Начальные стадии роста полуполярного AIN на наноструктурированной Si(100) подложке

© В.Н. Бессолов, Е.В. Коненкова [¶], Т.А. Орлова, С.Н. Родин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

Поступила в Редакцию 12 апреля 2021 г. В окончательной редакции 19 апреля 2021 г. Принята к публикации 19 апреля 2021 г.

Методом растровой электронной микроскопии изучались начальные стадии формирования полуполярных $AIN(10\bar{1}1)$ и $AIN(10\bar{1}2)$ слоев при эпитаксии из металлоорганических соединений на подложке Si(100), на поверхности которой сформирована V-образная наноструктура с размером элементов < 100 нм (подложка-NP-Si(100)). Показано, что на начальной стадии эпитаксии на подложке-NP-Si(100) происходит формирование зародышевых кристаллов AIN, а затем в зависимости от кристаллографической ориентации V-стенок формируются кристаллы, ограненные плоскостями $AIN(10\bar{1}1)$ на Si(111) или $AIN(10\bar{1}2)$ на Si(111), разориентированном в направлении [110] на 7° .

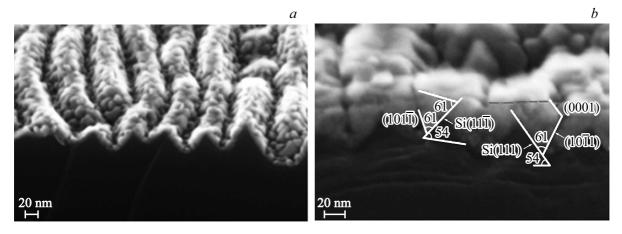
Ключевые слова: полуполярный нитрид алюминия, наноструктурированная подложка кремния.

DOI: 10.21883/FTP.2021.10.51442.41

1. Введение

Нитридные материалы III группы привлекли значительное внимание благодаря широкому спектру их применения в оптоэлектронных и силовых электронных устройствах [1]. По сравнению с сапфиром и карбидом кремния, Si(100) является перспективной подложкой для роста нитридных материалов III группы благодаря своей низкой стоимости, доступности в больших масштабах, высокой теплопроводности и потенциалу интеграции с электроникой [2].

Однако нитриды алюминия и галлия являются пьезоэлектрическими материалами и использование (0001) плоскости в оптоэлектронных приборах на их основе приводит к проявлению эффекта Штарка. Замена полярных слоев полуполярными или неполярными для снижения негативного влияния этого эффекта становится привлекательной задачей для устройств оптоэлектроники [3]. Однако выращивание слоев AlN на Si является сложной задачей из-за большого рассогласования параметров решеток. Кроме того, недостаточная подвижность частиц AlN на поверхности Si препятствует структурной перестройке слоев [4].


Попытки синтезировать гексагональный нитрид алюминия непосредственно на кремниевую подложку показали, что синтез AlN(0001) на плоской поверхности Si(100) в отличие от Si(111) приводит к низкокачественной структуре. Чтобы обойти серьезные ограничения в планарной гетероэпитаксии полуполярного и неполярного GaN, Sawaki предложил и продемонстрировал метод селективного роста из наклонных боковых стенок Si(111) на полосчатых структурированных Si(100) подложках [5]. Эта идея была применена для роста $GaN(11\bar{2}2)$ на подложке Si(113) [6].

В настоящее время предпринимаются попытки синтезировать полуполярные нитриды алюминия на микро- [7] и наноструктурированных подложках Si(100) [8], в которых предлагается для синтеза использовать наклонную грань Si(111). В нашей работе было показано, что частичное образование полуполярных III-N слоев на симметричных кремниевых нанохребтах обусловлено свойствами наномаски [9].

Однако при использовании структурированной кремниевой подложки появляются дополнительные сложности. Во-первых, возникает паразитная реакция с кремнием в процессе металлоорганического химического осаждения, которая ухудшает качество эпитаксиальной пленки AlN [10]. Во-вторых, низкая подвижность адатомов Al, как на поверхности кремния, так и на поверхности нитрида алюминия, делает поверхностную морфологию эпитаксиального слоя AlN шероховатой [11]. В-третьих, при синтезе полуполярных слоев AIN на маскированной поверхности Si(100) методом магнетронного напыления возможен рост слоев $AIN(10\bar{1}3)$ либо $AIN(10\bar{1}5)$ при изменении угла падающего потока атомов А1 к поверхности растущего слоя [12]. И в-четвертых, авторы работы [13] обнаружили, что при синтезе методом металлоорганических соединений (MOCVD) полуполярных слоев GaN(1122) и GaN(1013) на структурированной подложке сапфира возможно их совместное зарождение, но при дальнейшем росте слоя методом хлорид-гидридной газофазной эпитаксии (HVPE) сохраняется только одна плоскость GaN(1122).

Данная работа посвящена изучению начальных стадий роста полуполярного AlN, выращенного методом MOCVD на подложке Si(100), на поверхности которой сформированы V-образные симметричные "хребты". Структурированная поверхность имела размер грани

[¶] E-mail: lena.triat@mail.ioffe.ru

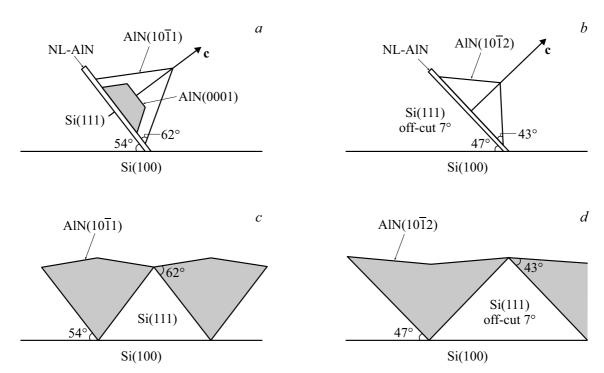
Рис. 1. РЭМ-изображение скола и поверхности AlN после синтеза в течение 0.5 (a) и 1 мин (b).

склона "хребта" — l_{Si} , примерно равный диффузионной длине адатома Al по поверхности AlN — L_{Al} .

2. Методика эксперимента

В наших экспериментах использовались структурированные подложки NP-Si(100), полученные по технологии Wostec [14], которые имели V-образные "нанохребты" с величиной периода между ними 70 нм и высотой 30-50 нм (рис. 1,a). Углы наклона хребтов задавались параметрами процесса травления. В эксперименте использовались два типа подложек: первый, где травили хребты под углом 54° , целясь в сингулярную Si(111) плоскость, а на подложках 2-го типа травили под углом 47° , целясь в отклоненную Si(111) плоскость (рис. 1,a). Следует отметить, что величина наклонной грани Si(111) "нанохребта" составляла величину $l_{\rm Si} \sim 75$ нм.

Слои AlN и GaN были выращены методом MOCVD на модифицированной установке EpiQuip с горизонтальным реактором и индукционно нагреваемым графитовым подложкодержателем по методике представленной в работе [15] в атмосфере водорода при температурах эпитаксии $T=1030^{\circ}\mathrm{C}$ с толщиной AlN $\sim 15-30\,\mathrm{Hm}$. Образцы AlN/Si(100) исследовались методом растровой электронной микроскопии (PЭM).


3. Экспериментальные результаты

Изображения сколов структур со слоями AlN, синтезированными на нано-структурированной NP-Si(100) подложке, показали, что при толщинах $\sim 15\,\mathrm{hm}$ слой AlN не содержит кристаллов с видимой огранкой и повторяет поверхность подложки. При толщинах AlN $\sim 30\,\mathrm{hm}$ в слое видны отдельные кристаллы, ограненные плоскостями (0001), (10 $\bar{1}2$), (10 $\bar{1}1$). Огранка кристаллов AlN определялась плоскостями (10 $\bar{1}1$) для зародышей,

выросших на склонах хребтов с углом наклона 54° , и $(10\bar{1}2)$ для угла наклона 47° (рис. 1, b).

Эксперимент показал, что если поверхность подложки имеет неоднородную структурированную поверхность, т.е. присутствуют грани с углом наклона к поверхности Si(100) как 47° , так и 54° , то качество кристалла будет не высоким и должны зарождаться одновременно как $AlN(10\bar{1}2)$, так и $AlN(10\bar{1}1)$. Аналогичную картину при синтезе нитрида галлия на структурированной сапфировой подложке наблюдали авторы работы [13]. Если структурированная поверхность NP-Si(100) однородна, то при дальнейшем росте формируется кристалл, состоящий из двух или более доменов с одинаковой кристаллической решеткой и составом, но с разной ориентацией поверхности кристаллов [16]. Эпитаксия слоев GaN толщиной ~ 1 мкм методом MOCVD на AlN/NP-Si(100) темплейтах позволяет получить $GaN(10\bar{1}2)$ или $GaN(10\bar{1}1)$ с полушириной кривой рентгеновской дифракции ω_{Θ} с величиной 60 и 40 угл. мин соответственно.

В режимах MOCVD рост AlN ограничен доставкой триметилалюминия к растущей поверхности (диффузионно-лимитированный рост). При этом скорость роста AlN пропорциональна концентрации Al в атмосфере реактора за вычетом скорости травления, зависящей от температуры и концентраций водорода и аммиака. Известно, что если температура синтеза слоя AIN достаточно высока, то грань на поверхности будет проявляется плоскостью (0001). Если синтез происходит при температуре ниже определенного значения ($\sim 1390^{\circ}$ C), то могут проявляться и другие кристаллические плоскости, такие как $(10\bar{1}1)$ и $(10\bar{1}2)$ [17]. Как известно [18], слой AlN на поверхности Si(111) толщиной ~ 0.2 мкм формируется в виде монокристаллической гексагональной фазы, а большое рассогласование кристаллических решеток компенсируется образованием дислокаций несоответствия на границе AlN(0001)/Si(111) [19]. При зарождении AIN на кремниевой подложке, как правило, формируется тонкий слой без направленной ориента-

Рис. 2. Схематическое изображение формирования кристаллов $AlN(10\bar{1}1)~(a,c)$ и $AlN(10\bar{1}2)~(b,d)$ на подложке NP-Si(100).

ции [20] (рис. 1,a). Ключевым фактором повышения качества кристаллов AIN является увеличение подвижности адатомов по поверхности слоя [21]. Подвижность в свою очередь может быть увеличена за счет снижения давления в реакторе и повышения температуры роста.

Основным моментом формирования полуполярного слоя является процесс формирования огранки кристаллов. Как показано на рис. 1, b, на склонах V-образной структуры формируются трехмерные нанокристаллы, которые растут в направлении гексагональной оси "c". Очевидно, что при зарождении и начальных стадиях роста AlN необходимо избежать последующего зародышеобразования, т.е. обеспечить плотностью зарождения AlN так, чтобы отдельные зародыши были разделены характерным расстоянием $l_{\rm Si}$, меньшим, чем удвоенное расстояние длины диффузии Al-адатома L_{Al} . Диффузионная длина пробега адатома Al на поверхности Si(111) составляет около $L_{Al} = 40 \,\mathrm{Hm}$ [18]. В нашем случае $2L_{\rm Al} \approx l_{\rm Si}$, а значит, мы имеем уникальный случай, когда зарождение и рост слоя AIN происходит в условиях квазидвумерного роста даже при не высокой для AlN температуре эпитаксии — 1030°C. Высокое анизотропное поведение поверхностной диффузии Al на поверхности AlN показывает, что латеральная скорость роста плоскости AIN в кристаллографическом полуполярном направлении будет значительно выше по сравнению с таковым в полярном направлении [22].

Как известно [23], углы между плоскостью AlN(0001) и AlN(10 $\bar{1}1$) — φ_1 или между AlN(0001) и AlN(10 $\bar{1}2$) — φ_2 можно оценить из выражения tg $\varphi_1=2c/\sqrt{3}a$ и tg $\varphi_2=c/\sqrt{3}a$, где c=0.498 нм, a=0.311 нм. Оказа-

лось, что ϕ_1 и ϕ_2 составляют величину около 61 и 43° соответственно, что совпадает с экспериментально обнаруженными плоскостями огранки кристаллов (рис. 1, b, 2, a и b). В результате коалесценции ограненных кристаллов формируются гофрированные сплошные слои либо AlN(10 $\bar{1}$ 1) либо AlN(10 $\bar{1}$ 2) (рис. 2, c и d).

По нашему мнению, обнаруженные различия в огранке кристаллов AIN-слоя при эпитаксии на гранях $\mathrm{Si}(111)$ с наклонами 54 или 47° к плоскости $\mathrm{Si}(100)$ связаны с различием направления оси "c", что в свою очередь приводит к разным кристаллическим плоскостям гофрированных слоев при зарождении на ориентированной либо разориентированной гранях $\mathrm{Si}(111)$ "нанохребта".

4. Заключение

Обнаружено, что на начальных стадиях роста AlN на подложке NP-Si(100) в зависимости от кристаллической ориентации V-стенок формируются кристаллы, ограненные плоскостями AlN($10\bar{1}1$) на Si(111) либо AlN($10\bar{1}2$) на Si(111), разориентированном в направлении [110] на 7° , что является важным фактором синтеза соответствующего полуполярного слоя.

Финансирование работы

Исследования частично выполнены при финансовой поддержке РФФИ в рамках научного проекта N_2 20-08-00096.

Благодарности

Авторы благодарят компанию ООО "Квантовый кремний" (Москва, Россия) за предоставление наноструктурированных подложек Si(100), а также В.К. Смирнова за полезные дискуссии.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] T. Wang. Semicond. Sci. Technol., 31, 093003 (2016).
- [2] M. Yang, W. Wang, Y. Lin, W. Yangand, G. Li. Mater. Lett., 182, 277 (2016).
- [3] F. Scholz, T. Meisch, K. Elkhouly. Phys. Status Solidi A, 213, 3117 (2016).
- [4] A. Bourret, A. Barski, J.L. Rouviére, G. Renaud, A. Barbier. J. Appl. Phys., 83, 2003 (1998).
- [5] N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, M. Yamaguchi. J. Cryst. Growth, 311, 2867 (2009).
- [6] T. Tanikawa, T. Hikosaka, Y. Honda, M. Yamaguchi, N. Sawaki. Phys. Status Solidi C, 5 (9), 2966 (2008).
- [7] J.-M. Liu, J. Zhang, W.-Y. Lin, M.-X. Ye, X.-X. Feng, D.-Y. Zhang, S. Dinga, Ch.-K. Xu, B.-L. Liu. Chin. Phys. B, 24, 57801 (2015).
- [8] В.Н. Бессолов, М.Е. Компан, Е.В. Коненкова, В.Н. Пантелеев. Письма ЖТФ, **46** (2), 12 (2020).
- [9] В.Н. Бессолов, Е.В. Коненкова, С.Н. Родин, Д.С. Кибалов, В.К.Смирнов. ФТП, 55 (4), 356 (2021).
- [10] Q. Bao, T. Zhu, N. Zhou, S. Guo, J. Luo. J. Cryst. Growth, 419, 52 (2015).
- [11] X.H. Liu, J.C. Zhang, J. Huang, M.M. Yang, X.J. Su, B.B. Ye, J.F. Wang, J.P. Zhangand, K. Xu. Mater. Express, 6, 367 (2016).
- [12] H.-J. Leea, S.-Y. Baeb, K. Lekhalb, A. Tamuraa, T. Suzukia, M. Kushimotoa, Y. Hondab, H. Amano. J. Cryst. Growth, 468, 547 (2017).
- [13] L. Zhang, J. Wu, F. Liu, T. Han, X. Zhu, M. Li, Q. Zhao, T.J. Yu. CrystEngComm, (2021). DOI: 10.1039/D1CE00040C (to be published).
- [14] V.K. Smirnov, D.S. Kibalov, O.M. Orlov, V.V. Graboshnikov. Nanotechnology, 14, 709 (2003).
- [15] V. Bessolov, E. Konenkova, S. Konenkov, S. Rodin, N. Sere-dova. J. Phys.: Conf. Ser., 1697, 012099 (2020).
- [16] А.Н. Фурс. Кристаллография, 64 (4), 606 (2019).
- [17] T. Liu, J. Zhang, X. Su, J. Huang, J. Wang, K. Xu. Sci. Rep., 6, 26040 (2016).
- [18] C. Bayram, J.A. Ott, K.-T. Shiu, Ch.-W. Cheng, Y. Zhu, J. Kim, M. Razeghi, D.K. Sadana. Adv. Funct. Mater., 24 (28), 4492 (2014).
- [19] R. Liu, F.A. Ponce, A. Dadgar, A. Krost. Appl. Phys. Lett., 83, 860 (2003).
- [20] L. Huang, Y. Li, W. Wang, X. Li, Y. Zheng, H. Wang, G. Li. Appl. Surf. Sci., 435, 163 (2018).
- [21] X.G. Banal, M. Funato, Y. Kawakami. Phys. Status Solidi C, 6 (2), 599 (2009).
- [22] V. Jindala, F. Shahedipour-Sandvik. J. Appl. Phys., 105, 084902 (2009).

[23] V.N. Bessolov, E.V. Konenkova, S.A. Kukushkin, A.V. Osipov, S.N. Rodin. Rev. Adv. Mater. Sci., 38, 75 (2014).

Редактор А.Н. Смирнов

Initial stages of semipolarAIN growth on a nano-structured Si (100) substrate

V.N. Bessolov, E.V. Konenkova, T.A. Orlova, S.N. Rodin loffe institute,

194021 St. Petersburg, Russia

Abstract Scanning electron microscopy was used to study the initial stages of the formation of semipolar $AlN(10\bar{1}1)$ and $AlN(10\bar{1}2)$ layers during epitaxy of organometallic compounds on a Si (100) substrate, on the surface of which a V-shaped nanostructure with an element size $< 100\,\mathrm{nm}$ was formed (the substrate is NP-Si(100)). It is shown that the nucleation of polycrystalline AlN crystals are formed at the initial stage of epitaxy on the NP-Si(100) substrate, and then, depending on the crystallographic orientation of the V-walls, the crystals are formed, faceted by the $AlN(10\bar{1}1)$ planes on Si(111) or $AlN(10\bar{1}2)$ on Si(111) misoriented in the [110] direction by 7° .