Колебательные спектры сверхрешеток $(GaAs)_n(Ga_{1-x}Al_xAs)_m$ в модели Китинга

© Е.Н. Прыкина[¶], Ю.И. Полыгалов, А.В. Копытов

Кемеровский государственный университет, 650043 Кемерово, Россия

(Получена 25 марта 2002 г. Принята к печати 25 июня 2002 г.)

Проведен расчет колебательных спектров сверхрешеток $(GaAs)_n(Ga_{1-x}Al_xAs)_m$ в модели Китинга с учетом дальнодействующих сил. Рассчитанные сложенные продольные акустические ветви хорошо согласуются с соответствующими экспериментально наблюдаемыми дублетами. Наблюдаемая как в наших расчетах, так и экспериментально тенденция к высокочастотному сдвигу продольных оптических колебаний с ростом числа монослоев GaAs обусловлена их локализацией в слое GaAs.

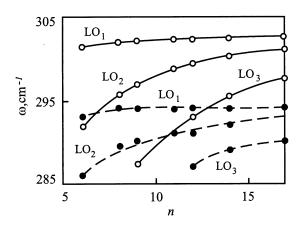
Экспериментальное исследование фононного спектра сверхрешеток (СР) GaAs/GaAlAs (001) представлено значительным числом работ. Эта система является наиболее изученной экспериментально и представляет собой модельный объект для исследователей. К настоящему времени имеются расчеты фононного спектра таких СР в простых моделях (модель линейной цепочки, диэлектрическая континуальная модель, модель упругого континуума), не в полной мере охватывающих особенности фононного спектра СР.

Таблица 1. Частоты сложенных LA фононов сверхрешетки $(GaAs)_{15}(Ga_{0.7}Al_{0.3}As)_3$ (см⁻¹)

k	Наш расчет	Эксперимент		
-1	29	26		
+1	33	31		
-2	58	57		
+2	62	63		
-3	88	89		
+3	90	94		

В данной работе мы исследовали особенности колебательных мод СР $(GaAs)_n(Ga_{1-x}Al_xAs)_m$ в модели Китинга с учетом дальнодействующих кулоновских сил.

Ранее эта модель использовалась нами для анализа решеточных колебаний в напряженных сверхрешетках ZnSe/ZnS, ZnSe/ZnTe, ZnS/ZnTe [1].


При расчете фононных спектров твердых растворов и сплавных сверхрешеток на их основе для моделирования беспорядка требуется большая сверхъячейка, что может привести к вычислительным трудностям. В данной работе мы используем приближение псевдоэлементарной ячейки, составленной из атомов (1-x)Ga, xAl, As [2,3]. В табл. 1 приводится сравнение экспериментальных и расчитанных частот сложенных продольных акустических мод (LA) СР (GaAs)₁₅(Ga_{0.7}Al_{0.3}As)₃. В таблице k — номер ветви сложенных фононов, знаки " \mp " при данном k соответствуют двум ветвям дисперсии, которые экспериментально наблюдаются в виде дублетов в спектрах комбинационного рассеяния [4]. Видно, что экспериментально наблюдаемые дублеты хорошо согласуются с рассчитанными.

На рисунке представлены рассчитанные и экспериментальные [5] частоты продольных оптических (LO) колебаний СР $(GaAs)_n(Ga_{1-x}Al_xAs)_m$ в зависимости от числа монослоев n. Значения m, мольной доли x и числа монослоев n соответствуют табл. 2. Анализ рассчитанных нами колебательных мод LO₁, LO₂, LO₃ показывает, что наблюдаемая экспериментально и в нашем расчете

Таблица 2. Частоты LO фононов в сверхрешетке $(GaAs)_n(Ga_{1-x}Al_xAs)_m$ в диапазоне колебаний $GaAs(cm^{-1})$

Парам	Параметры сверхрешетки		LO ₁		LO ₂		LO ₃	
n	m	x	наш расчет	экспери- мент	наш расчет	экспери- мент	наш расчет	экспери- мент
6	4	0.123	302	293	291	286		
8	6	0.126	302	294	292	289.5		
9	9	0.147	302	294	297	290		
11	11	0.15	302	294	299	291	292	
12	7	0.141	303	294	299	291	293	287
14	14	0.15	303	294	300	292	296	289
17	12	0.145	303	294	301	_	298	290

[¶] E-mail: Selena@rsl.kemsu.ru

Зависимость частот продольных оптических (LO) колебаний сверхрешетки $(GaAs)_n(Ga_{1-x}Al_xAs)_m$ от числа монослоев n. Светлые точки — расчет в модели Китинга. Черные точки — экспериментальные значения.

тенденция к высокочастотному сдвигу исследуемых фононов обусловлена их локализацией в слое GaAs.

Список литературы

- [1] Е.Н. Прыкина, Ю.И. Полыгалов, А.В. Копытов. ФТП, **35**, 89 (2001)
- [2] I. Lee, S.M. Goodnick, M. Gulia, E. Molinari, L. Lugli. Phys. Rev. B, 51, 7046 (1995).
- [3] I.F. Chang, S.S. Mitra. Adv. Phys., 20, 359 (1971).
- [4] M.V. Klein. Raman Spectroscopy: Sixty Years on Amsterdam. (1989) p. 203.
- [5] B. Jusserand, D. Paquet. Phys. Rev. B. 30, 6245 (1984).

Редактор Т.А. Полянская

Phonon spectra of $(GaAs)_n(Ga_{1-x}Al_xAs)_m$ superlattices within the Keating model

E.N. Prykina, Yu.I. Polygalov, A.V. Kopytov

Kemerovo State University, 650043 Kemerovo, Russia