01

Определение концентрации компонентного состава газов методом оптической спектроскопии в условиях перекрытия их спектральных линий

© М.М. Кугейко, А.А. Баравик

Белорусский государственный университет, 220030 Минск, Республика Беларусь

e-mail: kugeiko@bsu.by

Поступила в редакцию 16.02.2021 г. В окончательной редакции 16.02.2021 г. Принята к публикации 05.07.2021 г.

Исследована эффективность определения концентрации компонентного состава газовых сред методом оптической спектроскопии на основе использования регрессионных соотношений, устанавливаемых между определяемыми и измеряемыми параметрами. Показаны возможности оперативного определения количественных значений концентраций исследуемых компонент газовой среды, повышения точности. Оценена эффективность использования данного подхода в условиях сильного перекрытия спектральных линий газовых компонент.

Ключевые слова: многокомпонентные газовые среды, концентрация компонентного состава, перекрытие спектральных линий, поглощение, главные компоненты, связь главных компонент с поглощением.

DOI: 10.21883/OS.2021.10.51485.1919-21

Введение

Существует множество методов газового анализа: механические, акустические, тепловые, магнитные, электрохимические, полупроводниковые, массспектрометрические, оптические. Все эти методы, как правило, требуют отбора проб. А это и сложно, и приводит к дополнительным погрешностям определяемых величин. Они используются в основном для однокомпонентных и бинарных газовых сред [1].

Из оптических методов на практике наибольшее применение получили абсорбционные, базирующиеся на измерении ослабления излучения контролируемой средой. Эти методы, в свою очередь, подразделяются на дисперсионные, требующие спектрального разложения посылаемого излучения и регистрации спектров поглощения, и недисперсионные, в которых измеряется разность световых потоков, пропущенных через исследуемую среду и нейтральный ослабитель. Недостатком данных методов является сильная зависимость от изменений аппаратурных констант приемно-излучающих, регистрирующих блоков измерительной системы, температуры, давления окружающей среды. Они требуют использования узкополосных фильтров, высокомонохроматических источников излучения, защиты оптических элементов от загрязнений [1].

С появлением лазеров данные методы получили дополнительные преимущества, поскольку им присущи такие достоинства как высокая концентрационная чувствительность, оперативность, дистанционность, высокое пространственное разрешение. Особо следует выделить среди них метод дифференциального поглоще-

ния [2]. Он широко используется в средах с возможностью выделения центра и крыла линий поглощения газовых компонент.

Для многокомпонентных сред при перекрытии их спектральных линий используются многоспектральные измерения (устанавливаются комбинации длин волн [3–6]), требующие решения обратной задачи. При этом задача нахождения концентрации газовых компонент из результатов измерений относится к классу некорректных математических, поскольку решение таких задач может быть неустойчивым по отношениям к малым вариациям (погрешностям) измеряемых данных, приводит к большим погрешностям в определении компонентного состава смеси [3,7].

Типично все алгоритмы решения обратных задач основаны на сравнении результатов измерения с функцией, описывающей связь регистрируемых сигналов с параметрами исследуемой среды, или же используют калибровочные модели, полученные заранее с использованием эмпирического (экспериментального) моделирования [4]. Находят такой набор параметров, при котором их различие будет минимальным. Как отмечено в [5], решения обратной задачи существенно зависят 1) от типа выбранной физической модели среды и приближений; 2) от объема и качества априорной информации; 3) от размерности вектора неизвестных параметров и измеренных значений; 4) от качества определения характеристик погрешности измерений. Указанные особенности решения, с одной стороны, позволяют получать соответствующего качества решения (оценки), однако эти оценки весьма затратны по времени при больших размерностях вектора измерений; существенно зависят от величины погрешности, могут при решении получать физически неверные результаты (обнуления, отрицательные значения и др.); требуют правильного и тщательного выбора физической модели и приближений [5].

Имея начальное приближение, решать обратную задачу можно известными методами Ньютона, Ньютона—Рафсона, Левенберга—Маркуарта и др. [6]. Однако при использовании этих методов необходимо оперировать большими спектроскопическими массивами данных. К тому же получаемое решение, как правило, включает много итераций. Все это снижает оперативность обработки экспериментальных данных и делает практически невозможным определение концентраций газов во время проведения эксперимента (режим реального времени) [6].

Методы регуляризации Тихонова [7], используемые для решения некорректных обратных задач, требуют дополнительной информации по выбору параметра регуляризации, от установления которого зависит точность определяемых параметров. Однако в случае сильного зашумления данных, слабого поглощения газовых компонент используемая система уравнений является плохо обусловленной. Для нее даже метод регуляризации не гарантирует приемлемого решения [5–7].

Задача контроля многокомпонентных газовых сред еще больше усложняется, когда их спектральные линии сильно перекрываются. В этом случае использование выбранных спектральных каналов измерения, соответствующих линиям поглощения исследуемых компонент, требует учета вклада их перекрытия [8]. Если при этом проводить спектральные измерения при большом наборе спектральных каналов, то для решения данной задачи используются инверсные методы, комбинирующие математический алгоритм решения обратной задачи [9] и один из методов расчета переноса излучения в среде (наиболее точный из них - метод Монте-Карло [10]). Используемые численные методы расчета характеристик поля рассеянного или проходящего через среду излучения либо не обеспечивают необходимой для практики точности, либо требуют больших вычислительных затрат (как, например, метод Монте-Карло), и поэтому исключают возможность оперативной интерпретации спектральных измерений. Кроме того, для устойчивого решения обратной задачи необходимо, чтобы количество спектральных каналов регистрации излучения в несколько раз превышало количество модельных параметров [11–15], что еще больше затрудняет интерпретацию экспериментальных данных в режиме реального времени.

Ниже рассматривается возможность оперативного определения компонентного состава газовых смесей с перекрывающимися линиями их поглощения и повышения при этом точности измерений.

Регрессионные соотношения между концентрациями газовых компонент и измеряемым спектральным поглощением

Новый подход к решению обратной задачи оптического зондирования аэрозольных сред на основе установления регрессионных соотношений между определяемыми параметрами и измеряемыми оптическими характеристиками был предложен в [16]. Регрессионный метод решения обратных задач предполагает, что искомые параметры среды могут быть найдены при помощи некоторой статистической функции от измеряемых оптических характеристик. Получим ее для многокомпонентных газовых сред с сильно перекрывающимися спектральными

При прохождении излучения на посылаемых длинах волн происходит поглощение его компонентами газовой смеси. Величины сигналов для каждой из регистрируемых длин волн $P(\lambda_i)$ можно записать в следующем виде [2,17]:

$$P(\lambda_i) = A_i P_0(\lambda_i) \exp\left\{-\sum_{k=1}^s M_k \sigma_k(\lambda_i)l\right\},\qquad(1)$$

где M_k — концентрации k-й газовой компоненты на длине волны λ_i ; s — число газовых компонент в смеси; $\sigma_k(\lambda_i)$ — сечение поглощения соответствующих газовых компонент смеси; l — длина измерительной трассы (или ячейки, если газ находится в оптической кювете); $P_0(\lambda_i)$ — энергия посылаемого излучения; A_i — аппаратурная константа измерительной системы для каждой из длин волн λ_i .

Выражение (1) содержит аппаратурные константы $P_0(\lambda_i)$ и A_i , которые определяются измерением сигналов $P(\lambda_i)$, проходящих через участок среды длиной l, в отсутствие газовых компонент. Другими словами, данная процедура (в отсутствие газовых компонент) является калибровкой измерительной системы для получаемых величин поглощения.

В самом деле, при этом величины регистрируемых сигналов $P(\lambda_i)$ для каждой из длин волн λ_i равны

$$P_1(\lambda_i) = A_i P_0(\lambda_i),$$

$$I(\lambda_i) = P(\lambda_i)/P_1(\lambda_i) = \exp\left\{-\sum_{k=1}^s M_k \sigma_k(\lambda_i)l\right\}.$$
 (2)

Будем оперировать сейчас отношением сигналов $I(\lambda_i) = P(\lambda_i)/P_1(\lambda_i)$, являющимся величиной поглощения, которое равно

$$I(\lambda_i) = \exp\left\{-\sum_{k=1}^s M_k \sigma_k(\lambda_i)l\right\}. \tag{3}$$

Для $I(\lambda_i) = P(\lambda_i)/P_1(\lambda_i)$, нормированного на энергию посылаемого излучения и аппаратурные константы, выражение (3) можно записать в следующем виде:

$$\ln I(\lambda_1) = -\frac{1}{l} \left(M_1 \sigma_1(\lambda_1) + M_2 \sigma_2(\lambda_1) + M_3 \sigma_3(\lambda_1) + \dots + M_s \sigma_s(\lambda_1) \right),$$

$$\ln I(\lambda_2) = -\frac{1}{l} \left(M_1 \sigma_1(\lambda_2) + M_2 \sigma_2(\lambda_2) + M_3 \sigma_3(\lambda_2) + \dots + M_s \sigma_s(\lambda_2) \right),$$

$$\ln I(\lambda_n) = -\frac{1}{l} \left(M_1 \sigma_1(\lambda_n) + M_2 \sigma_2(\lambda_n) + M_3 \sigma_3(\lambda_n) + \dots + M_s \sigma_s(\lambda_n) \right). \tag{4}$$

Для интерпретации измерительной информации необходимо решить систему уравнений (4), которую можно записать в виде

$$B\mathbf{x} = \mathbf{F}$$

где

$$B = \begin{pmatrix} \sigma_1(\lambda_1) & \sigma_2(\lambda_1) & \dots & \sigma_1(\lambda_1) \\ \sigma_1(\lambda_2) & \sigma_2(\lambda_2) & \dots & \sigma_1(\lambda_2) \\ \dots & \dots & \dots & \dots \\ \sigma_1(\lambda_n) & \sigma_2(\lambda_n) & \dots & \sigma_1(\lambda_n) \end{pmatrix},$$

$$\mathbf{x} = \begin{pmatrix} M_1 \\ M_2 \\ \dots \\ M_n \end{pmatrix}, \qquad \mathbf{F} = -\frac{1}{l} \begin{pmatrix} I(\lambda_1) \\ I(\lambda_2) \\ \dots \\ I\lambda_n \end{pmatrix},$$

n — число длин волн.

Однако поскольку измеряемые величины поглощения и величины сечений поглощения определяются с погрешностями, то данная система относится к системе неоднородного вида. Эта система относится к классу некорректных обратных задач. Решение таких задач может быть неустойчивым по отношениям к малым вариациям (погрешностям) измеряемых данных. Это приводит к большим погрешностям в определении компонентного состава смеси [3–7].

Значения $I(\lambda_i)$ можно рассматривать как компоненты случайного вектора $\mathbf{I}(\lambda_i)$. Разложим вектор $\mathbf{I}(\lambda_i)$ по системе ортонормированных базисных векторов (главных компонент) [16,18]

$$\mathbf{I}(\lambda_i) = \overline{I(\lambda_i)} + VC_m,$$

где V — матрица со столбцами из главных компонент C_m , численные значения которых определяются как проекции вектора $\mathbf{I}(\lambda_i)$ на пространство из главных компонент и находятся следующим образом:

$$C_m = V^t(\mathbf{I}(\lambda_i) - \overline{\mathbf{I}(\lambda_i)}), \tag{5}$$

где индекс t означает операцию транспонирования.

В связи с быстрой сходимостью рассматриваемого разложения на первые базисные векторы приходится

большая часть изменчивости вектора $\mathbf{I}(\lambda_i)$, а соответствующие им главные компоненты содержат в себе практически столько информации, сколько ее было в исходных данных. Следовательно, для восстановления концентраций компонентного состава газовой смеси M_k можно использовать не сам вектор измерений, а его главные компоненты.

С точки зрения оперативности определения концентраций компонентного состава газовой смеси представляет интерес возможность их расчета на основе аналитического выражения, связывающего их с главными компонентами вектора $\mathbf{I}(\lambda_i)$ для используемых длин волн n. Такое выражение может быть получено на основе измерений или численного расчета $I(\lambda_i)$ для множества ситуаций или моделирующих его фантомов с известными значениями концентраций $M_{k,P,T}$ компонентного состава газовой смеси при различных значениях ее температуры T и давления P (т. е. учитывается уширение спектральных линий с их изменением) и последующего регрессионного анализа, устанавливающего связь между $M_{k,P,T}$ и C_m . В частности, в качестве такого выражения можно использовать регрессионные соотношения

$$M_{k,P,T} = a + \sum_{m=1}^{N} b_m C_m,$$
 (6)

где N — количество главных компонент.

Численные значения a, bm определяются путем расчета по формуле (5) главных компонент C_m для всех реализаций $I(\lambda_i)$, каждой из которых соответствует конкретное значение $M_{k,P,T}$, и использовании метода наименьших квадратов для аппроксимации статистической связи между C_m и $M_{k,P,T}$.

После получения векторов $I(\lambda_i)$ и среднего вектора $I(\lambda_i)$, V, а также вышеотмеченного аналитического выражения (6) они могут применяться для определения компонентного состава газовой смеси по результатам измерения спектрального поглощения. Численное значение a, b_m , C_m можно устанавливать как для каждой пары значений давления P и температуры T, так и для задаваемого диапазона их значений.

Таким образом, определение компонентного состава газовых смесей включает нахождение по формуле (5) главных компонент для величин спектрального поглощения и определение концентрации на основе регрессионного соотношения (6), соответствующего температуре и давлению (в смеси в момент проведения измерений) или же задаваемому диапазону их значений. При этом для интерпретации измерительной информации не требуется выполнения каких-либо условий или использования дополнительной информации о состоянии исследуемой среды, использования калибровочных сравнительных моделей, устанавливаемых заранее эмпирически (экспериментально), применения методов решения некорректных обратных задач. Появляется устойчивость к погрешностям определения величин поглощения (установление связей между концентрацией и измеряемыми параметрами осуществляется с учетом погрешностей измерительной аппаратуры).

Оценка эффективности метода для задаваемых значений давления и температуры

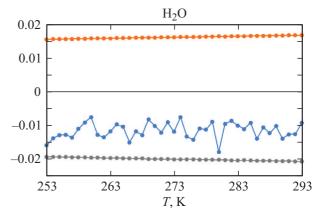
Рассмотрим более детально процесс получения главных компонент C_m и коэффициентов регрессии a, bm на примере определения концентраций следующих газовых компонент: паров воды H_2O и углекислого газа CO_2 в атмосфере. Это актуальная в настоящее время задача в связи с парниковым эффектом, с которым связывают происходящие изменения в климате. А CO_2 и пары воды в значительной степени обусловливают данный эффект. Влажность атмосферы к тому же — один из важнейших метеопараметров атмосферы.

Возможности предлагаемого способа оценим на примере определения концентраций водяного пара и углекислого газа в атмосфере по спектральным измерениям поглощения в диапазоне 2640—2840 nm, в котором существует сильное перекрытие их линий поглощения.

Для получения главных компонент и коэффициентов регрессии было проведено моделирование процесса поглощения на основе данных из базы HITRAN, которая служит инструментом для расчета поглощения света в газовых средах, включая атмосферу [19]. Рассчитывались величины поглощения $I(\lambda_i)$ в диапазоне 2640—2840 nm с шагом 20 nm для случайных значений концентраций паров H_2O и CO_2 из диапазона от 0.1 до 5% для H_2O и от 0.2 до 3% для CO_2 . Измерительная база задавалась длиной 10 m.

При расчете моделируемой выборки $I(\lambda_i)$ для каждой температуры и давления учитывалось уширение спектральных линий. Используя полученные значения $I(\lambda_i)$, были выделены главные компоненты C_m для каждой из температур и давления, равного 1 atm. Объем каждой из выборок составлял 2000 состояний. Приведённые ниже результаты получены для двух главных компонент C_m , которые покрывают 99.9% вариативности данных.

Численные значения следующих C_{mi} главных компонент представляют собой линейную комбинацию из спектрального поглощения в интервале 2640-2840 nm с шагом 20 nm (для n=10 длин волн):


$$C_m = \sum_{i=1}^{10} C_{mi} I(\lambda_i).$$

Множители C_{mi} при спектральных величинах поглощения для главных компонент C_m приведены в табл. 1.

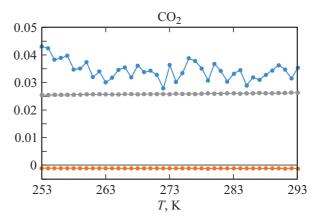

Далее, с использованием методов наименьших квадратов была установлена статистическая зависимость между главными компонентами C_m , коэффициентами a, b_m и концентрациями компонент в смеси $M_{k,P,T}$. Коэффициенты a, b_m регрессивного соотношения (6) для значений температур в интервале 253-293 K, соответствующие

Таблица 1. Множители C_{mi} для главных компонент C_m для задаваемых значений давления и температуры

Длины волн, nm	C_{1i}	C_{2i}
2660	0.3218	-0.2689
2680	0.3263	0.2245
2700	0.2504	0.6195
2720	0.3285	0.1991
2740	0.3155	-0.3217
2760	0.3336	-0.1175
2780	0.3122	0.3449
2800	0.3348	0.0888
2820	0.3152	-0.3232
2840	0.3151	-0.3240

Рис. 1. Коэффициенты регрессивного соотношения (6) для значений температур в интервале $253-293 \, \mathrm{K}$ (a — средняя кривая, b_1 — верхняя, b_2 — нижняя).

Рис. 2. Коэффициенты регрессивного соотношения (6) для значений температур в интервале $253-293 \,\mathrm{K}$ (a — верхняя кривая, b_1 — нижняя, b_2 — средняя).

 ${
m H_2O}$ и ${
m CO_2},$ приведены на рис. 1 и 2 (по оси абсцисс отложены значения температуры T).

Оценка погрешности восстановления концентраций паров H_2O и CO_2 была проведена на новой выборке $I(\lambda_i)$ при наложении на каждое значение из нее по-

T K	Погрешность восстановления для молекул H_2O , метод регрессионных соотношений	Погрешность восстановления для молекул CO ₂ , метод регрессионных соотношений	Погрешность восстановления для молекул СО ₂ , метод дифференциального поглощения
253	1.84	3.94	83.03
254	1.86	3.91	83.76
255	1.94	3.72	83.74
280	1.94	3.89	81.56
281	1.94	3.65	81.61
282	1.99	3.63	81.59
283	1.96	3.68	83.19
290	1.94	3.82	83.07
291	1.97	3.68	82.41
292	1.88	3.77	83.04
293	1.91	3.88	83.02

Таблица 2. Погрешности (в %) определения концентраций паров H₂O и CO₂

Таблица 3. Коэффициенты линейной регрессии (для задаваемого диапазона значений давления и температуры)

	H ₂ O	CO_2
$a \\ b_1$	-0.004 0.0161	$0.0368 \\ -0.0010$
b_2	-0.0200	0.0258

грешности 5% (объем выборки — 500). Задаваемые значения концентраций паров H_2O и CO_2 сравнивалась с рассчитываемыми концентрациями по (6). Значения погрешностей для концентраций паров H_2O и CO_2 (для начала, середины и конца диапазона температур) приведены в табл. 2. Как видно из таблицы, погрешности восстановления составили для паров H_2O и CO_2 соответственно менее 2 и 4%, что говорит об устойчивости регрессионных соотношений к погрешностям измерения величин поглощения $\sim 5\%$.

Оценивалась погрешность восстановления концентрации CO_2 с использованием указанного выше диапазона длин волн и по методу дифференциального поглощения как наиболее точному и устойчивому из известных. Однако даже при использовании наиболее слабого перекрытия спектральных линий в данном диапазоне длин волн при определении концентрации CO_2 по данному методу в реальной атмосфере погрешности составляют более 80% (табл. 2).

Оценка эффективности метода для задаваемого диапазона значений давления и температуры

Выше численные значения $a,\,b_m,\,C_m$ устанавливали для каждой пары величин давления P $(P=1\,{\rm atm})$ и температуры T и связывали концентрации компонентов

газовой смеси с главными компонентами вектора измерений $I(\lambda_i)$ для ситуации, когда измерения проводятся при известных значениях температуры и давления. Представляет практический интерес проводить измерения и в условиях, не требующих знания величин давления P и температуры T исследуемой газовой смеси. Численное значение a, b_m , C_m для (6) и в этом случае устанавливаются на основе измерений или численного расчета $I(\lambda_i)$ для множества ситуаций или моделирующих его фантомов с известными значениями концентраций M_k компонент газовой смеси при различных значениях ее температуры и давления, но уже в задаваемом диапазоне их значений (например, для времени года, для возможных значений в технологических процессах и т.д.).

Однако если для рассмотренной выше ситуации используется вектор реализаций $\mathbf{I}(\lambda_i)$, соответствующий разным значениям M_k для конкретных (измеренных) значений давления P и температуры T, то в рассматриваемом случае вектор реализаций \mathbf{I} включает все значения $I(\lambda_i)$, соответствующие разным значениям M_k для любых значений P и T из задаваемого диапазона их разброса (задается диапазон изменений M_k , P и T).

После получения векторов $\mathbf{I}(\lambda_i)$ и среднего вектора $\mathbf{I}(\lambda_i),\ V,\$ а также вышеотмеченного аналитического выражения (6) они могут применяться для определения концентраций компонентного состава газовой смеси по измеряемым значения $I(\lambda_i)$. При этом не требуется знание температуры и давления газовой смеси.

Возможности предлагаемого способа в ситуациях, не требующих знания величин давления и температуры исследуемой газовой смеси, оценивались для определения водяного пара и углекислого газа в атмосфере по спектральным измерениям поглощения в диапазоне 2640—2840 nm, в котором существует сильное перекрытие их линий поглощения (для тех же условий, что и для атмосферных ситуаций, когда давления и температуры фиксируются). Коэффициенты линейной регрессии для

значений температур в интервале 253—293 K и давления 1 atm приведены в табл. 3.

Значения погрешностей определения концентраций ${\rm CO_2}$ и паров ${\rm H_2O}$ в атмосфере при измерениях, когда величины давления и температуры не устанавливаются, составляет соответственно 6.1 и 3.6%.

Заключение

Таким образом, для определения количественных значений концентрации каждой компоненты газовой смеси предлагаемым методом не требуется сравнений результатов измерения с функцией, описывающей связь (расчет) регистрируемых сигналов с параметрами исследуемой среды, использования калибровочных сравнительных моделей, устанавливаемых заранее эмпирически (экспериментально), методов решения некорректных обратных задач. В предлагаемом методе требуется заранее (только один раз) путем численного моделирования исследуемой среды (расчета величины спектрального поглощения) установить коэффициенты регрессионного соотношения между концентрацией и главными компонентами величины спектрального поглощения для каждой компоненты среды и использовать его для данной среды в разных условиях (температура, давление; причем их можно устанавливать как для фиксированных значений температуры и давления, так и для задаваемого диапазона значений их значений). При расчете величины поглощения учитываются все перекрытия спектральных линий с учетом их уширения при разных температурах и давлении, что позволяет использовать метод в многокомпонентных средах с сильно перекрывающимися спектральными линиями. Более того, устанавливаемые регрессионные соотношения устойчивы к погрешностям измерительной информации, поскольку при получении их эти погрешности накладываются на рассчитываемые величины поглощения. Все это приводит к повышению точности предлагаемого метода определения компонентного состава газовой среды. К тому же позволяет определять их оперативно (в реальном масштабе времени), поскольку расчет концентраций с использованием устанавливаемых связей (аналитических выражений) между определяемыми и измеряемыми величинами не представляет вычислительных сложностей, не требует отбора проб, так как может использоваться как в базисном, так и в дистанционном вариантах реализации.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

[1] Фираго В.А., Манак И.С., Вуйцик В. Контроль газового состава сред методами лазерной и светодиодной абсорбционной спектроскопии. Минск: Акад. Упр. при Президенте Республики Беларусь, 2006. 303 с.

- [2] *Межерис Р.* Лазерное дистанционное зондирование. М.: Мир, 1987. 550 с.
- [3] Городничев В.А. Разработка методов и оптикоэлектронных средств лазерного оперативного контроля многокомпонентных газовых смесей составляющих ракетных топлив и других токсичных веществ. Автореф. докт. дис. 2009. 308 с.
- [4] Little J.P. et al. Patent US 8,686,364 B1, 2014.
- [5] Катаев М.Ю., Лукьянов А.К., Бекетов А.А. // Журнал Сибирского федерального университета. Техника и технологии. 2018. 11(1). С. 77. doi 10.17516/1999-494X-0011
- [6] Катаев М.Ю. // Доклады ТУСУРа. 2015. № 4 (38). С. 155.
- [7] Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1979. 288 с.
- [8] Козлов В.Л., Кугейко М.М. Патент РБ № 12455, 2007.
- [9] Васильев А.В., Мельникова И.Н. Методы прикладного анализа результатов натурных измерений в окружающей среде. СПб.: Балт. гос. техн. ун-т., 2009. 369 с.
- [10] Wang L., Jacques S., Zheng L. // Computers Methods and Programs in Biomedicine. 1995. N 47. P. 131.
- [11] Zonios G., Dimou A. // Optics Express. 2006. V. 14. N 19. P. 8661.
- [12] Anderson R.R., Perrish J.A. // J. Invest. Dermatol. 1981. V. 77.P. 13.
- [13] Farrell T.J., Patterson M.S., Wilson B.C. // Med. Phys. 1992.V. 19. N 4. P. 879.
- [14] Синичкин Ю.П., Утц С.Р., Пилипенко Е.А. // Опт. и спектр. 1996. Т. 80. № 2. С. 260.
- [15] Барун В.В., Иванов А.П. // Квант. электрон. 2010. Т. 40. № 4. С. 371.
- [16] Кугейко М.М., Лысенко С.А. Лазерная спектронефелометрия аэродисперсных сред. Минск: БГУ, 2012. 208 с.
- [17] Лазерный контроль атмосферы / Под. ред. Хинкли Э.Д. М: Мир, 1979. 416 с.
- [18] Колемаев В.А., Калинина В.Н. Теория вероятностей и математическая статистика. М.: ИНФРА-М, 1997. 300 с.
- [19] *Кочанов Р.В.* и др. // Журн. количественной спектроскопии и переноса излучения. 2016. Т. 177. № 7. С. 15.