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Changes in the elastic constants c i j of disordered cubic titanium carbide TiCy with an increasing the defectiveness

of the carbon sublattice are estimated for the first time. It was found that the deviation of titanium carbide from

the stoichiometric composition TiC1.0 leads to a decrease in the elastic stiffness constants c i j of disordered TiCy

carbide with a simultaneous increase in elastic anisotropy. The distributions of Young’s modulus E and Poisson’s

ratio µ in the (100) plane and the distributions of the shear modulus G in the (100), (110), and (111) planes have

been calculated as functions on the crystallographic direction [hkl] and on the relative carbon content y in TiCy

carbide. The lowest values of the shear modulus Ghkl for TiCy are observed in the (111) plane.
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1. Introduction

Cubic (space group Fm3̄m) titanium carbide TiCy has the

widest homogeneity range (from ∼ TiC0.47−0.48 to TiC1.00)
among all strongly nonstoichiometric carbides [1,2]. All

its properties depend strongly on relative carbon content

y and vary significantly within the homogeneity range [1,3].
Offering high hardness and low density combined with high

thermal and corrosion resistance, titanium carbide has great

potential for engineering application, e.g., in tungstenless

hard alloys for metal working [3,4], nanocomposites [3],
hard coatings [5], and grain growth inhibitors [6].
The determination of TiCy compositions combining high

mechanical characteristics with reduced brittleness and

enhanced ductile properties is a crucial goal of research

focused on titanium carbide. A change in the nonstoichio-

metry of titanium carbide may be instrumental in achieving

this goal.

Data on the elastic properties of titanium carbide are

needed to predict the mechanical properties of various

phases of titanium carbide and determine the conditions

for mechanochemical synthesis (specifically, high-energy

milling) of nanocrystalline TiCy powders.

No systematic measurements of the elastic properties

of disordered cubic titanium carbide TiCy as functions of

its composition have been carried out to date, although

certain data on bulk modulus B and shear modulus G of

TiCy with different values of carbon content y have been

published [7–18].
Theoretical estimates of the elastic properties, which are

normally obtained using different versions of the density

functional theory with local density (LDA) and generalized

gradient (GGA) approximations for exchange-correlation

potentials, are available only for stoichiometric titanium

carbide TiC1.0 and were presented in [14,19–28]. The

results of theoretical calculations of elastic constants c i j

of stoichiometric TiC1.0 carried out in different studies

vary significantly: according to [14,24,25], c11
∼= 470,

c12
∼= 105, and c44

∼= 170GPa, while the authors of [20,21]
provide higher estimated values of the same elastic stiff-

ness constants (603−610, 103−124, and 173−181 GPa,

respectively). Note that calculations relying on the local

density approximation yield higher values of c i j than the

calculations with GGA.

More recently, the studies into potential stable super-

structures in nonstoichiometric carbides have focused on an

evolutionary algorithm implemented in USPEX (Universal

Structure Predictor: Evolutionary Xtallography) [29]. The

elastic properties of predicted carbide superstructures are

estimated by calculating the coefficients of the elasticity

tensor with the use of the finite difference method [30]
implemented in VASP (Vienna Ab initio Simulation Pack-

age) [31,32]. However, the software solutions mentioned

above allow one to estimate only the elastic properties of

ordered carbide phases (superstructures), while the elastic

properties of disordered nonstoichiometric carbides remain

unknown. For example, the authors of [33,34] calculated

the elastic properties of the following two ordered phases

of titanium carbide stable at T = 0K and P = 0GPa:

superstructure Ti2C with trigonal and cubic symmetry

and superstructure Ti3C2 with monoclinic or orthorhombic

symmetry. According to [34], two tetragonal phases Ti2C

and Ti3C2 are stable in titanium carbide at pressures

exceeding 40GPa.

The present study is focused on the semiempirical estima-

tion of elastic constants c i j of disordered nonstoichiometric
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titanium carbide TiCy as functions of its composition. The

estimation is performed by analyzing simultaneously the

experimental data from [7–18] on the mechanical properties

of titanium carbide with different carbon content and the

theoretical data on the elastic constants of stoichiometric

carbide TiC1.0. This is the first time when such an approach

to estimating the elastic properties of disordered phases is

applied to nonstoichiometric compounds of the family of

cubic carbides of transition metals.

2. Results and discussion

The dependence of bulk modulus B of titanium carbide

TiCy on relative carbon content y is plotted in Fig. 1

based on the experimental data from [7–14]. The increase

in defectiveness of the carbon sublattice as a result of y
reduction, which decreases from 1.0 to 0.5, is accompanied

by a slight (∼ 20GPa) reduction in B . According to the

approximation of the experimental B values, the bulk modu-

lus of stoichiometric carbide TiC1.00 is By=1 = 241.7GPa.

Quantitatively, dependence B(y) of the bulk modulus of

titanium carbide on the carbon content at 300K may be

characterized in the following way:

B(y) = 183.5 + 98.8y − 40.6y2

= By=1(0.75938+0.40879y−0.16817y2)±10.0GPa. (1)

The data from [8–10,13,15–18] on shear modulus G
for different compositions of carbide TiCy are presented

in Fig. 2. Deviations of titanium carbide from the

stoichiometric composition lead to nonlinear changes in G:

the shear modulus first increases in the transition from

TiC1.0 to ∼ TiC0.92 and then decreases to a well-pronounced

minimum in the region of TiC0.87−TiC0.81. As y drops to

∼ 0.78, modulus G increases slightly, but then decreases

y = C/Ti
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Figure 1. Variation of bulk modulus B in the region of

homogeneity of disordered cubic titanium carbide TiCy at 300K:

� — [7], • — [8], � — [9], N — [10], H — [11], △ — [12], × —
[13], ◦ — [14]. Approximating dependence B(y) is represented by

the solid curve.
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Figure 2. Dependence of shear modulus G on the composition of

disordered cubic titanium carbide TiCy at a temperature of 300K:

• — [8], � — [9], N — [10], × — [13], H — [15], � — [16], △ —
[17], ◦ — [18]. Approximating dependence G(y) is represented by

the solid curve.

monotonically as y drops further to ∼ 0.55. According to

the results of the approximating calculation, the shear modu-

lus of stoichiometric carbide TiC1.00 is Gy=1 = 187.2GPa.

Taking this result and the observed G minimum into

account, we may present dependence G(y) of the shear

modulus on carbon content y of carbide TiCy at 300K in

the following form:

G(y) = Gy=1

[

(−11.03975 + 25.74769y − 13.70794y2)

× f H(y − yb) + (−0.82182 + 4.41716y − 2.76328y2)

× f H(y − yb)
]

± 10.0GPa, (2)

where

f H(y − yb) =

{

1, if y ≥ yb

0, if y < yb

is the Heaviside step function with yb = 0.84.

The bulk and shear moduli of isotropic cubic crystals

are related to the elastic stiffness constants in the following

way: B = (c11+2c12)/3 and G =c44 [35]. We may take it

as a first approximation that dependences B(y) and G(y)
of single-crystal titanium carbide TiCy on relative carbon

content y have the same shape as quantitative depen-

dences B(y) (1) and G(y) (2) derived from the experimental

data [7–18]. In other words,

(c11 + 2c12)/3 ∼ By=1(0.75938 + 0.40879y − 0.16817y2)

and

c44 ∼ Gy=1

[

(−11.03975 + 25.74769y − 13.70794y2)

× f H(y − yb) + (−0.82182 + 4.41716y−2.76328y2)

× f H(y − yb)
]

.
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Elastic stiffness constants ci j (GPa), elastic compliance constants s i j (Pa−1), and elastic anisotropy criterion Aan for titanium carbide TiCy

with varying carbon content y

y c11 c12 c44 s11 s12 s44 Aan

0.50 478.4 106.0 127.4 2.273 · 10−12
−0.412 · 10−12 7.852 · 10−12 0.684

0.55 484.4 107.3 141.2 2.245 · 10−12
−0.407 · 10−12 7.081 · 10−12 0.749

0.60 490.0 108.6 152.6 2.219 · 10−12
−0.403 · 10−12 6.555 · 10−12 0.800

0.65 495.1 109.7 161.4 2.196 · 10−12
−0.398 · 10−12 6.197 · 10−12 0.837

0.70 499.9 110.8 167.7 2.175 · 10−12
−0.395 · 10−12 5.964 · 10−12 0.862

0.75 504.1 111.7 171.4 2.157 · 10−12
−0.391 · 10−12 5.834 · 10−12 0.874

0.80 508.0 112.6 172.6 2.141 · 10−12
−0.388 · 10−12 5.792 · 10−12 0.873

0.85 511.4 113.3 172.3 2.126 · 10−12
−0.386 · 10−12 5.802 · 10−12 0.866

0.90 514.4 114.0 188.4 2.114 · 10−12
−0.383 · 10−12 5.307 · 10−12 0.941

0.95 516.9 114.5 192.0 2.104 · 10−12
−0.382 · 10−12 5.209 · 10−12 0.954

1.00 519.0 115.0 183.0 2.095 · 10−12
−0.380 · 10−12 5.465 · 10−12 0.906

According to [36], dependences c11(y) and c12(y) of the

elastic constants on the composition of cubic carbides are

identical. The theoretical values of Bcalc,y=1 = 249 and

Gcalc,y=1 = 190GPa moduli of stoichiometric titanium car-

bide calculated within GGA in [22] and Bcalc,y=1 = 250GPa

are the closest to the experimental values of By=1 = 241.7

and Gy=1 = 187.2GPa. Taking this and the introduced

approximation into account, we may present depen-

dences c i j(y) of the elastic constants on the composition

of carbide TiCy in the following form:

c11(y) = c11(y = 1)[0.75938 + 0.40879y − 0.16817y2],
(3a)

c12(y) = c12(y = 1)[0.75938 + 0.40879y − 0.16817y2],
(3b)

c44(y) = c44(y = 1)[(−11.03975 + 25.74769y

− 13.70794y2) f H(y − yb) + (−0.82182 + 4.41716y

− 2.76328y2) f H(y − yb)], (3c)

f H(y − yb) =

{

1, if y ≥ yb

0, if y < yb

is the Heaviside step function with yb =0.84;

c11(y =1)=519 GPa, c12(y = 1) = 115GPa, and

c44(y = 1) = 183GPa [22].

Elastic stiffness constants c11, c12, c44 and elastic

compliance constants s11, s12, s44 for cubic crystals

are related in the following way: s44 = 1/c44,

s11 = (c11 + c12)/[(c11 − c12)(c11 + 2c12)] and s12 =
= −c12/[(c11 − c12)(c11 + 2c12)] [35].

The estimates of elastic stiffness constants c i j and

components s i j of the compliance tensor of titanium carbide

TiCy are presented in the table.

Young’s modulus Ehkl and Poisson’s ratio µhkl of cubic

crystals are anisotropic and depend on crystallographic

direction [hkl]. These elastic characteristics are expressed

in terms of components s11, s12, and s44 of the compliance

tensor as [37]

Ehkl =
1

s11 − 2(s11 − s12 − 1
2

s44)Ŵ
, (4)

µhkl = −
s12 + (s11 − s12 − 1

2
s44)Ŵ

s11 − 2(s11 − s12 − 1
2

s44)Ŵ
, (5)

where

Ŵ =
h2k2 + h2l2 + k2l2

(h2 + k2 + l2)2

is the anisotropy factor of cubic crystals.

Taking Eqs. (4) and (5) into account, we derive the

following expressions for shear Ghkl and bulk B moduli:

Ghkl =
1

2s11 − 2s12 − 6(s112 − s12 − s44/2)Ŵ
, (6)

B = 1/[3(s11 + 2s12)]. (7)

It follows from Eq. (7) that bulk modulus B of cubic crystals

does not depend on direction [hkl] and is isotropic.

The availability of data on elastic constants c11, c12, c44,

and s11, s12, s44 of carbide TiCy with different degrees of

defectiveness of the carbon sublattice (see the table) pro-

vided an opportunity to determine the distributions of elastic

properties of single-crystal cubic carbide TiCy as functions

of direction [hkl] and relative carbon content y . Fig. 3 shows

the calculated distributions of Young’s modulus E , shear

modulus G, and Poisson’s ratio µ of cubic carbide TiCy .

The distributions of Young’s modulus Ehkl in plane (100) are
presented for carbides TiCy with y = 0.5, 0.6, 0.7, 0.8, and

1.0 (see Fig. 3). The distributions of Young’s modulus Ehkl

in planes (010) and (001) have the same shape. Young’s

modulus Ehk0 of carbide TiC1.0 in plane (100) varies

from ∼ 449.7 to ∼ 477.3GPa, while the Young’s modulus

of nonstoichiometric carbide TiC0.5 with a defect carbon

sublattice containing 50% of vacancies varies from ∼ 345.7

to ∼ 439.9GPa in the same plane. The maximum value

of shear modulus Ghk0 increases slightly from ∼ 186.2
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Figure 3. Dependences of Young’s modulus E, shear modulus G, and Poisson’s ratio µ on crystallographic direction [hkl] in plane (100)
of cubic carbide TiCy with relative carbon content y varying from 0.5 to 1.0.
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Figure 4. Distributions of shear modulus Ghkl with crystallographic direction [hkl] in planes (a) (100), (b) (110), and (c) (111) of cubic

carbide TiCy with different carbon content y .

to ∼ 202.0GPa in the transition from nonstoichiometric

carbide TiC0.5| to stoichiometric TiC1.0. The increased

defectiveness of the carbon sublattice of titanium carbide

translates into an increased Poisson’s ratio µ: in plane

(100), the maximum value of µ of stoichiometric and

nonstoichiometric carbides TiC1.0 and TiC0.5 is ∼ 0.200 and
∼= 0.250, respectively (see Fig. 3). Bulk modulus B of

cubic titanium carbide TiCy is isotropic and depends only on

carbon content y : the value of B varies from ∼ 230.1GPa

for TiC0.5 to ∼ 249.7GPa for stoichiometric TiC1.0.

Fig. 4 shows the calculated dependences of shear modu-

lus Ghkl of carbide TiCy on crystallographic direction [hkl].
The distributions of shear modulus G in planes (100), (110),
and (111) are presented for carbides TiCy with y = 0.5, 0.7,

and 1.0. The lowest Ghkl value for carbides TiCy is found in

plane (111). Shear modulus Ghkl in plane (111) is almost

direction-independent and varies only slightly from ∼ 184

to ∼ 187GPa for TiC1.0 and from ∼ 130 to ∼ 138GPa for

TiC0.5 (Fig. 4, c).

Simple criterion Aan = 2c44/(c11 − c12) was proposed

in [38] as a variable to be used to characterize quantitatively

the anisotropy of elastic properties of cubic crystals. The

value of Aan for isotropic cubic crystals is 1. According

to [38], the anisotropy of elastic properties grows stronger

as the value of Aan deviates further from 1. The calculated

values of Aan (see the table) demonstrate that the variation

of the composition of titanium carbide from a near-

stoichiometric composition TiC1.0−0.95 to carbide TiC0.50

with the highest defectiveness of the carbon sublattice

coincides with a reduction in Aan, which drops from
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∼ 0.91−0.95 to ∼ 0.68. Thus, the anisotropy of the elastic

properties of disordered titanium carbide grows stronger as

the defectiveness of its carbon sublattice increases.

Using the obtained data on elastic constants c i j and s i j

of disordered cubic titanium carbide TiCy with different

relative carbon content y , one may determine the Debye

temperatures and the lattice (phonon) heat capacities of

various compositions of carbide TiCy .

According to the Voigt–Reuss–Hill averaging

method [39], bulk moduli B and shear moduli G are

related to the elastic constants in the following way:

BV =
[

c11 + c22 + c33 + 2(c12 + c13 + c23)
]

/9, (8a)

BR = 1/
[

s11 + s22 + s33 + 2(s12 + s13 + s23)
]

, (8b)

GV =
[

c11 + c22 + c33 + 3(c44 + c55 + c66)

− (c12 + c13 + c23)
]

/15, (8c)

GR = 15/
[

4(s11 + s22 + s33) − 4(s12 + s13 + s23)

+ 3(s44 + s55 + s66)
]

, (8d)

while the average values of isotropic moduli are defined as

follows:

B = (BV + BR)/2, G = (GV + GR)/2. (9)

If density ρ is known, one may calculate longitudinal

vL, transverse v t , and mean vm velocities of propagation of

elastic oscillations (sound velocities) [40,41] using isotropic

moduli B and G or carbide TiCy :

vL =
√

(3B + 4G)/3ρ, v t =
√

G/ρ,

vm =

[

1

3

(

2

v3
t

+
1

v3
L

)]

−1/3

. (10)

Having determined mean velocity vm of propagation of

elastic oscillations, one may estimate the Debye tempera-

ture [41]:

θD =
h

kB

(

3nNAρ

4πM

)1/3

vm [K]. (11)

The obtained Debye temperature value provides an

opportunity to calculate the heat capacity of any carbide

TiCy . With the contribution of optical vibrations neglected,

the lattice Debye contribution to the heat capacity of carbide

TiCy takes the form

CD = (1 + y)
12π4kBNA

5

(

T
θD

)3

. (12)

Literature data on the heat capacity of TiCy are limited to

its estimate obtained in [42] based on the results of neutron

diffraction measurements. It would be instructive if the

authors of [42] continued their research by estimating the

heat capacity of TiCy based on the presented data on the

elastic constants.

3. Conclusion

In essence, this study is the first to determine elastic

constants c i j and s i j as functions of carbon content y in the

region of homogeneity (TiC0.5−TiC1.0) of nonstoichiometric

disordered cubic titanium carbide TiCy . The analysis

undertaken revealed that elastic stiffness constants c i j of

disordered carbide TiCy decrease as the defectiveness of the

carbon sublattice of titanium carbide increases. The increase

in defectiveness of the carbon sublattice of carbide TiCy

is accompanied by an increase in anisotropy of its elastic

properties.
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