Исследование фотоемкости диодов из кремния, легированного ванадием

© Х.Т. Игамбердиев, А.Т. Мамадалимов, Р.А. Муминов, Т.А. Усманов, Ш.А. Шоюсупов

Национальный университет Узбекистана им. М. Улугбека, 700174 Ташкент, Узбекистан

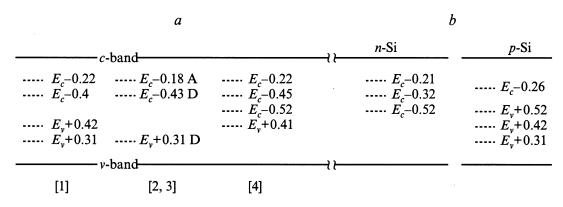
(Получена 12 марта 2002 г. Принята к печати 28 марта 2002 г.)

Фотоемкостным методом определены уровни ванадия в n- и p-Si. Показано, что в n-Si ванадий создает уровни только в верхней части запрещенной зоны с энергиями ионизации порядка $E_c-0.21,\,E_c-0.52\,{\rm эB},\,$ в то время как в p-Si — как в верхней, так и в нижней частях запрещенной зоны: $E_c-0.26,\,E_v+0.31,\,$ $E_v+0.42,\,E_v+0.52\,{\rm эB}.$ Установлено, что для всех уровней ванадия сечения фотоионизации для электронов больше, чем для дырок. Показано, что концентрация электрически активных центров ванадия в n-Si и p-Si зависит как от концентрации примесей с мелкими уровнями, так и от времени диффузии ванадия в Si.

Уровни ванадия кремния исследованы сравнительно слабо [1-4]. Энергии ионизации уровней по данным различных авторов приведены на рис. 1, a. Далее приведены результаты исследований свойств кремния, легированного ванадием фотоемкостным методом.

Легирование кремния марок КЭФ и КДБ с удельным сопротивлением $\rho=5-100\,\mathrm{OM}\cdot\mathrm{cm}$ производилось диффузионным методом из напыленного слоя ванадия на поверхность кремния при $T=1200-1250^{\circ}\mathrm{C}$ в течение $2-20\,\mathrm{q}$ с последующим охлаждением в воздухе ($\sim10\,\mathrm{град/c}$). Коэффициент диффузии V меняется в интервале $3.4\cdot10^{-11}-4.4\cdot10^{-10}\,\mathrm{cm}^2/\mathrm{c}$ при изменении температуры от $1100\,\mathrm{дo}\,1250^{\circ}\mathrm{C}$ [5]. Удельное сопротивление n- и p-Si после диффузии ванадия незначительно возрастало. Это показывает, что при введении ванадия в кремнии образуются как акцепторные, так и донорные уровни.

В качестве выпрямляющих контактов для образцов из $n\text{-Si}\langle V\rangle$ были использованы барьеры Шоттки, полученные после диффузии ванадия. Барьеры Шоттки были получены путем напыления золота в вакууме на поверхности n-Si. В образцах из p-Si предварительно изготавливались p-n-переходы путем диффузии фосфора при температуре 1250°C в течение 30 мин. При этом глубина залегиная p-n-переходов не превышала


3—4 мкм. Параметры и концентрации уровней определялись из измерений фотоемкости (ФЕ) [6,7].

Концентрация электрически активных центров ванадия зависит от типа проводимости исходного кремния. Мы наблюдали, что в p-Si с ростом концентрации бора концентрация центров ванадия уменьшается, а в n-Si с увеличением концентрации фосфора концентрация центров V растет.

На рис. 2 приведены спектры ФЕ диодов из $n\text{-Si}\langle V\rangle$. Измеренные значения приращения емкости ΔC были пересчитаны в концентрацию заряженных центров ванадия N стандартным методом. Видно, что ванадий образует в верхней половине запрещенной зоны три уровня с энергиями ионизации $E_c-0.21,\ E_c-0.32,\ E_c-0.52$ эВ (рис. 1,b). С увеличение времени диффузии общая концентрация ванадия возрастает. Индуцированная ФЕ [7] во всех измеренных диодах из $n\text{-Si}\langle V\rangle$ не наблюдалась, т. е. в нижней половине запрещенной зоны уровни либо отсутствуют, либо сечение захвата дырок на них менее $10^{-19}\,\mathrm{cm}^2$.

Измерение кинетики нарастания ФЕ при освещении из области примесного поглощения позволило определить спектральную зависимость сечений фотоионизации χ для уровней ванадия. Согласно теории Луковского [8],

$$\chi \propto (h\nu - \Delta E_{\rm opt})^{3/2}/(h\nu)^3$$

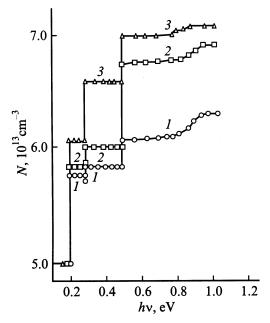
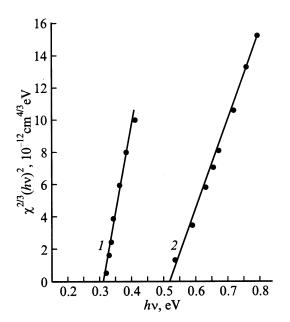


Рис. 1. Энергии ионизации уровней ванадия в кремнии: a — данные из работ [1–4]; b — результаты данной работы.


и, следовательно,

$$\chi^{2/3}(h\nu)^2 \propto h\nu - \Delta E_{\rm opt}$$
.

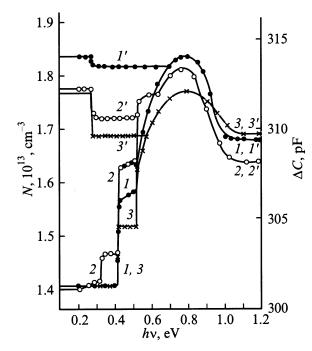

Экстраполяция функции $\chi^{2/3}(h\nu)^2=f(h\nu)$ к нулю позволяет определить энергию ионизации глубокого уровня $\Delta E_{\rm opt}$. На рис. 3 показаны такие зависимости для χ_n и $\chi_n+\chi_p$, измеренные в n-Si; χ_n и χ_p — сечения захвата фотонов примесным центром при испускании электрона и дырки соответственно. Из рисунка вид-

Рис. 2. Спектры фотоемкости диодов из n-Si $\langle V \rangle$ при временах диффузии, ч: I — 2, 2 — 10, 3 — 20. T = 77 K.

Рис. 3. Зависимости $\chi^{2/3}(hv)^2 = f(hv)$ для уровней ванадия в *n*-Si с энергией ионизации $E_c - 0.32$ эВ и $E_c - 0.52$ эВ (1 и 2 соответственно).

Рис. 4. Спектры фотоемкости (1,2,3) и индуцированной фотоемкости (1',2',3') диодов из p-Si $\langle V \rangle$ при временах диффузии, ч: $I,\ I'-2;\ 2,\ 2'-10;\ 3,\ 3'-20.\ T=77\ K.$

но, что экспериментальные зависимости $\chi(h\nu)$ хорошо согласуются с теорией [8]. Экстраполяция дает значения χ для переходов $E_c-0.32$ эВ и $E_c-0.52$ эВ в зону проводимости для уровня $E_c-0.32$ эВ в области $0.32 < h\nu < 0.45$ эВ $\chi_n = 10^{-17} - 10^{-16}$ см², для уровня $E_c-0.52$ эВ с учетом двойных оптических переходов $\chi_n + \chi_p = 10^{-17} - 1.02 \cdot 10^{-16}$ см². Возрастающая зависимость $N(h\nu)$ в диодах из $n\text{-Si}\langle V \rangle$ обусловлена тем, что для уровней ванадия характерно соотношение $\chi_n \gg \chi_p$.

Измерения спектров ФЕ показали, что ванадий в нижней половине запрещенной зоны p-Si создает уровни с энергией ионизации $E_v+0.31\,\mathrm{pB},\ E_v+0.42\,\mathrm{pB}$ и $E_v+0.52\,\mathrm{pB},\$ причем уровень $E_v+0.31\,\mathrm{pB}$ образуется при диффузии в течение $10\,\mathrm{y}$ (рис. 4). При более длительной диффузии ($20\,\mathrm{y}$) данный уровень в спектре ФЕ отсутствует и одновременно повышается концентрация уровней $E_v+0.42\,\mathrm{pB}$ и $E_v+0.52\,\mathrm{pB}$. Анализ спектров ФЕ p-Si $\langle V \rangle$ показывает, что для уровня $E_v+0.52\,\mathrm{pB}$ также характерно соотношение $\chi_n>\chi_p$. Это следует из наблюдения спадающих участков в зависимости $\Delta C(hv)$ в спектрах ФЕ [7,9]. Уровни в верхней половине запрещенной зоны, которые обнаруживаются при измерении индуцированной ФЕ в p-Si $\langle V \rangle$, имеют энергию ионизации, равную $E_c-0.26\,\mathrm{pB}$.

В целом из результатов исследования спектров ФЕ и индуцированной ФЕ в диодах из n- и p-Si $\langle V \rangle$ можно сделать заключение, что действительно для всех уровней ванадия характерно соотношение $\chi_n > \chi_p$.

Список литературы

- [1] J.-W. Chen, A.G. Milnes. Ann. Rev. Mater. Schi., **10**, 157 (1980).
- [2] H. Lemke. Phys. St. Sol. (a), **64** (2), 549 (1981).
- [3] H. Lemke. Phys. St. Sol. (a), **75** (1), 473 (1983).
- [4] Х.С. Далиев, А.А. Лебедев, Н.А. Султанов, В. Экке. ФТП, 19 (2), 338 (1985).
- [5] Г.К. Азимов, С.З. Зайнабидинов, Ю.И. Козлов. ФТП, 23 (10), 1890 (1989).
- [6] А.Т. Мамадалимов, А.А. Лебедев, Е.В. Астрова. Спектроскопия глубоких центров в полупроводниках (Ташкент, Университет, 1999).
- [7] Л.С. Берман, А.А. Лебедев. Емкостная спектроскопия глубоких центров (М., Наука, 1981).
- [8] G.V. Lucovsky. Sol. St. Commun. 3, 299 (1965).
- [9] А.Т. Мамадалимов, С.С. Кахаров, Ш. Махкамов, П.К. Хабибуллаев. Известия АН УзСССР. Сер. физ.-мат. наук, № 4, 53 (1980).

Редактор Т.А. Полянская

An investigation of photocapacitance of diodes fabricated from Si doped with vanadium

H.T. Igamberdiev, A.T. Mamadalimov, R.A. Muminov, T.A. Usmanov, Sh.A. Shoyusupov

The Mirzo Ulugbek University of Uzbekistan, 700174 Tashkent, Uzbekistan

Abstract The parameters of vanadium levels in n- and p-Si have been found by a photocapacitance method. It is found that the injection vanadium into n-Si created the levels only on the upper part of forbidden zone with the ionization energies above $E_c - 0.21$, $E_c - 0.52 \, \text{eV}$ while in p-Si on both the upper and the lower parts of the forbidden zone: $E_c - 0.26$, $E_v + 0.31$, $E_v + 0.42$, $E_v + 0.52 \, \text{eV}$. It is revealed that for all vanadium levels the section of the photoionization of electrons was larger than that of holes. It is shown that the electrically active vanadium center concentration in n- and p-Si depends on impurities with shallow levels, as well as on the diffusion time.