14,13

Структурный переход в пленках триацетата целлюлозы

© Д.В. Новиков

Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова,

Санкт-Петербург, Россия

E-mail: dvnovikov65@mail.ru

Поступила в Редакцию 21 октября 2021 г. В окончательной редакции 21 октября 2021 г. Принята к публикайции 25 октября 2021 г.

По данным электронной микроскопии проведен сравнительный анализ топологической структуры поверхности двух образцов пленок триацетата целлюлозы (СТА). Образцы были получены из растворов СТА без использования (образец № 1) и с применением малой добавки фторида натрия, понижающего вязкость раствора (образец № 2). Показано, что в образце № 1 узлами сетки зацеплений макромолекул являются периодически чередующиеся области локального ориентационного порядка — микродомены среднего размера $d\sim18\,\mathrm{nm}$. В образце № 2 за счет переупаковки микродоменов на масштабе R>d формируется однородно неупорядоченный фрактальный кластер мезофазы СТА. Фрактализация поверхности и рост структурной анизотропии согласуются с падением вязкости раствора и объясняют изменение деформационных свойств образца № 2 по сравнению с № 1.

Ключевые слова: полимерные пленки, электронная микроскопия, микродомены, мезофаза, структурный переход, фрактальные кластеры.

DOI: 10.21883/FTT.2022.02.51941.224

1. Введение

Образцы триацетата целлюлозы (СТА) с содержанием связанной уксусной кислоты $\alpha=60.0-61.9\%$ относятся к полимерам с жесткими макромолекулами [1], способными к образованию в растворе анизотропных агрегатов [2].

Известно, что исходная массовая концентрация c полимера определяет характер агрегации макромолекул СТА в растворе [2], на межфазной границе раствортвердое тело [3] и при пленкообразовании [4]. Образование агрегатов частиц в растворах различных образцов СТА фиксируется методом ИК-спектроскопии [2,3]: при c>6 wt% число анизотропных кластеров резко возрастает, а при c>10 wt% формируется лиотропное жидкокристаллическое состояние [5].

В работе [4] с применением метода электронной микроскопии (ЕМ) обоснована микродоменная структура пленок, полученных из растворов СТА ($\alpha = 61.9\%$). Под микродоменами понимались локальные области максимального размера $d\sim30\,\mathrm{nm}$, которым должна отвечать нематическая упорядоченность сегментов макромолекул [6]. Было показано, что с ростом концентрации с полимера в растворе увеличивается плотность упаковки микродоменов в пленке. В серии образцов пленок, сформированных из растворов различной концентрации, был обнаружен структурный переход по шкале параметра cвблизи значения $c \sim 9$ wt%. Этот переход указывает на возникновение однородного бесконечного кластера мезофазы СТА и связан с распространением корреляций типа плотность-плотность на расстояние, существенно превышающее d.

Поскольку характер агрегации макромолекул в растворе зависит также от природы (качества) растворителя [2,7], существует возможность регулирования анизотропной надмолекулярной структуры СТА [8] в пленках путем введения в пленкообразующий раствор модифицирующих добавок [9,10]. Например, усиление специфической сольватации карбонильных групп ацетильных заместителей СТА молекулами протонодонорных растворителей при введении в раствор небольших количеств (0.001-0.1 wt.%) от CTA) некоторых неорганических солей, в частности фторида натрия, приводит к заметному снижению динамической вязкости [2,11]. Падение вязкости является признаком упорядочения кластерной структуры раствора и согласуется с изменением деформационных свойств получаемых пленок увеличением относительного удлинения при разрыве и уменьшением термостатной усадки [11]. Однако в работе [11] отсутствуют данные структурного анализа, объясняющие изменения ряда физико-механических характеристик пленок.

В настоящей работе проведен сравнительный анализ топологической структуры поверхности двух образцов пленок СТА, полученных из растворов полимера без использования и с применением малой добавки фторида натрия. Для структурного анализа поверхности в субмикронном диапазоне масштаба использована оригинальная ЕМ-методика декорирования золотом электрически активной реплики из аморфного германия [12]. По данным ЕМ рассчитаны индикатрисы плотности распределения декорирующих наночастиц золота, корреляционные функции типа плотность—плотность и параметры надмолекулярной структуры СТА на поверх-

ности пленок. Цель работы — объяснение взаимосвязи "состав-структура-свойства" на основе микродоменной (кластерной) модели строения пленок СТА.

Объекты и методы исследования

В работе использовался промышленный частично гидролизованный СТА с содержанием связанной уксусной кислоты $\alpha = 60.1\%$ и степенью полимеризации 300. Рентгеноаморфные [4] пленки толщиной $\sim 130\,\mu\mathrm{m}$ формировались из 10 wt.% растворов СТА в смеси метиленхлорид-этанол (9:1) на зеркальном стекле при 298 К без использования (образец № 1) и с применением малой добавки (0.005 wt.% от CTA) фторида натрия (образец № 2). Указанное количество модификатора соответствует минимуму динамической вязкости пленкообразующего 10 wt.% раствора полимера [11].

Концентрация $c=10\,\mathrm{wt.\%}$ для использованного образца СТА несколько превышает пороговое значение $c^* = 9.7 \text{ wt.}\%$ [2], соответствующее формированию в растворе непрерывной сетки зацеплений макромолекул [7]. Согласно результатам работы [4] выбранный концентрационный режим пленкообразования должен приводить к возникновению в пленках бесконечного кластера мезофазы СТА.

С "воздушной" поверхности полимерных пленок формировались двухслойные германиево-угольные реплики. Для получения реплик на поверхность образцов проводилось последовательное вакуумное термическое напыление аморфного слоя особо чистого германия толщиной 5 nm и опорного слоя углерода. В ходе отрыва двухслойной реплики от пленкиподложки слой германия приобретал электрический заряд, пространственная локализация которого соответствовала характеру распределения электронодонорных ацетильных заместителей СТА на поверхности образца [12]. Электрически активные реплики декорировались золотом [13] путем вакуумного термического напыления металла до эффективной толщины слоя 0.4 nm [14]. Во избежание фотоэмиссии электронов и релаксации электрического заряда получение реплик и их декорирование золотом производилось в темноте.

Полученные в просвечивающем электронном микроскопе изображения декорированных золотом германиево-угольных реплик отображают распределение плотности упаковки макромолекул СТА на поверхности образцов (рис. 1). Важно отметить, что в данном случае наиболее вероятное расстояние г между наночастицами золота составляет 6 nm. Это значительно повышает разрешающую способность описанной выше ЕМ-методики по сравнению с использованной в работах [4,14] методикой декорирования золотом "химических меток" хемосорбированного молекулярного брома, поскольку в последнем случае величина r существенно выше.

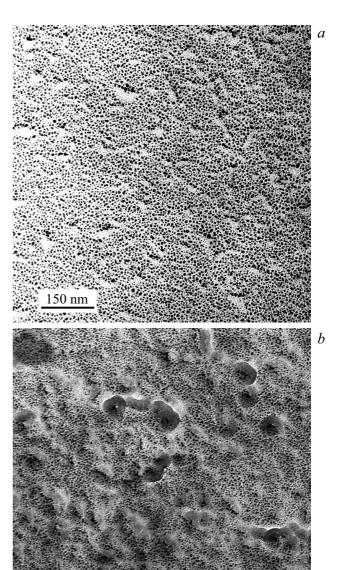
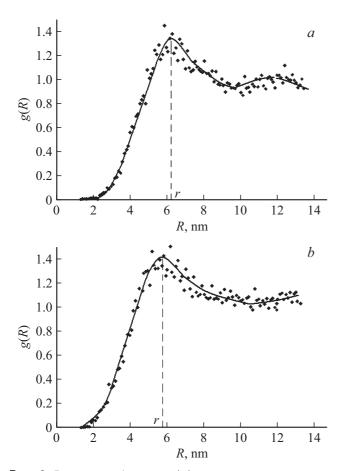
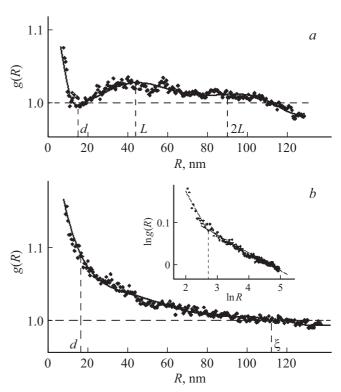


Рис. 1. Электронные микрофотографии декорированных золотом германиево-угольных реплик с поверхности пленок СТА: образец № 1 (a), образец № 2 (b).


150 nm

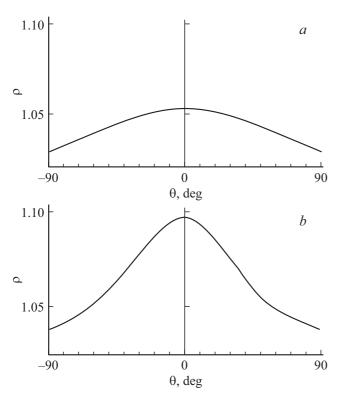
Изучение пространственных корреляций типа плотность-плотность на поверхности образцов проводилось с использованием так называемых "крупнозернистых" радиальных функций g(R) распределения декорирующих наночастиц золота. Для получения этих функций использовалась компьютерная процедура пошагового сканирования плотности распределения частиц на двумерных изображениях поверхности с шагом δ , соответствующим величине r [14]. Корреляционная длина ξ определялась по положению особых точек функций g(R). Индикатрисы плотности ρ распределения наночастиц золота рассчитывались при усреднении по прямоугольникам $2r \times \xi$ **276** Д.В. Новиков


с центром в частицах и изменении угла θ ориентации прямоугольников [14].

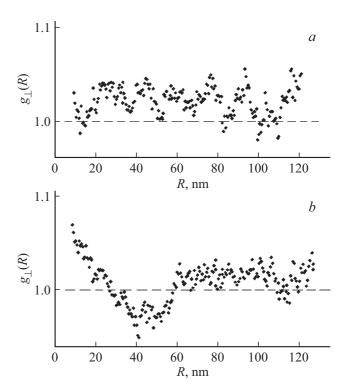
3. Результаты и их обсуждение

На электронных микрофотографиях декорированных реплик с поверхности образцов пленок (рис. 1) наночастицы золота локализованы неоднородно: наряду с областями достаточно плотного расположения декорирующих частиц имеются свободные от золота области. Непрерывная квазирешетка наночастиц соответствует бесконечному кластеру плотноупакованных макромолекул СТА (мезофазе полимера). Степень Ω заполнения поверхности кластером [15] составляет 0.64 и 0.54 для образцов № 1 и 2 соответственно. Уменьшение величины Ω при переходе от образца № 1 к образцу № 2 сопровождается уплотнением узлов квазирешетки, что отображается небольшим уширением первого пика функции g(R) радиального распределения декорирующих наночастиц (рис. 2). При этом среднее координационное число казирешетки [15] возрастает от 4 до 6.

Рис. 2. Радиальные функции g(R) распределения наночастиц золота на декорированных репликах с поверхности пленок СТА: образец № 1 (a), образец № 2 (b). Шаг сканирования изображения поверхности $\delta=1$ nm.


Рис. 3. "Крупнозернистые" радиальные функции g(R) распределения наночастиц золота на декорированных репликах с поверхности пленок СТА (корреляционные функции g(R) типа плотность–плотность): образец N_0 1 (a), образец N_0 2 (b). Шаг сканирования изображения поверхности $\delta=6$ nm. На вставке: функция g(R) в двойных логарифмических координатах для образца N_0 2.

Трансформация квазирешетки декорирующих наночастиц сопутствует изменению характера пространственных корреляций типа плотность—плотность в кластере мезофазы СТА. "Крупнозернистые" радиальные функции g(R) распределения декорирующих наночастиц (рис. 3) демонстрируют принципиально различное поведение с ростом величины масштаба R.


В образце N_0 1 корреляционная функция g(R) типа плотность-плотность испытывает периодические осцилляции с периодом $L \sim 42\,\mathrm{nm}$ вблизи значения g(R) = 1(рис. 3, a), что свидетельствует о периодическинеоднородной топологической структуре кластера мезофазы СТА. Пространственные корреляции распространяются на расстояние $\xi = 2L$, где ξ — корреляционная длина. Вид функции g(R) согласуется с микродоменной моделью СТА для периодически чередующихся частиц среднего размера $d\sim18\,\mathrm{nm}$ и фрактальной размерности [16] $D=1.80\pm0.05$, определяемой при аппроксимации начального участка графика функции g(R)степенной зависимостью $g(R) \propto R^{D-2}$. Параметры d и *D* микродоменов соответствуют данным малоуглового рассеяния рентгеновских лучей (SAXS) [4]. Компьютерная обработка угловой зависимости интенсивности $I(\theta)$ рассеяния в области $8' < 2\theta < 15'$, в том числе с применением процедуры Гинье, приводит к значениям параметров $d=24\,\mathrm{nm}$ и $D=1.7\pm0.1$ для рассеивающих структонов [4,17]. Следует отметить, что на рентгенограмме SAXS образца N_{P} 1 не проявляется дискретный рефлекс, отвечающий периоду $L\sim42\,\mathrm{nm}$ чередования микродоменов, вследствие малой рассеивающей способности полимерной пленки [4,17].

В отличие от образца № 1 в образце № 2 "крупнозернистая" корреляционная функция g(R) с ростом величины масштаба R спадает по степенному закону (рис. 3, b): $g(R) \propto R^{D-2}$, причем, значение фрактальной размерности D зависит от R. Построение функции g(R) в двойных логарифмических координатах (рис. 3, b, вставка) показывает, что при R < 18 пт величина $D = 1.84 \pm 0.02$ соответствует микродоменам, а при R > 18 пт фрактальная размерность $D = 1.96 \pm 0.01$ характеризует тело кластера мезофазы СТА. Отметим, что средний размер $d \sim 18$ пт микродоменов в двух изученных образцах пленок сохраняется неизменным (рис. 3, a, b) и согласуется с величиной термодинамического сегмента для различных эфиров целлюлозы [1].

Таким образом, при сравнении образцов № 1 и 2 на масштабе R>d наблюдается структурный переход, связанный с переупаковкой упорядоченных микродоменов и формированием тела однородно неупорядоченного фрактального кластера мезофазы СТА.

Рис. 4. Индикатрисы относительной (по отношению к средней по поверхности) плотности ρ распределения наночастиц золота на декорированных репликах с поверхности пленок СТА: образец № 1 (a), образец № 2 (b). Ось ординат $(\theta=0$ градусов) соответствует оси текстуры — направлению с максимальным значением ρ .

Рис. 5. Радиальные функции распределения плотности, построенные поперек оси аксиальной текстуры на поверхности пленок СТА: образец № 1 (a), образец № 2 (b). Шаг сканирования изображения поверхности $\delta=1$ nm.

На рис. 4 представлены индикатрисы относительной локальной плотности ρ распределения наночастиц золота на поверхности образцов. Полученные угловые зависимости $\rho(\theta)$ свидетельствуют об аксиальной текстуре поверхности пленок. Наличие аксиальной текстуры может быть связано как с ориентационными эффектами при формовании пленок [12], так и с образованием мезофазы. При переходе от образца № 1 к образцу № 2 анизотропия плотности возрастает, причем отличие в плотности вдоль и поперек оси текстуры увеличивается более чем в два раза, достигая 5% для образца № 2 (рис. 4, b).

На рис. 5 приведены корреляционные функции $g_{\perp}(R)$, рассчитанные поперек оси текстуры исследуемых образцов. В образце № 1 в направлении, перпендикулярном оси текстуры, наблюдаются периодические осцилляции плотности с периодом ~ 18 nm (рис. 5, a). Корреляции плотность–плотность распространяются на расстояние более 120 nm, не затухая при этом на всем изученном масштабном интервале. Важно отметить, что по данным SAXS [18] для пленок СТА, прогретых при 453–483 K, в области углов рассеяния $2\theta=18-24'$ имеются плато или перегиб, соответствующие большим периодам $\sim 15-21$ nm. Такая особенность рентгенограмм является следствием процессов термической деструкции и кристаллизации СТА [18]. Таким образом, прослеживается генетическая связь между одномерной периодич-

ностью в структуре кластера мезофазы образца № 1 и выявляемыми методом SAXS [18] большими периодами в пленках СТА, подвергнутых термообработке.

В образце $\mathbb{N}_{\mathbb{Q}}$ 2 по сравнению с $\mathbb{N}_{\mathbb{Q}}$ 1 отсутствуют периодические осцилляции плотности поперек оси текстуры (рис. 5, b), что свидетельствует об относительном разупорядочении кластерной структуры СТА.

4. Заключение

Использование малых количеств модификаторов, понижающих вязкость концентрированных растворов жесткоцепных полимеров, позволяет изменять топологическую структуру кластера мезофазы в получаемых пленках. К таким модификаторам для СТА относятся некоторые неорганические соли, например, фторид натрия. Эти соли влияют на сольватацию растворителем функциональных групп полимера и тем самым предопределяют характер агрегации макромолекул [2].

Между двумя образцами пленок СТА, полученных в одних условиях из растворов полимера без использования и с применением малой добавки фторида натрия, обнаруживается структурный переход типа порядокбеспорядок. Этот переход связан с переупаковкой упорядоченных микродоменов, являющихся узлами сетки зацеплений макромолекул в теле кластера мезофазы СТА. При этом периодически-неоднородный кластер трансформируется в однородно неупорядоченный, приобретая фрактальные свойства, увеличивая свою локальную плотность и анизотропию. Такая трансформация объясняет изменение деформационных свойств пленок: увеличение на 30% относительного удлинения при разрыве и уменьшение в два раза термостатной усадки [11].

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

- [1] Р.Г. Жбанков, П.В. Козлов. Физика целлюлозы и ее производных. Наука и техника, Минск (1983). 296 с.
- [2] А.Н. Красовский, Д.Н. Поляков, С.С. Мнацаканов. Высокомолекуляр. соединения 37A, 1551 (1995).
- [3] А.Н. Красовский, Д.Н. Поляков, В.Г. Баранов, С.С. Мнацаканов, А.В. Варламов. Высокомолекуляр. соединения 33А, 1228 (1991).
- [4] Д.В. Новиков, А.Н. Красовский, С.С. Мнацаканов. ФТТ 54, 382 (2012).
- [5] Жидкокристаллические полимеры / Под ред. Н.А. Платэ. Наука, М. (1988). 500 с.
- [6] Г.М. Бартенев, С.Я. Френкель. Физика полимеров. Химия, Л. (1990). 432 с.
- [7] В.Н. Цветков, В.Э. Эскин, С.Я. Френкель. Структура макромолекул в растворах. Наука, М. (1964). 719 с.
- [8] О.А. Ханчич. Анизотропные структуры в полимерах и их изучение методом малоуглового рассеяния поляризованного света. Изд-во МТИ, М. (2014). С. 9.

- [9] Д.В. Новиков, А.В. Варламов. Коллоид. журн. 59, 355 (1997).
- [10] А.М. Бочек, И.В. Серов, И.Л. Шевчук, В.К. Лаврентьев, Е.Н. Попова, Е.Н. Власова, Б.З. Волчек, Е.В. Юдин. ЖПХ 93, 564 (2020).
- [11] И.В. Сидорова. Автореф. канд. дис. Институт киноинженеров, СПб (1992). 24 с.
- [12] Д.В. Новиков, А.В. Варламов, С.С. Мнацаканов, Е.Ф. Панарин. ДАН СССР **318**, 1406 (1991).
- [13] Г.И. Дистлер, В.П. Власов, Ю.М. Герасимов. Декорирование поверхности твердых тел. Наука, М. (1976). 111 с.
- [14] Д.В. Новиков. ФТТ 63, 146 (2021).
- [15] Д.В. Новиков, А.В. Варламов. Поверхность 6, 117 (1992).
- [16] Е. Федер. Фракталы / Пер. с англ. Ю.А. Данилова, А.М. Шукурова. Мир, М. (1991). 254 с. [J. Feder. Fractals. Plenum Press, N.Y., London (1988). 260 р.].
- [17] Д.В. Новиков. Автореф. докт. дис. СПбГТИ, СПб (2009). 10 с.
- [18] Ш. Туйчиев, Н.С. Султанов, Д. Рашидов, Е.Т. Магдалев, Б.М. Гинзбург. Высокомолекуляр. соединения 18А, 1498 (1976).

Редактор Д.В. Жуманов