mW/cm^2}$), параметры ФЭ, легированных никелем, начинают улучшаться при температуре диффузии никеля $T_{diff}\leq1000^{\circ}\mathrm{C}$.

Диффузия никеля, проведенная при более низких температурах — $T_{diff} = 750-700^{\circ}$ С, приводила к незначительному ухудшению параметров фотоэлементов (в отношении образцов, полученных при $T_{diff} = 800^{\circ}$ С). Это может быть связано с уменьшением толщины обогащенной никелем области, а также с понижением концентрации атомов никеля при таких температурах диффузии.

Таким образом, на основе этих результатов можно утверждать, что оптимальная температура диффузии никеля составляет $T_{diff}=800-850^{\circ}\mathrm{C}$. Низкая температура диффузии (ниже $900^{\circ}\mathrm{C}$) существенно ослабляет процесс разгонки примеси фосфора в p-n-переходе, и его глубина почти не меняется. Это особенно важно для мелких p-n-переходов.

T_{diff} , °C	1300	1250	1200	1100	1050	1000	950	900	850	800	750
t, min	3	3	3	5	7	10	15	20	30	30	60
T_{ann} , °C	800	800	800	800	800	800	800	800	750	750	700
x_{p-n} , μ m	3.51	2.35	1.56	0.87	0.70	0.60	0.56	0.54	0.53	0.53	0.53
J_{sc} , mA/cm ²	24	26	28	29	30	32.8	34.2	34.8	36.5	37.5	36
V _{oc} , mV	550	560	570	575	580	585	590	595	600	600	590
ξ	0.71	0.708	0.705	0.70	0.698	0.692	0.689	0.686	0.68	0.68	0.68
P _{max} , mW/cm ²	9.37	10.31	11.25	11.67	12.14	13.28	13.90	14.20	14.89	15.30	14.44

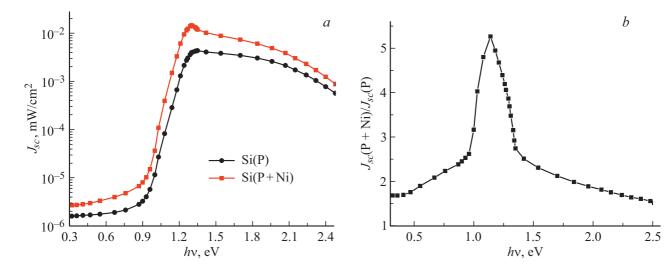
Таблица 1. Средние значения параметров ФЭ, полученных при разных температурах диффузии никеля

Примечание. T_{diff} — температура диффузии никеля, t — время диффузии, T_{ann} — температура дополнительного термоотжига, x_{p-n} — расчетная глубина p-n-перехода.

Таблица 2. Средние значения параметров Φ Э, не легированных никелем (контроль) и легированных никелем с разными глубинами залегания p-n-перехода

Глубина залегания $p-n$ -перехода, μ m		28	15	9	6	3	2	1	0.5-0.75
I группа	J_{sc} , mA/cm ²	7.5	14.7	19	21.8	25.2	27	30	32
	V_{oc} , mV	500	530	552	560	570	575	585	590
	ξ	0.68	0.667	0.662	0.659	0.657	0.652	0.645	0.640
	$P_{1 \text{ max}}$, mW/cm ²	2.55	5.196	6.943	8.045	9.437	10.122	11.320	12.083
II группа	J_{sc} , mA/cm ²	12.5	21	25.3	28	31.3	33	36	37.5
	V_{oc} , mV	540	560	575	580	585	590	595	600
	ξ	0.72	0.71	0.705	0.7	0.697	0.692	0.684	0.680
	$P_{2 \max}$, mW/cm ²	4.86	8.408	10.256	11.368	12.762	13.473	14.651	15.30
$(P_{2 \max} - P_{1 \max})/P_{1 \max}, \%$		90.59	61.58	47.716	41.304	35.236	33.105	29.43	26.622

3. Эффективность легирования никелем для ФЭ с различной глубиной p-n-перехода


Управляя температурой и временем диффузии фосфора [10,11,15] в интервале $T_{diff}=1000-1280^{\circ}\mathrm{C}$ и $t=0.5-5\,\mathrm{h}$ в кремнии p-типа с $0.5\,\Omega\mathrm{cm}$, были изготовлены контрольные фотоэлементы с различной глубиной p-n-перехода — от 28 до $0.5-0.75\,\mu\mathrm{m}$. В табл. 2 представлены основные параметры таких фотоэлементов $\mathrm{Si}\langle P\rangle$ (I группа — контроль), не легированных никелем, без просветляющего покрытия. Никелевые омические контакты создавались по вышеприведенной технологии. Как видно из таблицы, с уменьшением глубины p-n-перехода основные параметры фотоэлемента увеличиваются и максимальные их значения наблюдаются в фотоэлементах с $0.5-0.75\,\mu\mathrm{m}$. Эти данные хорошо согласуются с теорией и экспериментом [16-18].

У ФЭ II группы $(\mathrm{Si}\langle\mathrm{P}+\mathrm{Ni}\rangle)$ на поверхность слоя n-типа (на лицевую сторону фотоэлемента) в вакууме напылялся слой чистого никеля толщиной $1\,\mu\mathrm{m}$ и подвергался диффузии при $T_{diff}=800^{\circ}\mathrm{C}$ в течение $t=30\,\mathrm{min}$. После диффузии проводился дополнительный термоот-

жиг при $T_{ann}=750^{\circ}\mathrm{C}$, длительностью $t=30\,\mathrm{min}$. После отжига остаток никеля на поверхности удалялся травлением в HCl, а затем в HF до получения чистой поверхности. Никелевые омические контакты изготавливались аналогично контролю (І группа). Параметры ФЭ измерялись в тех же условиях, что и контрольных образцов. В табл. 2 представлены основные параметры фотоэлементов ІІ группы (также без просветляющего покрытия). В последней строке приведено относительное изменение максимальной мощности по сравнению с контролем.

Как видно из табл. 2, легирование никелем приводит к улучшению параметров $\Phi \mathfrak{I}$ не зависимо от глубины залегания p-n-перехода. Положительное влияние никеля сохраняется на достаточно высоком уровне в $\Phi \mathfrak{I}$ с малой глубиной p-n-перехода. Например, в $\Phi \mathfrak{I}$ с глубиной p-n-перехода $0.5-0.75\,\mu\mathrm{m}$, легированных никелем, значение J_{sc} увеличивается на 17.2%, V_{oc} — на 2%, коэффициент заполнения ξ — на 6.25% относительно контрольных фотоэлементов.

Полученные результаты мы связываем с влиянием обогащенного никелем слоя в приповерхностной области ФЭ. Обогащенный никелем слой может являться гет-

Рис. 2. Спектральные зависимости фотоэлементов: $a - J_{sc}$, $b - (J_{sc(\text{Ni+P})} - J_{sc(\text{P})})/J_{sc(\text{P})}$.

терирующим, а также может уменьшать поверхностное сопротивление тонкого лицевого n-слоя Φ Э, увеличивая коэффициент заполнения BAX.

4. Спектральные зависимости тока короткого замыкания ФЭ

На рис. 2,a представлена спектральная зависимость $J_{sc}(hv)$ $\Phi \ni \mathrm{Si}\langle \mathrm{P} + \mathrm{Ni} \rangle$, легированных никелем при температуре $T_{diff} = 850^{\circ}\mathrm{C}$, и контрольных $\Phi \ni \mathrm{Si}\langle \mathrm{P} \rangle$, не легированных никелем, измеренных при одинаковых условиях. Как видно из рисунка, при этом наблюдается существенный рост величины J_{sc} , практически во всей исследуемой области спектра. На рис. 2,b представлена спектральная зависимость относительного изменения величины J_{sc} фотоэлемента, легированного никелем, к току $\Phi \ni$, не легированного никелем.

Как видно из рисунка, улучшение чувствительности фотоэлементов, легированных никелем относительно контрольных, начинается в инфракрасной области спектра и монотонно увеличивается до $\lambda=1.24\,\mu\mathrm{m}$ ($hv=1\,\mathrm{eV}$), затем наблюдается резкий рост, который достигает своего максимального значения при $\lambda=1.09\,\mu\mathrm{m}$ ($hv=1.14\,\mathrm{eV}$), при $hv>1.14\,\mathrm{eV}$ чувствительность фотоэлементов, легированных никелем, также падает достаточно резко до $hv=1.35\,\mathrm{eV}$.

Полученные результаты трудно объяснить поглощением электроактивными изолированными атомами никеля в исследуемой области спектра, так как их концентрация достаточно низкая ($N\sim 10^{14}\,{\rm cm^{-3}}$). Поэтому мы предполагаем, что расширение спектра ИК-поглощения может быть связано с кластерами атомов никеля, находящимися в приповерхностных областях фотоэлементов в достаточно высокой концентрации.

Один из возможных вариантов влияния кластеров заключается в увеличении коэффициента поглощения "кластерных" областей ФЭ в инфракрасной области спектра за счет возникновения плазмонного резонанса в кластерах никеля, что приводит к лучшему совмещению области поглощения ИК-света с p-n-переходом. Размеры кластеров зависят от концентрации дефектов решетки кремния, степени пресыщения и условий термообработки, поэтому можно получить кластеры никеля со значительным разбросом размеров. Частота плазмонного резонанса в них будет разной, что значительно расширяет область спектральной чувствительности.

Не исключена также вероятность действия кластеров никеля как своеобразных приемных антенн инфракрасного диапазона волн. В этом случае происходит локальное увеличение амплитуды электрического поля световой частоты вблизи краев кластера, что может вызвать как непосредственно эмиссию электронов из кластера в полупроводник, так и уменьшение ширины запрещенной зоны за счет эффекта Франца–Келдыша.

Улучшение чувствительности в области спектра $hv > E_g$ видимо объясняется уменьшением поверхностной и (или) объемной рекомбинации за счет легирования никелем. Кластеры атомов никеля, которых на поверхности значительно больше, чем в объеме, обладают сильными геттерирующими и возможно, пассивирующими [19] свойствами, что уменьшает рекомбинацию неосновных носителей заряда и соответственно приводит к увеличению коэффициента собирания фотоэлемента.

5. Возможность легирования никелем до формирования p-n-перехода ФЭ

Вышеприведенные результаты получены в случае, когда обогащенная никелем область в кремниевых Φ Э создавалась после формирования p-n-перехода. Однако, с точки зрения технологии, это неудобно. Поэтому представляет интерес возможность формирования обогащенного никелем слоя до создания p-n-перехода Φ Э.

Диффузия никеля	$T_{diff}=1200^{\circ}$	$C, t = 3 \min$	$T_{diff} = 1000^{\circ}$	C, t = 10 min	$T_{diff} = 800^{\circ}\text{C}, t = 30 \text{min}$		
Тип	После создания $p-n$ -перехода	До создания $p-n$ -перехода	После создания $p-n$ -перехода	До создания $p-n$ -перехода	После создания $p-n$ -перехода	До создания $p-n$ -перехода	
J_{sc} , mA/cm 2 V_{oc} , mV ξ $P_{ m max}$, mW/cm 2	28 570 0.705 11.25	33 590 0.69 13.43	32.8 585 0.692 13.278	36 590 0.68 14.443	37.5 600 0.68 15.30	38.5 605 0.67 15.61	

Таблица 3. Средние значения параметров ФЭ, полученных при разных температурах диффузии никеля

В качестве исходного материала использовались кремниевые пластины p-типа толщиной $380\,\mu\mathrm{m}$ с удельным сопротивлением $0.5\,\Omega\mathrm{cm}$.

На поверхность кремниевых пластин в вакууме напылялся тонкий металлический слой чистого никеля толщиной $1\,\mu\mathrm{m}$, и проводилась диффузия никеля при температурах $T=1200,\,1000$ и $800^{\circ}\mathrm{C}$, в течение $t=3,\,10$ и $30\,\mathrm{min}$ соответственно. Затем создавался p-n-переход диффузией фосфора в "никелевую" сторону пластины при $T=1000^{\circ}\mathrm{C}$ в течение $t=0.5\,\mathrm{h}$, при этом глубина p-n-перехода составляла $0.5-0.75\,\mu\mathrm{m}$. После диффузии проводился дополнительный термоотжиг при $T=800^{\circ}\mathrm{C}$ в течение $t=0.5\,\mathrm{h}$. После создания никелевых омических контактов были измерены ВАХ ФЭ и определены параметры U_{oc} и J_{sc} . В табл. 3 представлены основные параметры полученных фотоэлементов.

Как видно из табл. 3, технология легирования никелем до формирования p-n-перехода дополнительно улучшает параметры фотоэлементов независимо от температуры диффузии никеля. Введение этапа легирования никелем до формирования p-n-перехода практически не усложняет технологию изготовления Φ Э, но повышает эффективность.

6. Влияние "объемного" и "поверхностного" никеля

Как показано выше, при диффузии никеля распределение атомов имеет особый характер — высокая и быстро спадающая концентрация на поверхности, и сравнительно постоянная в объеме. Поэтому можно выявить относительный вклад "поверхностных" и "объемных" атомов никеля, если удалить поверхностный, сильнолегированный никелем слой.

Образцы ФЭ изготавливались по вышеприведенной технологии, диффузия никеля проводилась до формирования p-n-перехода. После диффузии никеля с поверхности образцов сошлифовали порядка $2.5-3\,\mu\text{m}$, чтобы убрать обогащенный никелем слой в приповерхностной области. При этом равновесная "объемная" концентрация никеля соответствовала растворимости никеля при температуре диффузии, и составила $10^{16}-10^{17}\,\text{cm}^{-3}$.

Как показали результаты экспериментов, заметного эффекта улучшения параметров $\Phi \Im$ при этом не наблю-

далось. Поэтому мы можем однозначно утверждать, что улучшение параметров $\Phi \Theta$ в основном связано со свойствами поверхностного слоя, в котором концентрация никеля достигает $n_s \sim 10^{20}-10^{21}~{\rm cm}^{-3}$.

Для использования полученных результатов при производстве кремниевых ФЭ предлагается проводить диффузию никеля из химически осажденного на поверхность кремния слоя [20]. Это позволяет непосредственно использовать разработанную технологию улучшения параметров ФЭ в промышленном производстве кремниевых фотоэлементов.

Заключение

Таким образом, можно сделать следующие выводы.

- 1. Максимальная концентрация никеля в приповерхностном обогащенном слое слабо зависит от температуры диффузии и при последующих термообработках с температурой ниже 900°C обогащенный слой сохраняется.
- 2. Оптимальные условия диффузии никеля в кремний $T_{diff} = 800 850$ °C, t = 30 min.
- 3. Положительный эффект влияния легирования никелем кремниевого фотоэлемента сравнительно слабо зависит от глубины p-n-перехода.
- 4. Наблюдался существенный рост величины J_{sc} для Φ Э, легированных никелем, практически во всей исследованной области спектра.
- 5. Легирование никелем кремния до формирования p-n-перехода является более эффективной и простой технологией.

Если использовать стандартное просветляющее покрытие и омические контакты, имеющие оптимальную форму, то параметры фотоэлементов на основе предлагаемой технологии могут быть улучшены на 15–20%. Это означает, что предложенное решение позволяет без существенных изменений технологического процесса и с малым затратами создавать более эффективные фотоэлементы.

Благодарности

Авторы выражает благодарность старшему преподавателю С.В. Ковешникову за участие в обсуждении результатов.

Финансирование работы

Работа выполнена в рамках проекта ОТ- Φ 2-50 "Разработка научных основ формирования элементарных ячеек $A^{II}B^{VI}$ и $A^{III}B^{V}$ в решетке кремния — новый подход в получении перспективных материалов для фотоэнергетики и фотоники".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] М.К. Бахадырханов, С.Б. Исамов, З.Т. Кенжаев, С.В. Ковешников. Письма в ЖТФ, **45** (19), З (2019). [М.К. Bakhadyrkhanov, S.B. Isamov, Z.T. Kenzhaev, S.V. Koveshnikov. Tech. Phys. Lett., **45** (10), 959 (2019). DOI: 10.1134/S1063785019100031]
- [2] M.K. Bakhadyrkhanov, S.B. Isamov, Z.T. Kenzhaev, D. Melebaev, Kh.F. Zikrillayev, G.A. Ikhtiyarova. Appl. Solar Energy, 56 (1), 13 (2020). DOI: 10.3103/S0003701X2001003X
- [3] J. Lindroos, D.P. Fenning, D.J. Backlund, E. Verlage, A. Gorgulla, S.K. Estreicher, H. Savin, T. Buonassisi. J. Appl. Phys., 113, 204906 (2013). DOI: 10.1063/1.4807799
- [4] F.H.M. Spit, D. Gupta, K.N. Tu. Phys. Rev. B, 39 (2), 1255 (1989). DOI: 10.1103/PhysRevB.39.1255
- [5] M.K. Bahadirkhanov, B.K. Ismaylov, K.A. Ismailov, N.F. Zikrillaev, S.B. Isamov. Intern. J. Adv. Sci. Technol., 29 (9s), 6308 (2020).
- V.L. Mazalova, O.V. Farberovich, A.V. Soldatov. J. Phys.: Conf. Series, 640, 012025 (2015).
 DOI:10.1088/1742-6596/640/1/012025
- [7] М.К. Бахадирханов, Б.К. Исмайлов. Приборы, **6** (240), 44 (2020)
- [8] А.С. Астащенков, Д.И. Бринкевич, В.В. Петров. Доклады БГУИР, **8** (38), 37 (2018).
- [9] D.J. Backlund, S.K. Estreicher. Phys. Rev. B, 81, 235213 (2010). DOI: 10.1103/PhysRevB.81.235213
- [10] D.J. Fisher. Diffusion in Silicon 10 Years of Research (Scitec publications, 2010)
- [11] Б.И. Болтакс. Диффузия и точечные дефекты в полупроводниках (Наука, Л., 1972)
- [12] Е.П. Неустроев, С.А. Смагулова, И.В. Антонова, Л.Н. Сафронов. ФТП, **38** (7), 791 (2004). [Е.Р. Neustroev, S.A. Smagulova, I.V. Antonova, L.N. Safronov. Semiconductors, **38** (7), 758 (2004). DOI: 10.1134/1.1777595]
- [13] В.И. Орлов, Н.А. Ярыкин, Е.Б. Якимов. ФТП, **53** (4), 433 (2019). [V.I. Orlov, N.A. Yarykin, E.B. Yakimov. Semiconductors, **53** (4), 411 (2019). DOI: 10.21883/FTP.2019.04.47672.9020]
- [14] И.Б. Чистохин, К.Б. Фрицлер. Письма в ЖТФ, **46** (21), 11 (2020). DOI: 10.21883/PJTF.2020.21.50188.18455
- [15] V.V. Hung, P.T.T. Hong, B.V. Khue. Proc. Natl. Conf. Theor. Phys., 35, 73 (2010).
- [16] И.Е. Панайотти, Е.И. Теруков, И.С. Шахрай. Письма в ЖТФ, **46** (17), 3 (2020). DOI: 10.21883/PJTF.2020.17.49883.18377

- [17] M.A. Green, Y. Hishikawa, W. Wart, et al. (version 54), Prog Photovolt Res Appl., 27, 565 (2019). https://doi.org/10.1002/pip.3171
- [18] Б.И. Фукс. ФТП, 48 (12), 1704 (2014).
- [19] А.Г. Рябухин, Е.Г. Новоселова, И.И. Самарин. Вестник ЮУрГУ, **10**, 34 (2005).
- [20] A.A. Istratov, P. Zhang, R.J. McDonald, A.R. Smith, M. Seacrist, J. Moreland, J. Shen, R. Wahlich, E.R. Weber. J. Appl. Phys., 97 (02), 023505 (2005). DOI: 10.1063/1.1836852