Кинетика IV \rightarrow III полиморфного превращения в монокристаллах $Rb_{1-x}Cs_xNO_3$ ($x=0.025,\,0.05,\,0.1$)

© А.Ф. Хазиева 1 , В.И. Насиров 1,2 , Ю.И. Алыев 2 , С.Г. Джабаров 2,3 , \P

АZ1143 Баку, Азербайджан

Поступила в Редакцию 29 декабря 2021 г. В окончательной редакции 10 января 2022 г. Принята к публикации 10 января 2022 г.

Методом оптической микроскопии измерена скорость роста кристаллов III-модификации от температуры при превращении IV \rightarrow III в монокристаллах Rb_{1-x}Cs_xNO₃ ($x=0.025,\ 0.05,\ 0.1$). Показано, что скорость роста кристаллов III-модификации в зависимости от температуры при превращении IV \rightarrow III описывается эмпирической формулой $\upsilon_{\text{IV} \rightarrow \text{III}} = (-0.486\Delta T + 0.592\Delta T^2 - 0.0015\Delta T^3) \cdot 10^{-2}$ см/с для $x=0.025,\ \upsilon_{\text{IV} \rightarrow \text{III}} = (-0.49\Delta T + 0.563\Delta T^2 - 0.0018\Delta T^3) \cdot 10^{-2}$ см/с для x=0.005 и $\upsilon_{\text{IV} \rightarrow \text{III}} = (-0.437\Delta T + 0.484\Delta T^2 - 0.0014\Delta T^3) \cdot 10^{-2}$ см/с для $x=0.1,\ \text{где}\ \Delta T = T_{\text{tr}} + T_0$. Вычислена энергия активации процесса IV \rightarrow III превращения, которая равна E=85.5 кДж/моль для $x=0.025,\ E=82.8$ кДж/моль для x=0.005 и E=84.8 кДж/моль для x=0.1.

Ключевые слова: кристаллы, полиморфные превращения, энергия активации.

DOI: 10.21883/FTP.2022.05.52345.9796

1. Введение

Полупроводниковые соединения широко изучаются из-за их различных физических свойств. Изучение структурных превращений, происходящих в этих материалах под действием внешних воздействий, важно для изучения их других физических свойств [1–5]. В сложных оксидах могут наблюдаться различные фазовые переходы. Сегнетоэлектрические—параэлектрические и ферромагнитные—парамагнитные фазовые переходы в этих материалах широко исследуются [6–9]. Среди сложных оксидов нитраты занимают особое место. Происходящие в них структурные фазовые переходы изучены недостаточно.

Известно, что в области температур от комнатной температуры до температуры плавления у нитрата рубидия установлены четыре, а нитрата цезия две различные модификации [10–12]. Структурные данные отдельных модификаций и температурные интервалы их существования приведены в табл. 1.

В работах [13,14] представлены результаты исследований морфологии и кинетики роста кристаллов при полиморфных превращениях в нитратах рубидия и цезия. На основании полученных данных о морфологии и кинетике выявлена новая модификация в исследуемых кристаллах. В результате исследований установлена общность механизма роста кристаллов новой модификации внутри матричного в нитратах рубидия и цезия.

По данным работы [15] при достаточно высоких давлениях высокотемпературные фазы I и II нитрата

рубидия исчезают, а в качестве высокотемпературной фазы остается III фаза. Таким же образом фазы I и II исчезают из твердых растворов нитрата цезия в нитрате рубидия при концентрации соли цезия $\sim 25\,\mathrm{mon}\%$ [16]. В работе [17] методами ультраакустики изучено фазовое поведение нитрата цезия при облучении γ -квантами.

Для выяснения механизма полиморфных превращений в твердых растворах нитрата цезия в нитрате рубидия нами запланирована серия исследований по морфологии и кинетике роста кристаллов, и настоящая работа является одной из них. Она посвящена исследованию кинетики роста кристалла III-модификации в функции температуры при превращении IV \rightarrow III в Rb_{1-x}Cs_xNO₃ ($x=0.025,\ 0.05,\ 0.1$).

2. Детали эксперимента

Скорость роста зародыша кристалла III-модификации внутри кристалла IV-модификации измерялась на одной и той же грани (hkl) растущего кристалла по методике, предложенной в работе [18], т.е. измерение скорости роста производилось при разных температурах на выбранных участках в одном и том же кристалле размером $1\times0.5\times10\,\mathrm{mm}$ (рис. 1).

Для того чтобы кристалл находился в термостатированном состоянии, нагревательный элемент плотно закрывали теплоизоляционным колпачком. Температура кристалла измерялась термопарой, спайка которой касалась поверхности кристалла. Точность измерения при 100° составляла $\sim 0.5^{\circ}$.

¹ Институт физики Национальной академии наук Азербайджана,

² Азербайджанский государственный педагогический университет, AZ1000 Баку, Азербайджан

³ Азербайджанский государственный экономический университет, AZ1001 Баку, Азербайджан

[¶] E-mail: sakin@jinr.ru

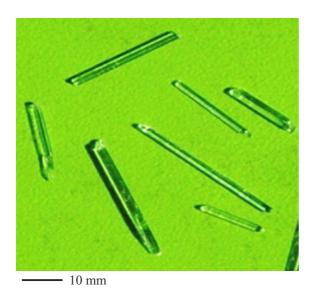

Вещество	Модификация	Симметрия	Параметры решетки			Пространственная	Температурный интервал	Литература	
Вещество	тодификация	Симметрия	a, Å	b, Å	c, Å	группа	существования, Т, К	Литература	
	I	Кубическая	7.32			Fm3m	564-587	[1]	
RbNO ₃	II	Ромбоэдрическая	5.48		10.71	R3m	492-564	[2]	
KUNO3	III	Кубическая	4.35			Fm3m	437-492	[3]	
	IV	Ромбоэдрическая	10.48		7.45	P3 ₁	Ниже 437	[4]	
CsNO ₃	I	Ромбическая	10.87		7.76	P3/m	434-687	[5]	
	II	Кубическая	8.98			Pa3	Ниже 434	[6]	

Таблица 1. Структурные данные модификаций нитратов рубидия и цезия и их температурные интервалы существования

Таблица 2. Результаты измерений скорости роста кристалла III-модификации при полиморфном превращении IV \rightarrow III в Rb $_{1-x}$ Cs $_x$ NO $_3$ ($x=0.025,\,0.05,\,0.1$)

	$\frac{\frac{1}{T_0 \Delta T}}{\times 10^{-4} \text{ K}^2}$	$Rb_{0.975}Cs_{0.025}NO_3$			$Rb_{0.95}Cs_{0.05}NO_3$			Rb _{0.90} Cs _{0.10} NO ₃		
ΔT , K		$\bar{\vartheta}_{\rm exp} \cdot 10^{-2}$, cm/c	$\vartheta_{\rm calc} \cdot 10^{-2}, \ { m cm/c}$	ln ϑ	$\bar{\vartheta}_{\rm exp} \cdot 10^{-2}$, cm/c	$\vartheta_{\rm calc} \cdot 10^{-2}, \ { m cm/c}$	ln ϑ	$\bar{\vartheta}_{\rm exp} \cdot 10^{-2}$, cm/c	$\vartheta_{\rm calc} \cdot 10^{-2}, \ { m cm/c}$	ln ϑ
1	15.1	0.98	0.104	-4.68	0.064	0.071	-7.35	0.063	0.045	-7.7
2	12.7	1.35	1.38	-4.30	0.98	1.26	-4.62	1.15	1.051	-4.55
3	8.48	3.67	3.83	-3.30	3.65	3.55	-3.31	3.23	3.007	-3.5
4	6.36	7.45	7.43	-2.59	5.64	6.93	-2.82	5.28	5.90	-2.82
5	5.08	12.84	12.18	-2.05	12.4	11.4	-2.08	9.37	8.77	-2.43
6	4.24	18.15	18.07	-1.70	16.8	16.9	-1.78	14.68	14.49	-1.93
7	3.63	24.65	25.09	-1.40	22.2	23.5	-1.50	20.81	20.17	-1.60
8	3.18	35.6	33.23	-1.09	32.5	31.2	-1.12	24.97	26.76	-1.31
9	2.82	41.82	42.48	-0.87	39.3	39.8	-0.93	33.89	34.25	-1.07
10	2.54	50.98	52.84	-0.67	46.7	49.6	-0.76	43.46	42.63	-0.85

При помощи окулярной сетки в кристалле выделялся участок длиной 1 мм. После измерения скорости на одном из микроскопов при температуре $T_1 = T_0 + \Delta T_1$, образец переносили на нагревательный столик другого

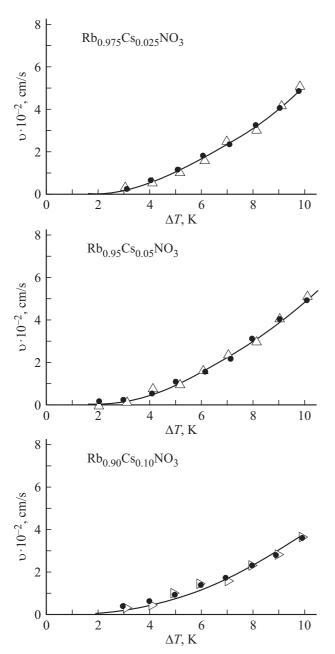
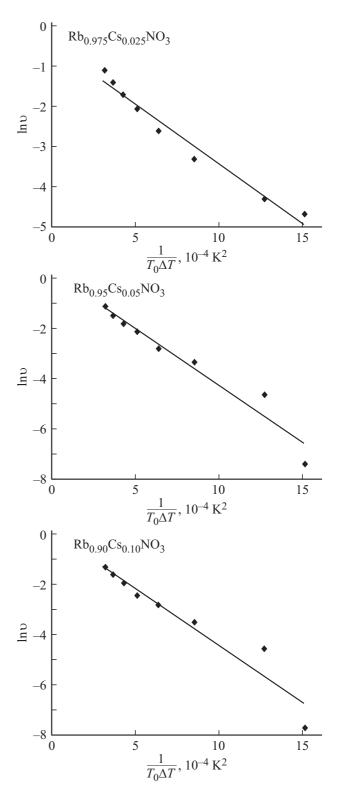


Рис. 1. Монокристаллы $Rb_{1-x}Cs_xNO_3$ ($x=0.025,\ 0.05,\ 0.1$), полученные из водного раствора при комнатной температуре.

микроскопа, имеющего температуру $T_2 = T_0 + \Delta T_2$, где $\Delta T_2 > \Delta T_1$. Здесь T_0 — температура равновесия между III- и IV-модификациями, ΔT — температура задержки превращения. Для монокристаллов $Rb_{1-x}Cs_xNO_3$ ($x=0.025,\,0.05,\,0.1$) температура равновесия между фазами IV- и III-модификации $T_0=397$ К. Таким образом, последовательно на одном и том же кристалле измерялась скорость роста одной и той же грани кристалла III-модификации при превращении IV \rightarrow III. Полученные экспериментальные данные приведены в табл. 2.

3. Результаты и их обсуждение

Экспериментальные данные, полученные от 3-х кристаллов и обработанные при помощи программы "МАТLАВ" [19], дают функциональную зависимость скорости роста кристалла III-модификации от температуры в виде $\upsilon_{\text{IV} \to \text{III}} = (-0.486\Delta T + 0.592\Delta T^2 - 0.0015\Delta T^3) \cdot 10^{-2}$ см/с для $\text{Rb}_{0.975}\text{Cs}_{0.025}\text{NO}_3$, $\upsilon_{\text{IV} \to \text{III}} = (-0.49\Delta T + 0.563\Delta T^2 - 0.0018\Delta T^3) \cdot 10^{-2}$ см/с для $\text{Rb}_{0.95}\text{Cs}_{0.05}\text{NO}_3$ и $\upsilon_{\text{IV} \to \text{III}} = (-0.437\Delta T + 0.484\Delta T^2 - 0.0014\Delta T^3) \cdot 10^{-2}$ см/с для $\text{Rb}_{0.90}\text{Cs}_{0.10}\text{NO}_3$, где $\Delta T = T_{\text{tr}} - T_0$. На рис. 2 показаны графики скорости роста кристалла III-модификации от температуры, построенные по экспериментальным данным и данным


Рис. 2. Зависимость скорости роста IV-кристалла при превращении IV \rightarrow III Rb $_{1-x}$ Cs $_x$ NO $_3$ ($x=0.025,\ 0.05,\ 0.1$): треугольники — эмпирические данные, кружки — экспериментальные данные.

приведенной эмпирической формулы. Как видно из табл. 2, при $\Delta T=1~\mathrm{K}$ величина скорости роста кристалла III-модификации при превращении IV \rightarrow III ничтожно мала. С повышением температуры скорость роста кристалла III-модификации увеличивается.

По данным работы [13] при $\Delta T=5\,\mathrm{K}$ в нитрате рубидия скорость роста III-кристалла $\upsilon=2.46\,\mathrm{cm/c}$, но в нашем случае $\upsilon=12.8\,\mathrm{cm/c}$ для $\mathrm{Rb_{0.975}Cs_{0.025}NO_3}$, $\upsilon=11.4\,\mathrm{cm/c}$ для $\mathrm{Rb_{0.95}Cs_{0.05}NO_3}$ и $\upsilon=8.77\,\mathrm{cm/c}$ для $\mathrm{Rb_{0.90}Cs_{0.10}NO_3}$. Это свидетельствует о том, что частич-

ное замещение ионов Rb^{1+} в нитрате рубидия ионами Cs^{1+} приводит к увеличению значений скорости роста кристалла III-модификации при превращении $IV \to III$.

Экспериментальные данные хорошо описываются формулой, полученной М. Фольмером [20] в предполо-

Рис. 3. Зависимость $\ln \upsilon$ от $\frac{1}{T_0 \Delta T}$ в $\mathrm{Rb}_{1-x} \mathrm{Cs}_x \mathrm{NO}_3$ (x=0.025, 0.05, 0.1).

Таблица 3. Энергия активации и значения констант k_2 , k_3 при полиморфном превращении IV \rightarrow III в кристаллах Rb_{1-x}Cs_xNO₃ ($x=0.025,\,0.05,\,0.1$)

Состав	Полиморфное превращение	<i>k</i> ₂ , град	<i>k</i> ₃ , град ²	Энергия активации, кДж/мол
Rb _{0.975} Cs _{0.025} NO ₃	$\begin{array}{c} \text{IV} \rightarrow \text{III} \\ \text{IV} \rightarrow \text{III} \end{array}$	10292	5433	85.5
$Rb_{0.95}Cs_{0.05}NO_3$ $Rb_{0.90}Cs_{0.10}NO_3$	$IV \to III$ $IV \to III$	10508 10205	4491.7 6620	82.8 84.8

жении, что рост двумерных зародышей, возникших на грани кристалла, происходит путем последовательного присоединения отдельных атомов или молекул:

$$v = k_1 \exp\left(\frac{k_2}{T_0}\right) \exp\left(\frac{k_3}{T_0 \Delta T}\right),$$

где k_1 — в первом приближении можно принять независимым от температуры и равным $k_1 = B \nu d$ (ν — частота колебаний молекул, d — межатомное расстояние, B — число молекул, переходящих из матричного кристалла на поверхность растущего кристалла), $k_2 = E/R$ — константа, учитывающая энергетический порог для перехода молекул из матричного кристалла на поверхность растущей модификации, k_3 — работа образования двумерного зародыша новой модификации, T_0 — температура равновесия.

Из рис. З видно, что зависимость $\ln \nu$ от представляет собой линейную функцию, т.е. экспериментальные точки укладываются на прямую линию. Из этих прямых были найдены значения k_2 и k_3 и вычислена энергия активации процесса $IV \rightarrow III$ превращения для образцов $Rb_{1-x}Cs_xNO$ (x=0.025, 0.05, 0.1) (см. табл. 3).

4. Заключение

Анализ экспериментальных данных показал, что с повышением температуры в исследованных кристаллах $Rb_{1-x}Cs_xNO_3$ скорость роста кристалла III-модификации при превращении $IV \rightarrow III$ увеличивается за счет частичного замещения в нитрате рубидия ионов Rb^+ ионами Cs^+ . Следует отметить, что в случае кристалла $Rb_{1-x}Cs_xNO_3$ энергия активации $IV \rightarrow III$ превращения меньше, чем в нитрате рубидия $(E=99.2\,\mathrm{k}\mathrm{J}\mathrm{ж/мол}).$

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 S.H. Jabarov, V.B. Aliyeva, T.G. Mammadov, A.I. Mammadov, S.E. Kichanov, L.S. Dubrovinsky, S.S. Babayev, E.G. Pashayeva, N.T. Dang. Mater. Sci.-Poland, 36 (2), 203–208 (2018).

- [2] N.A. Ismayilova, S.H. Jabarov. Optoelectron. Adv. Mater. Rapid Commun., 11 (5-6), 353 (2017).
- [3] E. Kasumova, A. Aslanova. Adv. Phys. Res., 3 (2), 104 (2021).
- [4] Y.I. Aliyev, T.M. Ilyasli, A.O. Dashdemirov, M.R. Allazov, A.V. Trukhanov, Y.G. Asadov, S.H. Jabarov, N.T. Dang. J. Ovonic Res., 14 (2), 165 (2018).
- [5] Y.I. Aliyev, Y.G. Asadov, R.D. Aliyeva, T.G. Naghiyev, S.H. Jabarov. Mod. Phys. Lett. B, 33 (11), 1850128 (2019).
- [6] D.P. Kozlenko, N.T. Dang, S.E. Kichanov, E.V. Lukin, A.M. Pashayev, A.I. Mammadov, S.H. Jabarov, L.S. Dubrovinsky, H.-P. Liermann, W. Morgenroth, R.Z. Mehdiyeva, V.G. Smotrakov, B.N. Savenko. Phys. Rev. B, 92 (13), 134409 (2015).
- [7] N.O. Golosova, D.P. Kozlenko, S.E. Kichanov, E.V. Lukin, L.S. Dubrovinsky, A.I. Mammadov, R.Z. Mehdiyeva, S.H. Jabarov, H.-P. Liermann, K.V. Glazyrin, T.N. Dang, V.G. Smotrakov, V.V. Eremkin, B.N. Savenko. J. Alloys Compd., 684, 352 (2016).
- [8] S.E. Kichanov, D.P. Kozlenko, N.M. Belozerova, S.H. Jabarov, R.Z. Mehdiyeva, E.V. Lukin, A.I. Mammadov, H.-P. Liermann, W. Morgenroth, L.S. Dubrovinsky, B.N. Savenko, I.P. Raevskii, N.T. Dang. Ferroelectrics, 520, 22 (2017).
- [9] S.H. Jabarov. Int. J. Mod. Phys. B, 33 (30), 1950357 (2019).
- [10] R.N. Brown, A.C. McLaren. Acta Cryst., 15, 977 (1962).
- [11] R.N. Brown, A.C. McLaren. Proc. Roy. Soc. A, 266, 239 (1962).
- [12] U. Korhonen. Ann. Acad. Sci. Fennical. A, 1, 150 (1953).
- [13] Ч.М. Алекперов, В.И. Насиров, Ю.Г. Асадов. Препринт № 4. ИФ АН Азербайджана (Баку, 1990) с. 38.
- [14] В.И. Насиров. Изв. Пед. ун-та, 1, 102 (1992).
- [15] B. Cleaver, J.F. Williams. J. Phys. Chem. Solids, 29, 877 (1968).
- [16] E.C. Schlemper, W.C. Hamilton. J. Chem. Phys., 45, 4498 (1966).
- [17] В.Н. Беломестных, А.П. Мамонтов. Письма ЖТФ, 23, 15 (1997).
- [18] Ю.Г. Асадов, В.И. Насиров. Кристаллография, **5**, 991 (1972).
- [19] V.I. Nasirov, R.B. Bairamov. Reports. ANAS, 72, 29 (2016).
- [20] M. Volmer. Kinetik der Phasenbildung (Steinkopff, Drezden– Leipzing, 1939) v. 3, p. 38.

Редактор А.Н. Смирнов

Kinetics of IV \rightarrow III polymorphic transformation in Rb_{1-x}Cs_xNO₃ (x = 0.025, 0.05, 0.1) single crystals

A.F. Haziyeva¹, V.I. Nasirov^{1,2}, Y.I. Aliyev², S.H. Jabarov^{2,3}

 ¹ Institute of Physics of Azerbaijan National Academy of Sciences, AZ1143 Baku, Azerbaijan
 ² Azerbaijan State Pedagogical University, AZ1000 Baku, Azerbaijan
 ³ Azerbaijan State University of Economics (UNEC), AZ1001Baku, Azerbaijan

Abstract Optical microscopy was used to measure the growth rate of III-modification crystals as a function of temperature during the IV \rightarrow III transformation in Rb_{1-x}Cs_xNO₃ (x=0.025, 0.05, 0.1) single crystals. It is shown that the growth rate of III-modification crystals depending on temperature during the IV \rightarrow II transformation is described by the empirical formula: $v_{\rm IV \rightarrow III} = (-0.486\Delta T + 0.592\Delta T^2 - 0.0015\Delta T^3) \cdot 10^{-2}$ cm/s, $v_{\rm IV \rightarrow III} = (-0.49\Delta T + 0.563\Delta T^2 - 0.0018\Delta T^3 \cdot 10^{-2}$ cm/s, $v_{\rm IV \rightarrow III} = (-0.437\Delta T + 0.484\Delta T^2 - 0.0014\Delta T^3) \cdot 10^{-2}$ cm/s where $\Delta T = T_{\rm tr} + T_0$. The activation energy of the process IV \rightarrow III transformation was calculated, which is equal to E=85.5 kJ/mol, E=82.8 kJ/mol, E=84.8 kJ/mol.