$^{\it O9}$ Tuning Emission Spectrum of KSrPO4 : Eu $^{2+}$ Phosphor by Co-doping with Y^{3+}

© X. Geng¹, L. Wang^{1,¶}, Q. Shi¹, K.V. Ivanovskikh², H. Guo¹, C. Cui¹, P. Huang¹

 ¹ College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
² Department of Experimental Physics, Ural Federal University, Ekaterinburg, 620002 Russia
[¶] E-mail: wanglei keke@163.com

Received: February 3, 2021 Revised: February 11, 2021 Accepted: February 12, 2021

A series of co-doped KSrPO₄: Eu^{2+} , Y^{3+} phosphors have been prepared through a high-temperature solid-state reaction at various temperatures. Luminescence spectroscopic characterization allowed to demonstrate that emission spectrum of original KSrPO₄: Eu^{2+} phosphor that is typically dominated by Eu^{2+} $4f^65d^1 \rightarrow 4f^7$ emission can be significantly modified by co-doping with Y^{3+} ions, which results in appearance of a broad defect emission. The latter makes the phosphor potential for WLED application. The Y^{3+} co-doping related defect emission was found to get enhanced with the increase of Y^{3+} content and synthesis temperature. The nature and peculiarities of the new defect emission are discussed.

Keywords: phosphors, solid-state reaction, defect emission, KSrPO₄: Eu²⁺, Eu²⁺ 5d-4f emission.