08,11

Расчет динамики границы аморфная фаза—кристалл при твердофазной взрывной кристаллизации

© А.А. Чеврычкина, Н.М. Бессонов, А.Л. Корженевский

Институт проблем машиноведения РАН, Санкт-Петербург, Россия

E-mail: alekorzh@mail.ru

Поступила в Редакцию 5 июля 2021 г. В окончательной редакции 10 июля 2021 г. Принята к публикации 10 июля 2021 г.

Выведено нелинейное дифференциальное уравнение, позволяющее описывать динамику фронта твердофазной взрывной кристаллизации в существенно более широкой области значений параметров по сравнению с имеющимися в литературе теоретическими результатами. Детально изучены численно особенности перехода автоколебательной моды движения фронта в режим его самораспространения с постоянной скоростью.

Ключевые слова: взрывная кристаллизация, автоколебания межфазной границы стекло-кристалл, самораспространяющийся фронт.

DOI: 10.21883/FTT.2021.11.51599.162

1. Введение

Динамика взрывной кристаллизации (ВК) занимает особое место в кинетике различных фронтов физической или химической природы, таких как грани роста кристаллов, межфазные границы при фазовых переходах, магнитные или сегнетоэлектрические доменные стенки и т.п. Важность исследования ВК при кристаллизации аморфной фазы обусловлена тем, что лежащая в основе этого процесса положительная обратная связь между выделением скрытой теплоты и скоростью фронта играет ключевую роль и во многих других, более сложных для количественного описания явлений, например, автокаталитических экзотермических химических реакций или взаимосвязи конкурирующих фазовых переходов при самораспространяющемся высокоскоростном синтезе [1-3]. Вместе с тем, несмотря на качественную схожесть с некоторыми другими диффузионноконтролируемыми процессами, например, быстрым направленным затвердеванием расплавов сплавов, более детальный анализ ВК указывает и на отличия в их математическом описании.

В ранних теоретических работах анализ ВК проводился в рамках предположения о постоянной скорости фронта [4–6], см. также обзор [7]. Было показано, что для самораспространяющихся фронтов ВК их скорость определяется условием теплового баланса, которое при определенных значениях параметров допускает не единственность решения [5–7]. Обнаружение этого обстоятельства позволило предсказать возможность теплового гистерезиса не только в приближении постоянной скорости фронта, но и в более общих случаях, однако, принципиально ограниченных требованием квазистационарности режима, см., например, [8].

Экспериментально ВК наблюдалась в пленках целого ряда чистых элементов и химических соединений, относящихся к материалам различных классов. При этом

были выделены типичные черты явления, наблюдаемые на достаточно больших пространственных масштабах и временах: пороговый характер возникновения и подавления ВК, ее зависимость от температуры подложки, толщины аморфной пленки, способа ее приготовления, тепловых свойств материала подложки и т.п. Было установлено, что в зависимости от экспериментальных условий, ВК может проходить как в сохраняющем твердость материале, так и с образованием промежуточной жидкой фазы. Кроме того, кинетика процесса может сопровождаться зарождением множества кристаллитов в аморфной матрице или реализовываться распространением одиночного фронта стекло—кристалл, см., например, [9–15].

Особое внимание привлекли эксперименты, в которых post mortem наблюдались периодические изменения толщин аморфных пленок и характерных размеров зерен в поликристаллических продуктах ВК [16]. Для объяснения этих эффектов было высказано предположение, что они являются следствием периодических осцилляций скорости фронта [6]. Возможность возникновения таких осцилляций была продемонстрирована в рамках анализа линейной устойчивости равномерного движения плоских фронтов [6,17–19]. В последующих теоретических работах был изучен и их нелинейный режим движения как для самораспространяющихся фронтов ВК, так и в условиях слабой поддержки их движения подвижным тепловым источником (обычно сканирующим лазерным лучом [17,20,21]). Необходимо, однако, отметить, что использованные методы вывода формул достаточно сложны, сами полученные формулы весьма громоздки и к тому же применимы лишь в очень узких областях значений параметров, что затрудняет и сильно ограничивает их практическое применение. В свою очередь, численные расчеты, выполненные в рамках получившего широкое распространение метода фазового поля, см., например, [22-24] или методом молекулярной динамики [25–27], эффективны лишь для описания особенностей ВК в моделях конкретных стекол, но не позволяют делать предсказаний обобщающего характера.

В последние годы произошел значительный прогресс в экспериментальных возможностях наблюдения in situ процессов, сопровождающих ВК. Он связан в первую очередь с разработкой новой методики (dynamic transmission electron microscopy), с помощью которой удалось добиться гораздо более высокого пространственного и временного разрешения структуры кристаллизующегося материала [28-30]. В частности, проведенные в [28-30] замечательные эксперименты показали, что переход аморфного состояния в кристалл Ge происходит по механизму бокового, а не рассмотренного в теоретических работах [5,6,17-21] нормального роста. Т.е. сначала на фронте возникает локальный закристаллизовавшийся выступ, который затем расширяется и охватывает всю поверхность фронта. При этом выступов может быть несколько, расширяются они независимым образом, что ясно указывает на нуклеационный характер процесса.

В целом можно сказать, что в настоящее время накопленный разнообразный экспериментальный материал по ВК намного превосходит имеющиеся теоретические результаты. Ощущается острая необходимость в разработке новых методов для проведения количественных теоретических расчетов как в рамках традиционных общих макрокинетических моделей с простой геометрией фронта ВК, так и для моделей, оперирующих на наномасштабах.

Цель настоящей статьи состоит в том, чтобы в рамках традиционного феноменологического подхода предложить новый теоретический метод расчета динамики фронта ВК, одновременно более простой и в то же время позволяющий описывать ее в гораздо более широкой области параметров, чем это было сделано в [17,20,21]. При этом основное внимание будет уделено расчету автоколебательной динамики фронта и ее трансформации в самоподдерживающийся режим.

2. Формулировка модели и исходные уравнения

В базовой макрокинетической модели фронт ВК рассматривается как бесконечно тонкий тепловой источник, зависимость скорости которого от его температуры содержит экспоненциальный аррениусовский фактор. Процесс теплового обмена в объеме материала описывается стандартным уравнением теплопроводности, а сток тепла из пленки в подложку рассматривается в релаксационном или диффузионном режиме [7,31]. Поскольку в последние годы растет интерес к ВК во все более тонких аморфных пленках, в нашей статье мы рассмотрим первый из этих режимов. В этом случае тепловую задачу можно решать в приближении одномерной модели, закон стока тепла в которой в простейшем случае

считается ньютоновским. Если температура подложки T_S недостаточно высока, и процесс ВК реализуется при поддержке сканирующего лазерного луча, то уравнение теплопроводности содержит дополнительный источник. В результате уравнения модели приобретают вид

$$\frac{\partial T}{\partial t} = D \frac{\partial T}{\partial z^2} - \Gamma(T - T_S) + J, \tag{1}$$

$$J(z,t) = q_0 V \delta(z - Z(t)) + P(z - V_L t), \tag{2}$$

$$V(T_i) = V_0 \exp\left(-\frac{E}{T_i}\right),\tag{3}$$

где D — коэффициент температуропроводности, коэффициент Γ задает скорость стока тепла в подложку, $q_0=L/c$, L — теплота кристаллизации, c — теплоемкость, $V=\dot{Z}$ — скорость фронта, Z(t) — его координата, $\delta(z-Z(t))$ — дельта-функция Дирака, функция $P(z-V_Lt)$ описывает тепловой вклад от лазерной подсветки, V_L — заданная скорость лазерного луча, T_i — температура фронта, V_0 — феноменологический параметр, E — эффективная энергия активации.

3. Вывод уравнения движения фронта в дифференциальной форме

Динамика координаты фронта Z(t) определяется из условия самосогласованного равенства температуры фронта $T_i(V)$, взятой из формулы (3), переписанной в виле

$$T_i(V) = -\frac{E}{\ln\left(\frac{V}{V_0}\right)} \tag{4}$$

и найденной из решения уравнения (1). В силу линейности этого уравнения его решение можно записать в виде свертки функции Грина G(z,t) с источником J(z,t) в (2). При этом для получения результатов в аналитическом виде удобно записать функцию Грина G(z,t) через ее пространственный Фурье-образ

$$G(z,t) = \int_{-\infty}^{+\infty} \frac{dk}{2\pi} \exp\left[\left(-Dk^2 - \Gamma\right)t + ikz\right], \quad (5)$$

затем подставить (5) в выражение для решения (1) на фронте в экспериментально существенном, установившемся при больших временах, режиме

$$T(Z(t),t)=T_S+I_1+I_2,$$

$$I_1 = q_0 \int_{-\infty}^{t} dt' \int_{-\infty}^{+\infty} dz' G(Z(t) - z', t - t') V(t') \delta(z' - Z(t')),$$

$$I_2 = \int_{-\infty}^{t} dt' \int_{-\infty}^{+\infty} dz' G(Z(t) - z', t - t') P(z' - V_L t')). \quad (6)$$

Вклады I_1 и I_2 в уравнении (6), обусловленные выделением теплоты кристаллизации и лазерной подсветкой,

целесообразно рассчитать по отдельности. Первый из них можно представить в виде следующего ряда:

$$I_{1} = q_{0} \int_{-\infty}^{t} dt' V(t') G(Z(t) - Z(t'))$$

$$= q_{0} \int_{-\infty}^{t} dt' \left[V(t) + \dot{V}(t)(t' - t) + \ldots \right]$$

$$\times \int_{-\infty}^{+\infty} dk \left[1 - ik \frac{\dot{V}(t)}{2} (t' - t)^{2} - ik \frac{\ddot{V}(t)}{6} (t' - t)^{3} + \ldots \right]$$

Поскольку скорость V(t) и ее производные входят в (7) только как параметры, можно в явном виде выполнить интегрирование по времени t' во всех членах ряда несмотря на то, что динамика фронта пока не определена. Затем интегралы по k элементарно берутся по вычетам, а результат удобно записать в компактном виле

$$I_1 = q_0 \sqrt{B}$$

$$\times \left\{ 1 - \beta \left(1 - \frac{3}{2}\beta \right) \ddot{Z}(t) + \beta^2 \left(\frac{3}{2} - \frac{5}{2}\beta \right) \ddot{Z}(t) + \ldots \right\}, \tag{8}$$

где функция $\beta(V)$ определена как

 $\times \exp \left[Dk^2 - ikV(t)\right](t'-t).$

$$\beta(V) \equiv \frac{V^2}{V^2 + 4\Gamma D}, \quad \beta_L \equiv \beta(V = V_L).$$
 (9)

Если скорость перемещения лазерного луча V_L постоянна, то вклад подсветки I_2 в значение T_i можно записать в виде свертки источника $P(z-V_Lt)$ с функцией Грина G_s стационарного уравнения теплопроводности

$$I_2 = \int_{-\infty}^{+\infty} G_S(Z(t) - z') P(z') dz', \qquad (10)$$

$$G_S(Z) = \frac{\sqrt{\beta_L}}{V_L} \exp\left[-\frac{V_L(z + \beta_L^{-\frac{1}{2}}|z|)}{2D}\right], \quad (11)$$

В случае когда фронт кристаллизации находится вне лазерного пятна, этот вклад экспоненциально спадает с увеличением расстояния фронта от пятна.

Приравняв значения температуры на фронте T_i в (4) и (6), с учетом (8) и (10) получаем уравнение, описывающее динамику координаты фронта Z(t) в форме нелинейного дифференциального уравнения бесконечного порядка

$$T_S + q_0 \sqrt{\beta} \left\{ 1 - \beta \left(1 - \frac{3}{2} \beta \right) \ddot{Z}(t) + \beta^2 \left(\frac{3}{2} - \frac{5}{2} \beta \right) \ddot{Z}(t) + \dots \right\}$$
$$+ I_2(Z_S) \exp \left[-\frac{V_L(Z - Z_S)}{2Dl} \right] = -\frac{E}{\ln\left(\frac{V}{V_S}\right)}, \tag{12}$$

где длина l определена равенством $l^{-1}(V_L) \equiv 1 + \beta_L^{-\frac{1}{2}}.$

В уравнении (12) $Z_s = V_L t + Z_0$, где Z_0 расстояние между лазерным пятном и положением фронта в случае его равномерного движения со скоростью V_L Соответственно, значение Z_0 определяется условием

$$T_s + q_0 \sqrt{\beta_L} + I_2(Z_s) = -\frac{E}{\ln\left(\frac{V_L}{V_0}\right)}.$$
 (13)

Преимущества записи левой части уравнения (12) в дифференциальной форме по сравнению с интегралом в (6) заключаются в возможности построения приближенных решений (12) в аналитическом виде и их ясной физической интерпретации. Этим вопросам посвящен следующий параграф.

4. Стационарные и автоколебательные режимы динамики фронта

Очевидно, что скорость фронта в стационарных режимах, реализация которых требует лазерной поддержки, равна V_L . В случае самораспространяющихся фронтов ВК, она определяется устойчивым решением V_s уравнения (13), в котором опущен член I_2 . Анализировать общие свойства уравнений (12), (13), содержащих несколько размерных параметров, удобнее, если перейти к безразмерным переменным. Поэтому введем новые время и длину как

$$t \to \frac{2D}{V_L^2} t, \quad Z \to \frac{2D}{V_L} Z.$$
 (14)

Помимо введенного выше параметра β , будем использовать еще два безразмерных параметра, α и R, которые залаются соотношениями

$$\alpha \equiv \frac{q_0}{E} \sqrt{\beta_L} \ln^2 \left(\frac{V_L}{V_0}\right), \quad R \equiv \frac{I_2}{q_0 l \sqrt{\beta_L}}.$$
 (15)

Учитывая, что даже в том случае, когда уравнение (13) имеет решение с постоянной скоростью, оно может оказаться неустойчивым, введем также безразмерное отклонение координаты фронта от ее значения в стационарном режиме $h(t)=Z(t)-Z_s$.

Запишем теперь разность уравнений (12) и (13) во введенных безразмерных переменных и параметрах

$$\sum_{n=2}^{\infty} M_n \frac{d^n h}{dt^n} + M_1 \ddot{h} + M_0 \ddot{h} + F(\dot{h}) + g \left[\exp\left(-\frac{h}{l}\right) - 1 \right] = 0,$$
(16)

гле

$$M_1(\dot{h}) = \frac{\beta^{\frac{5}{2}}(\dot{h})}{(\dot{h}+1)^6} \left(\frac{3}{2} - \frac{5}{2}\beta(\dot{h})\right),\tag{17}$$

$$M_0(\dot{h}) = \frac{\beta^{\frac{3}{2}}(\dot{h})}{(\dot{h}+1)^3} \left(\frac{3}{2}\beta(\dot{h}) - 1\right),\tag{18}$$

$$F = \sqrt{\beta(\dot{h})} - \sqrt{\beta_L} \left[1 + \frac{1}{\alpha} \frac{\ln\left(\frac{V_L}{V_0}\right) \ln(\dot{h} + 1)}{\ln\left(\frac{V_L}{V_0}\right) + \ln(\dot{h} + 1)} \right], \quad (19)$$

$$g = Rl\sqrt{\beta_L},\tag{20}$$

$$\beta(\dot{h}) \equiv \frac{(1+\dot{h})^2}{(1+\dot{h})^2 + \left(\frac{1}{\beta_L} - 1\right)}.$$
 (21)

Гипермассы M_n при n>1 можно вычислить аналогично тому, как это было сделано для M_0 и M_1 .

Заметим, что полезно интерпретировать уравнение (16) как выполнение баланса сил, включающих гиперинерционные (возникающие в силу запаздывания, как в классической постановке задачи о самоторможении неточечного модельного электрона), инерционную силу, силу нелинейного вязкого трения и возвращающую силу.

Покажем теперь, что при малых значениях безразмерного параметра g (т.е. при достаточности слабой лазерной поддержке движения фронта) автоколебательные решения с хорошей точностью могут быть найдены из решения уравнения для нелинейного осциллятора

$$M_0(h)\ddot{h} + F(h) + g[\exp(-h/l) - 1] = 0.$$
 (22)

Из (18) ясно, что вообще какие-либо колебательные решения уравнения (22) существуют только при условии $\beta < 2/3$ (т. е. при наличии достаточно большого теплоотвода в подложку, что характерно для очень тонких пленок), когда знак M_0 совпадает со знаком возвращающей силы. Отметим, что в отличие от схожей задачи быстрой направленной кристаллизации (БНК) сплава [32–34], эта "возвращающая" сила в (22) отрицательна, что является следствием присущей процессу ВК положительной обратной связи из-за другого по сравнению с БНК знака градиента температуры.

Будут ли колебательные решения (22) автоколебательными, зависит при $g\ll 1$ от знака производной "силы трения" F (взятой при $V=V_L$). Из (19) находим на плоскости $\alpha-\beta$ линию смены знака $dF/d\dot{h}$ (при $V=V_L$):

$$\frac{1}{2}\frac{\beta'}{\beta}V_L - \frac{1}{\alpha} = 0 \tag{23}$$

или, эквивалентно,

$$\beta = \frac{\alpha - 1}{\alpha}.\tag{24}$$

Эта линия с точностью до O(g) совпадает с линией бифуркации Хопфа стационарного движения фронта

$$\beta = \frac{\alpha - 1}{\alpha} + \frac{M_1}{M_0}R = \frac{\alpha - 1}{\alpha} + \frac{(\alpha - 1)(2\alpha - 5)}{\alpha(3 - \alpha)}R. \quad (25)$$

Она получается при линеаризации по \dot{h} уравнения (16), в котором опущен вклад первого члена (суммы), дающий поправку более высокого порядка $O(g^2)$.

Такое положение линии неустойчивости подтверждает полезность указанной выше физической интерпретации.

Пересечение линии (25) в сторону бо́льших значений α приводит к появлению устойчивого цикла. Непосредственно вблизи нее возникают маленькие овальные циклы, а колебания скорости $\dot{h}(t)$ близки к гармоническим, см. рис. 1.

При углублении в зону неустойчивости, циклы быстро теряют овальную форму, см. рис. 2, и осцилляции приобретают ярко выраженный релаксационный характер, см. рис. 3.

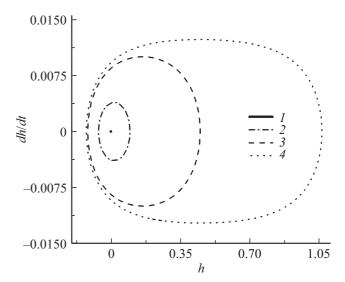


Рис. 1. Устойчивые овальные циклы в ближайшей окрестности линии неустойчивости (25). Значения параметров $R=10^{-4},~\beta=0.04,~\ln(\frac{V_L}{V_0})=-3,~$ линия $I-\alpha=1.041666,~$ линия $2-\alpha=1.041668,~$ линия $3-\alpha=1.041675,~$ линия $4-\alpha=1.0416782.$

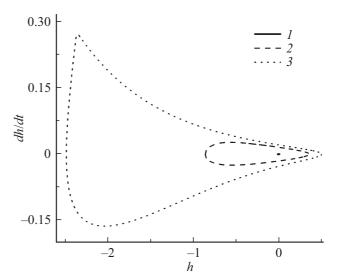


Рис. 2. Циклы квазигармонических (линия 2) и релаксационных колебаний (линия 3). Значения параметров $\beta=0.55$, $\ln\left(\frac{V_L}{V_0}\right)=-20$, $R=10^{-4}$, линия $I-\alpha=2.222$, линия $2-\alpha=2.223$, линия $3-\alpha=2.2625$.

При продолжении продвижения вглубь этой зоны возникают два возможных сценария. В одном периодическое движение фронта происходит с его остановка-

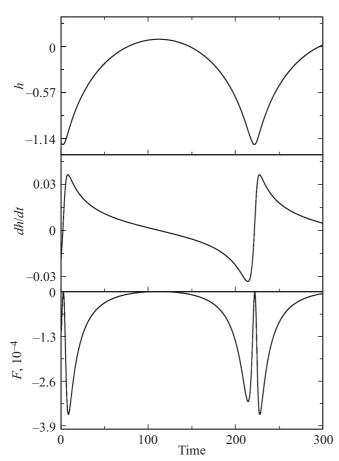


Рис. 3. Режим релаксационных колебаний. Зависимость "вязкой силы" $F(\dot{h})$ определена соотношением (19). Значения параметров $\beta=0.6$, $\ln(\frac{V_L}{V_0})=-2$, $R=10^{-4}$, $\alpha=2.5006$.

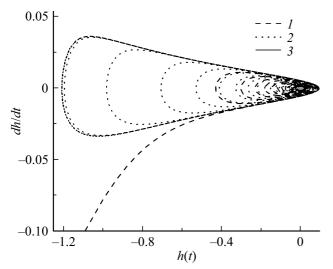


Рис. 4. Остановка фронта $(\dot{h} \to -1$ для линии I). Значения параметров $\beta=0.6$, $\ln\left(\frac{V_L}{v_0}\right)=-2$, $R=10^{-4}$, линия $I-\alpha=2.5007$, линия $2-\alpha=2.5006$, линия $3-\alpha=2.5$.

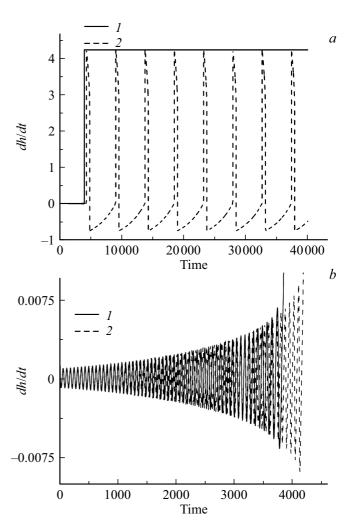


Рис. 5. Иллюстрация важности нелинейности возвращающей силы. Значения параметров $\beta=0.001,\ R=0.0001,\ \ln\left(\frac{V_L}{V_0}\right)=-3,\ \alpha=1.01011.$ Линия I — уравнение (22), линия 2 — уравнение (22) с линейной аппроксимацией возвращающей силы. a) длительный промежуток времени; b) начальный промежуток времени.

ми. Уравнение (22) позволяет установить факт только первой остановки, см. рис. 4, т.к. вывод уравнения (22) предполагает, что средняя скорость движения равна скорости V_L , а наличие остановок приводит к более низким средним скоростям.

Другой сценарий связан с существенной нелинейностью возвращающей силы в (22), см. рис. 5 и появлением дополнительного нуля у функции $F(\dot{h})$. Эта ситуация проиллюстрирована рис. 6, на котором видно, что точка $\dot{h}=0$, отвечающая "лазерной" моде с $V=V_L$ становится неустойчивой F'>0 (в то время как дополнительный нуль при $\dot{h}>0$ (т.е. с $V>V_L$) устойчив (F'<0)) и, следовательно, фронт убегает от лазерного пятна, и ВК переходит в самоподдерживающийся режим.

В таблице приведены значения скорости убегающего фронта, полученные прямым численным решением урав-

Сравнение	нулей	функции	F,	заданной	формулой	(19),	И
режима убегания уравнения ()			

eta_L	$\alpha = \frac{1.01}{1 - \beta_L}$	Нули функции F(19)	<i>h</i> в режиме убегания из решения уравнения (22)
0.02	1.03	3.04	3.03
0.03	1.04	2.25	2.24
0.04	1.05	1.72	1.69
0.05	1.06	1.33	1.29
0.06	1.07	1.03	0.976
0.07	1.09	0.81	0.863
0.08	1.100	0.63	0.66
0.09	1.11	0.49	0.49
0.011	1.02	4.2	4.19
0.012	1.022	4.04	4.03
0.013	1.023	3.89	3.88

нения (22) (левая колонка) и положения нулей функции $F(\dot{h})$ (правая колонка).

С учетом того, что численное решение в некоторых случаях могло еще не выйти на асимптотику, можно считать установленным, что скорость самоподдерживающегося фронта $V_s=1+\dot{h}$ задается нулем $F(\dot{h})$.

Наши численные расчеты также показывают, что при одних и тех же значениях параметров задачи, но разном выборе начальных значений h(t=0), $\dot{h}(t=0)$, возможна смена динамического режима. В связи с этим отметим, что начальное значение скорости фронта можно задавать, начиная эксперимент с подачи короткого лазерного импульса с $I_2 = f \, \delta(t)$, который приведет к скачку скорости $V_0 \approx \frac{f}{M_0} \, \Delta t$ при условии, что продолжительность импульса $\Delta t \gg \frac{M_1}{M_0}$. Таким образом можно управлять

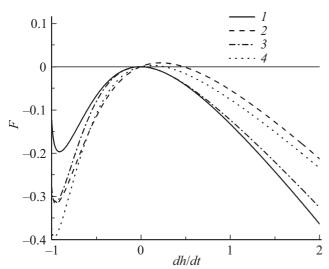


Рис. 6. Зависимость (19). Значения параметров $\ln\left(\frac{V_L}{V_0}\right)=-3$, линия $1-\beta=0.55,\ \alpha=2.22$, линия $2-\beta=0.55,\ \alpha=3$, линия $3-\beta=0.65,\ \alpha=2.85$, линия $4-\beta=0.65,\ \alpha=3.5$.

начальным выбором режима или переключать его в ходе процесса ВК.

5. Заключение

В работе предложен аналитический метод расчета динамики фронта ВК с помощью решения выведенного нами приближенного нелинейного дифференциального уравнения. Метод применим в существенно более широкой области параметров по сравнению с имеющимися в литературе теоретическими результатами. Так, результаты работы [17] применимы только в окрестности изолированной точки с координатами $\beta = 2/3$, $\alpha = 3$. В работе [20] дифференциальное уравнение, описывающее динамику фронта, было выведено только для случая малых амплитуд колебаний скорости, в то время как предложенный нами метод свободен от этого ограничения. Кроме того, в нашей работе численно подробно изучены особенности перехода автоколебательной моды движения фронта в режим его самораспространения с постоянной скоростью. Поскольку метод позволяет выявить общие параметрические зависимости режимов ВК, его результаты являются полезным ориентиром для исследований, целью которых является более детальное описание ВК на мезо- и микроскопических масштабах. Отметим, что использованный в работе подход допускает учет разнообразных лазерных режимов. За счет включения ланжевеновских сил в выведенное уравнение движения межфазного фронта этот поход также может быть применен для описания моды ВК, при которой ведущую роль играет процесс зародышеобразования.

Финансирование работы

Работа выполнена при финансовой поддержке Российского научного фонда (проект N 19-19-00552).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] И. Пригожин, Д. Кондепуди. Современная термодинамика. От тепловых двигателей до диссипативных структур. Мир, М. (2002). 461 с.
- [2] A.S. Rogachev, S.G. Vadchenko, A.S. Aronin, A.S. Shchukin, D.Yu. Kovalev, A.A. Nepapushev, S. Rouvimov, A.S. Mukasyan. J. Alloys Compd. 749, 44 (2018).
- [3] V.G. Myagkov, A.A. Ivanenko, L.E. Bykova, V.S. Zhigalov, M.N. Volochaev, D.A. Velikanov, A.A. Matsynin, G.N. Bondarenko. Sci. Rep. 10, 1, 1 (2020).
- [4] G.H. Gilmer, H.J. Leamy. In: Laser and Electron-Beam Processing of Materials/Eds C.W. White, P.S. Peercy. Academic, N.Y. (1980). P. 227.
- [5] В.А. Шкловский. ЖЭТФ **82**, 2, 536 (1982).
- [6] W. van Saarloos, J.D. Weeks. Phys. Rev. Lett. 51, 1046 (1983).
- [7] В.А. Шкловский, В.М. Кузьменко. УФН **157**, 311 (1989).

- [8] А.В. Коропов, В.А. Шкловский. Хим. физика 7, 338 (1988).
- [9] G. Auvert, D. Bensahel, A. Perio, T. Nguyen, G.A. Rozgonyi. Appl. Phys. Lett. 39, 724 (1981).
- [10] H.J. Zeiger, John C.C. Fan, B.J. Palm, R.I. Chapman, R.P. Gale. Phys. Rev. B 25, 4002 (1982).
- [11] D. Bensahel, G. Auvert, A. Perio, J.C. Pfister. J. Appl. Phys. 54, 3485 (1983).
- [12] H.-D. Geiler, E. Glaser, Goetz, M. Wagner. J. Appl. Phys. 59, 3091 (1986).
- [13] C. Grigoropoulos, M. Rogers, S.H. Ko, A.A. Golovin, B.J. Matkowsky. Phys. Rev. B 73, 184125 (2006).
- [14] B.C. Johnson, P. Gortmaker, J.C. McCallum. Phys. Rev. B 77, 214109 (2008).
- [15] K. Ohdaira, H. Matsumura. J. Cryst. Growth 362, 149 (2013).
- [16] C.E. Wickersham, G. Bajor, J.E. Greene. Solid State Commun. 27, 17 (1978).
- [17] W. van Saarloos, J.D. Weeks. Physica D 12, 29 (1984).
- [18] D.A. Kurtze, W. van Saarloos, J.D. Weeks. Phys. Rev. B 30, 1398 (1984).
- [19] I. Smagin, A. Nepomnyashchy. Physica D 238, 706 (2009).
- [20] D.A. Kurtze. Physica D 20, 303 (1986).
- [21] D.A. Kurtze. Phys. Rev. B 40, 11104 (1989).
- [22] N. Provatas, M. Grant, K.R. Elder. Phys. Rev. B 53, 6263 (1996).
- [23] E.J. Albenze, M.O. Thompson, P. Clancy. Ind. Eng. Chem. Res. 45, 5628 (2006).
- [24] C. Reina, L. Sandoval, J. Marian. Acta Materialia 77, 335 (2014).
- [25] V. Turlo, O. Politano, F. Baras. Acta Materialia 120, 189 (2016).
- [26] F. Baras, V. Turlo, O. Politano, S.G. Vadchenko, A.S. Rogachev, A.S. Mukasyan. Adv. Eng. Mater. 20, 8, 1800091 (2018).
- [27] S.A. Rogachev, O. Politano, F. Baras, A.S. Rogachev. J. Non-Cryst. Solids 505, 202 (2019).
- [28] L. Nikolova, T. LaGrange, M.J. Stern, J.M. MacLeod, B.W. Reed, H. Ibrahim, G.H. Campbell, F. Rosei, B.J. Siwick. Phys. Rev. B 87, 064105 (2013).
- [29] G.C. Egan, T.T. Li, J.D. Roehling, J.T. McKeown, G.H. Campbell. Acta Materialia 143, 13 (2018).
- [30] G.C. Egan, T.T. Rahn, A.J. Rise, H.Y. Cheng, S. Raoux, G.H. Campbell, M.K. Santala. J. Appl. Phys. 126, 105110 (2019).
- [31] C. Buchner, W. Schneider. J. Appl. Phys. 117, 245301 (2015).
- [32] A.L. Korzhenevskii, R. Bausch, R. Schmitz. Phys. Rev. Lett. **108**, 046101 (2012).
- [33] A.L. Korzhenevskii, R. Bausch, R. Schmitz. Phys. Rev. E 85, 021605 (2012).
- [34] А.А. Чеврычкина, Н.М. Бессонов, А.Л. Корженевский. ФТТ **61**, *11*, 2122 (2019).

Редактор Т.Н. Василевская