05,12

Электрические и магнитные свойства интеркалированных соединений в системе $Gd_x NbSe_2 \ (0 \le x \le 0.33)$

© В.Г. Плещев

Институт естественных наук и математики Уральского федерального университета им. Б.Н. Ельцина, Екатеринбург, Россия

E-mail: v.g.pleshchev@urfu.ru

Поступила в Редакцию 21 января 2022 г. В окончательной редакции 21 января 2022 г. Принята к публикации 22 января 2022 г.

Измерения электрических и магнитных свойств произведены на поликристаллических образцах диселенида ниобия, интеркалированного атомами гадолиния. Зависимости электросопротивления от температуры указывают на преимущественно фононный механизм рассеяния носителей заряда, а концентрационные зависимости определяются увеличивающимся рассеянием на внедренных атомах. Магнитные свойства $\mathrm{Gd}_x\mathrm{NbSe}_2$ ($0 \le x \le 0.33$) исследованы в области температур $2-350\,\mathrm{K}$ и диапазоне магнитных полей до 70 kOe. По результатам исследований магнитной восприимчивости и намагниченности показана возможность существования в исследуемых соединениях антиферромагнитных взаимодействий и обнаружено явление спиновой переориентации в магнитном поле. Обнаруженое уменьшение эффективного магнитного момента ионов гадолиния при возрастании их концентрации объясняется возможным внутримолекулярным обменом.

Ключевые слова: диселенид ниобия, гадолиний, интеркаляция, электросопротивление, намагниченность, эффективный магнитный момент.

DOI: 10.21883/FTT.2022.05.52335.281

1. Введение

Интеркалированные соединения на основе дихалькогенидов переходных металлов (T) со слоистой атомной структурой $(CД\Pi M)$ типа TX_2 (X — халькоген) представляют собой один из видов систем с пониженной размерностью, которые в последние годы вызывают все возрастающий интерес [1]. Многие из них обладают целым рядом интересных свойств, как, например, диселенид ниобия, в котором наблюдается сверхпроводимость при $T=7~\mathrm{K}$ и структурный переход с образованием волны зарядовой плотности $(B3\Pi)$ при $T=34~\mathrm{K}$ [2,3].

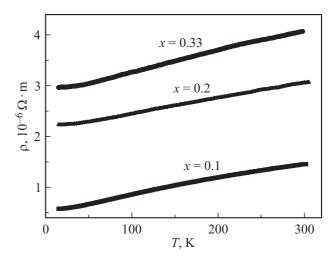
Ранее проведенные исследования показали, что физические свойства соединений, получаемых путем интеркалирования атомами 3d-элементов, существенно отличаются от свойств исходных соединений TX_2 . Дополнительные взаимодействия внедренных атомов с атомами матрицы приводят к деформации кристаллической решетки, изменению электрических свойств интеркалированных материалов, к формированию различных магнитных состояний. Так, например, интеркалирование СДПМ атомами 3d-элементов, как правило, приводит к подавлению перехода в состояние с ВЗП. Ионы этих элементов обладают значительно меньшей величиной эффективных магнитных моментов вследствие частичной гибридизации 3*d*-электронов с электронными состояниями интеркалированной ими матрицы [4]. Вместе с тем имеется значительно меньше работ, посвященных исследованиям СДПМ, итеркалированных атомами редкоземельных элементов (РЗЭ). Часть работ в этом направлении посвящена изучению несоразмерных (мисфитных) слоистых соединений, в которых атомы РЗЭ содержатся в отдельном структурном фрагменте, а также непосредственной интеркаляции РЗЭ с переменной валентностью [5,6].

Выбор РЗЭ в качестве интеркалянта обусловлен тем, что РЗЭ-ионы обладают большими значениями магнитных моментов. В этом ряду гадолиний в состоянии ${\rm Gd}^{3+}$ отличается половинным заполнением 4f-оболочки, и его магнитный момент определяется только спиновым вкладом. В системе Gd_x TiSe₂, благодаря локализации 4f-электронов, величина эффективного магнитного момента ионов гадолиния соответствовала спиновому значению (7.94 μВ), а температурная зависимость магнитной восприимчивости в интервале температур 15-350 К подчинялась закону Кюри-Вейсса. При низких температурах на зависимостях $\chi(T)$ были обнаружены аномалии, что в совокупности с отрицательными значениями парамагнитной температуры Кюри указывало на антиферромагнитное состояние ниже температуры $T = 9 \, \text{K} \, [7]$. Это подтверждалось и характером полевых зависимостей намагниченности Gd_x TiSe₂.

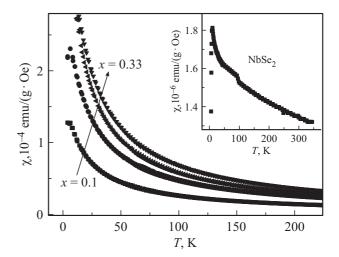
При анализе механизмов формирования физических свойств интеркалированных соединений необходимо принимать во внимание не только различия в природе и электронном строении внедряемых атомов, но и характерные особенности исходных дихалькогенидов, используемых для интеркалирования. Это может касаться дихалькогенидов, образованных на основе элементов V группы. В частности, диселенид ниобия, в отличие от TiSe₂, может существовать в различных структурных модификациях (политипах). Наиболее часто встречаю-

552 В.Г. Плещев

щимися являются структуры 2H-NbSe $_2$ и 4H-NbSe $_2$, отличающиеся количеством слоев в элементарной ячейке и соответственно величинами параметров элементарной ячейки. Кроме того, в отличие от соединений на основе дихалькогенидов титана и ванадия, где атомы металла занимают октаэдрические позиции, в 2H-NbSe $_2$ атомы металла располагаются в тригонально-призматической координации [8]. Второе отличие состоит в том, что в 4d-оболочке ниобия при образовании NbSe $_2$ сохраняется один нескомпенсированный электрон, что делает необходимым учет магнитных свойств самой матрицы.


В настоящей работе представлены результаты исследования электрических и магнитных свойств синтезированных образцов Gd_xNbSe_2 , проведенного с целью изучения влияния особенностей кристаллического и электронного строения матрицы на формирование физических свойств соединений, интеркалированных РЗЭ-элементами.

2. Эксперимент


Поликристаллические образцы $Gd_x NbSe_2$ $(0 \le x \le 0.33)$ были получены методом твердофазных реакций в вакуумированных кварцевых ампулах [4,7]. Температура синтеза и последующих гомогенизационных отжигов (650-700°C) соответствовала условиям формирования 2*H*-модификации NbSe₂. Для аттестации полученных образцов использовались методы рентгенографического и микрозондового анализов, а обработка дифрактограмм проводилась с помощью пакета прикладных программ. Измерения электросопротивления проводились в интервале температур 6-320 К с использованием автономного криостата замкнутого цикла CryoFree204. Измерения магнитных свойств проводились на СКВИД магнитометре MPMS-XL-7 в интервале температур $2-350\,\mathrm{K}$ и в диапазоне магнитных полей до $70\,\mathrm{kOe}$.

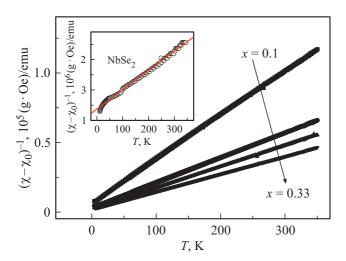
3. Результаты

Представленные на рис. 1 температурные зависимости электросопротивления ρ образцов Gd_xNbSe_2 демонстрируют линейное возрастание при повышении температуры, что свидетельствует о преимущественно фононном механизме рассеянии носителей заряда. Увеличение содержания интеркалированных атомов также приводит к росту электросопротивления, что связано с повышением интенсивности рассеяния на дефектах структуры и примесях, роль которых играют внедренные ионы гадолиния. Такая зависимость подобна обнаруженной ранее в системе Cd_xTiSe₂ [7]. В области низких температур при $T o 0\,\mathrm{K}$ величина ho стремится к некоторому постоянному значению ho_0 , которое можно связать с остаточным сопротивлением, обусловленном рассеянием на примесях и которое возрастает при росте содержания атомов гадолиния от $0.57\,\mu\Omega\cdot m$ при x=0.1до $2.95 \mu\Omega \cdot m$ при x = 0.33.

Рис. 1. Температурные зависимости электросопротивления Gd₂NbSe₂.

Рис. 2. Температурные зависимости магнитной восприимчивости $NbSe_2$ (на вставке) и интеркалированных соединений Gd_xNbSe_2 .

Измерения магнитной восприимчивости χ интеркалированных соединений $\mathrm{Gd}_x\mathrm{NbSe}_2$ показали, что величина восприимчивости возрастает по мере увеличения содержания гадолиния в образцах (рис. 2). Температурные зависимости $\chi(T)$ соответствуют парамагнитному состоянию и хорошо описываются законом Кюри—Вейсса в виле:


$$\chi(T) = \chi_0 + C \cdot (T - \Theta_p)^{-1},\tag{1}$$

где χ_0 — температурно-независимый член, C — постоянная Кюри—Вейсса, Θ_p — парамагнитная температура Кюри.

Результаты, полученные путем аппроксимации зависимости $\chi(T)$ согласно (1), представлены в таблице. В четвертой и пятой колонках приведены значения эффективных магнитных моментов в расчете на формульную единицу каждого соединения и ион гадолиния. На рис. 3 представлены температурные за-

x	χ_0 , 10^{-6} emu/g · Oe	Θ_p,K	$\mu_{ ext{eff}}^{fu}, \mu_{ ext{B}}$ по уравнению (1)	$\mu_{ ext{eff}}^{ ext{Gd}}, \mu_{ ext{B}}$ по уравнению (1)	$\mu_{ m eff}^{ m Gd}, \mu_{ m B}$ по уравнению (2)
1	2	3	4	5	6
0	1.05	-100	0.56	_	_
0.1	0.46	-17	2.54	8.02	7.84
0.2	1.6	-21	3.55	7.94	7.84
0.25	1.4	-19	3.88	7.76	7.68
0.33	2.3	-16	4.36	7.54	7.52

Значения температурно-независимого вклада в магнитную восприимчивость χ_0 , парамагнитной температуры Кюри Θ_p , эффективного магнитного момента в расчете на формульную единицу ($\mu_{\rm eff}^{fu}$) и на ион гадолиния ($\mu_{\rm eff}^{\rm Gd}$)

Рис. 3. Температурные зависимости обратной величины восприимчивости NbSe₂ (на вставке) и интеркалированных соединений Gd_x NbSe₂.

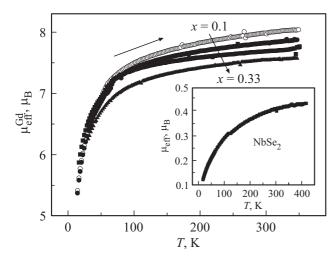
висимости обратной восприимчивости, обусловленной Кюри—Вейссовским вкладом (второе слагаемое в уравнении (1)), имеющие линейный характер, что подтверждает надежность проведенной аппроксимации. На полученных температурных зависимостях χ отсутствовали какие-либо аномалии в области температур, соответствующих температуре Кюри для чистого гадолиния (примерно 290 K), что может служить свидетельством реализации процесса интеркалирования.

Как было отмечено выше, у иона Nb^{4+} в диселениде сохраняется один неспаренный 4d-электрон, а следовательно, матрица $NbSe_2$ может обладать магнитным моментом. Магнитные свойства $NbSe_2$ исследовались ранее в ряде работ [3,9], однако однозначного представления о магнитном состоянии данного соединения не было сформировано. На вставке на рис. 2 показана полученная нами зависимость $\chi(T)$ для исходного диселенида ниобия. Резкое снижение χ при T<8 K соответствует переходу диселенида ниобия в сверхпроводящее состояние. Известны попытки представления $\chi(T)$ для $NbSe_2$ в виде совокупности нескольких участков с разными эффективными магнитными моментами [10]. Однако нам

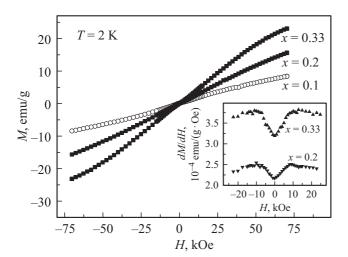
представляется возможным вполне удовлетворительно аппроксимировать полученную зависимость в широкой температурной области выражением (1) и определить значения величин θ_p для NbSe2 и эффективного магнитного момента формульной единицы NbSe2. Линейные зависимости величины $(\chi-\chi_0)^{-1}$ от температуры, показанные на вставке на рис. 3, подтверждают возможность такой аппроксимации.

Как следует из приведенных данных, эффективный магнитный момент в расчете на формульную единицу интеркалированных соединений при увеличении содержания гадолиния непрерывно возрастает, а магнитный момент иона гадолиния испытывает тенденцию к снижению. При учете возможного вклада в магнитную воспримичивость самой матрицы определение эффективного магнитного момента гадолиния было также выполнено с использованием выражения

$$(\mu_{\text{eff}}^{fu})^2 = (\mu_{\text{eff}}^{\text{NbSe}_2})^2 + x(\mu_{\text{eff}}^{\text{Gd}})^2.$$
 (2)


Здесь для эффективного магнитного момента $NbSe_2$ принято полученное нами значение $0.56\mu_B$.

Определенные из этого выражения значения $\mu_{\rm eff}$ ионов гадолиния приведены в шестой колонке таблицы. При анализе приведенных в таблице данных следует отметить отсутствие явной концентрационной зависимости парамагнитной температуры Кюри, однако ее отрицательные значения позволяют предположить существование в исследуемых соединениях, включая и диселенид ниобия, взаимодействий антиферромагнитного типа. Дополнительное подтверждение этому может быть получено при анализе характера температурных зависимостей эффективных магнитных моментов как ионов гадолиния, так и диселенида ниобия. Такие расчеты были выполнены в соответствии с выражением


$$\mu_{\text{eff}}^2 = 8\chi_{\text{mol}}T/x,\tag{3}$$

где $\chi_{\rm mol}$ — молярная восприимчивость соединений, T — температура, x — содержание гадолиния в ${\rm Gd}_x{\rm NbSe}_2$. Результаты расчетов для образцов различного состава представлены на рис. 4. Видно, что по мере увеличения температуры значения $\mu_{\rm eff}^{\rm Gd}$ для каждого образца возрастают, асимптотически стремясь к некоторым

554 В.Г. Плещев

Рис. 4. Температурная зависимости эффективного магнитного момента NbSe₂ (на вставке) и ионов гадолиния в Gd_x NbSe₂.

Рис. 5. Полевые зависимости намагниченности интеркалированных соединений $\mathrm{Gd}_x\mathrm{NbSe}_2$ и производных dM/dH (на вставке).

постоянным значениям, которые уменьшаются по мере возрастания содержания гадолиния. Такой вид зависимостей $\mu_{\rm eff}(T)$ характерен для систем, в которых при понижении температуры возникают взаимодействия антиферомагнитного типа между магнитоактивными ионами, как, например, в ${\rm Fe}_x{\rm HfS}_2$ [11]. Подобный вид зависимости приведен и для ${\rm NbSe}_2$ (рис. 4), что соответствует отрицательному значению θ_p , полученному в результате аппроксимации уравнением (1).

Антиферромагнитный характер взаимодействия подтверждается также и полевыми зависимостями намагниченности M образцов $\mathrm{Gd}_x\mathrm{NbSe}_2$, измеренными при $T=2\,\mathrm{K}$ и представленными на рис. 5. Эти зависимости показывают отсутствие насыщения вплоть до полей величиной $H=70\,\mathrm{kOe}$ и испытывают слабо выраженный перегиб, ассоциирующийся со спиновой переориентацией. Величина критического поля H_r , составляющая

примерно 9 kOe, была определена по максимуму полевой зависимости dM/dH на рис. 5. Это значение вдвое меньше критического поля, которое наблюдалось в системе $\mathrm{Gd}_x\mathrm{TiSe}_2$ [7,12].

4. Заключение

Исследование влияния интеркаляции атомами гадолиния на физические свойства соединений $\mathrm{Gd}_x\,\mathrm{NbSe}_2$, проведенное в настоящей работе, показало, что температурные зависимости электросопротивления указывают на преимущественно фононный механизм рассеяния носителей заряда, а возрастание сопротивления при увеличении концентрации атомов гадолиния объясняется уменьшением подвижности носителей заряда при их рассеянии на внедренных атомах. Этот вывод подтверждается характером изменения остаточного сопротивления у образцов различного состава.

Возрастание содержания гадолиния приводит к увеличению магнитной восприимчивости, и ее температурные зависимости для всех образцов удовлетворительно описываются законом Кюри-Вейсса. В результате такой аппроксимации были определены значения температурнонезависимого слагаемого χ₀ и парамагнитной температуры Кюри θ_p . Учет температурно-независимого слагаемого позволил определить вклад локализованных магнитных моментов в интеркалированных соединениях. Такая же аппроксимация была выполнена и для диселенида ниобия, и на ее основании был определен эффективный магнитный момент самой матрицы, равный $0.56 \,\mu_{\rm B}$. Эффективные магнитные моменты ионов гадолиния были определены как в результате непосредственной аппроксимации экспериментальных данных, так и при расчете с учетом вклада самой матрицы NbSe2. И в том и в другом случае полученные результаты свидетельствуют о снижении $\mu_{ ext{eff}}^{ ext{Gd}}$ по сравнению со спиновым значением $(7.94 \, \mu_{\rm B})$. Такого снижения не наблюдалось при интеркалировании гадолинием диселенида титана [7]. Поскольку представляется маловероятным, что 4f-электроны гадолиния могут взаимодействовать с молекулярными орбиталями матрицы, как это происходит в случае интеркалирования 3d-элементами, наблюдаемое снижение $\mu_{ ext{eff}}^{ ext{Gd}}$ может происходить в результате внутримолекулярного обмена между 4f-электронами гадолиния и 4d-электронами ниобия.

Отрицательные значения парамагнитных температур Кюри и характерная зависимость эффективных магнитных моментов от температуры. позволяют предполагать наличие взаимодействий антиферромагнитного типа в NbSe₂ и в соединениях Gd_x NbSe₂. Однако в Gd_x NbSe₂ интеркаляция гадолинием не приводит к формированию дальнего магнитного порядка или даже спинстекольного состояния с явно выраженными критическими температурами, как это наблюдалось ранее в системе Gd_x TiSe₂ [7]. Объяснение этому может быть получено при анализе полевых зависимостей намагниченности

интеркалированных соединений, которые испытывают перегиб при значении критического поля в два раза меньшем, чем в системе $\mathrm{Gd}_x\mathrm{TiSe}_2$. Это свидетельствует о значительно меньшей энергии антиферромагнитного обмена между 4f-электронами гадолиния в $\mathrm{Gd}_x\mathrm{NbSe}_2$. Такие различия в магнитном состоянии этих двух систем следует связать со структурными и магнитными особенностями диселенидов титана и ниобия, использовавшихся для интеркалирования.

Финансирование работы

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (проект № FEUZ-2020-0054).

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] Л.А. Чернозатонский, А.А. Артюх. УФН **188**, *I*, 3 (2018). doi: 10.3367/UFNr.2017.02.038065
- [2] J.A. Wilson, F.J. Di Salvo, S. Mahajan. Adv. Physics 50, 8, 1171 (2001). doi: 10.1080/00018730110102718
- [3] H.N.S. Lee, M. Garcia, H. Mc Kinzie, A. Wold. J. Solid State Chem. 1, 2, 190 (1970). doi: 10.1016/0022-4596(70)90013-7
- [4] N.V. Toporova, V.I. Maksimov, V.G. Pleschov, A.N. Titov, N.V. Baranov. Phys. Met. Metallogr. 99, Suppl. 1, 50 (2005).
- [5] T. Terashima, N. Kojima. J. Phys. Soc. Jpn. 63, 658 (1994). doi.org/10.1143/JPSJ.63.658
- [6] S. Danzenbacher, S.L. Molodtsov, K. Koepernik, Y. Tomm,
 C. Laubschat. Mol. Cryst. Liq. Cryst. 341, 1, 45 (2000).
 doi: 10.1080/10587250008026115
- [7] E.M. Sherokalova, V.G. Pleschov, N.V. Baranov, A.V. Korolev. Phys. Lett. A. 369, 3, 236 (2007). doi: 10.1016/j.physleta.2007.04.084
- [8] F.R. Gamble. J. Solid State Chem. 9, 358 (1974). doi: 10.1016/0022596(74)90095-4
- [9] J. Bartolome, E. Bartolome, V.V. Eremenko, V.V. Ibulaev,
 V.A. Sirenko, Y.T. Petrusenko. Low Temp. Phys. 34, 8, 642 (2008). doi: 10.1063/1.2967509
- [10] L.M. Kulikov, V.I. Lazorenko, G.V. Lashkarev. Powder Metall. Met. Ceram. 41, 1–2, 107 (2002). doi: 10.1023/A:1016076918474
- [11] В.Г. Плещев, Н.В. Селезнева. ФТТ **60**, *2*, 245 (2018). doi: 10.21883/FTT.2018.02.45375.219
- [12] Н.В. Баранов, В.Г. Плещев, А.Н. Титов, В.И. Максимов, Н.В. Селезнева, Е.М. Шерокалова. Нанотехника **3**, 15 (2008).

Редактор Е.Ю. Флегонтова