06

Структурные и диэлектрические свойства Bi₃Ti_{1.5}W_{0.5}O₉

© С.В. Зубков¹, И.А. Паринов², Ю.А. Куприна¹, А.В. Назаренко³

1 Научно-исследовательский институт физики Южного федерального университета,

Ростов-на-Дону, Россия

 2 Институт математики, механики и информатики им. И. Воровича, Южный федеральный университет, Ростов-на-Дону, Россия

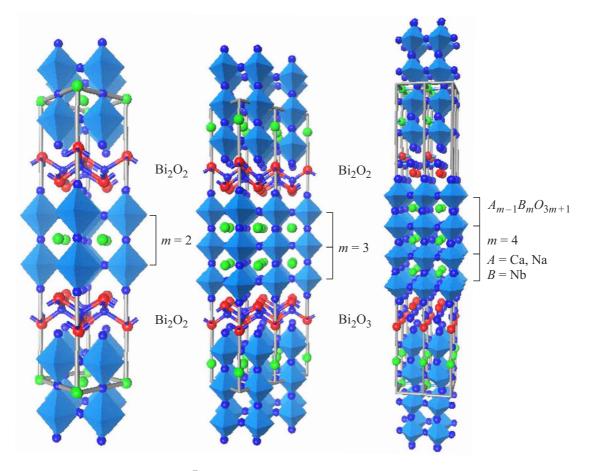
³ Федеральный исследовательский центр Южный научный центр РАН,

Ростов-на-Дону, Россия

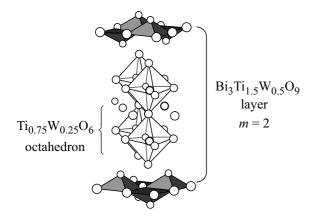
E-mail: svzubkov61@mail.ru

Поступила в Редакцию 31 января 2022 г. В окончательной редакции 2 февраля 2022 г. Принята к публикации 3 февраля 2022 г.

Методом высокотемпературной твердотельной реакции синтезирован слоистый перовскитоподобный оксид $\mathrm{Bi_3Ti_{1.5}W_{0.5}O_9}$. Рентгеноструктурное исследование показало, что соединение однофазно и имеет структуру семейства фаз Ауривиллиуса (ФА) с параметрами близкими орторомбической элементарной ячейке, соответствующей пространственной группе $A2_1am$. Измерены зависимости от температуры относительной диэлектрической проницаемости $\varepsilon/\varepsilon_0$ и тангенса угла потерь $\mathrm{tg}\,\sigma$ на разных частотах. Для синтезированного соединения измерен пьезомодуль d_{33} . Получена микроструктура $\mathrm{Bi_3Ti_{1.5}W_{0.5}O_9}$.


Ключевые слова: фазы Ауривиллиуса, $\mathrm{Bi}_3\mathrm{Ti}_{1.5}\mathrm{W}_{0.5}\mathrm{O}_9$, энергия активации E_a , температура Кюри T_C , пьезомодуль d_{33} .

DOI: 10.21883/FTT.2022.06.52390.284


1. Введение

В 1949 г., изучая систему $Bi_2O_3-TiO_2$, В. Ауривиллиус установил образование оксида Ві₄Ті₃О₁₂ со структурой типа перовскита [1]. Затем, в течение двух лет, он получил еще несколько оксидов с аналогичной структурой [2,3]. Однако на первом этапе Ауривиллиус ограничился изучением только строения полученных соединений. Только десять лет спустя Смоленский, Исупов и Аграновская [4] открыли сегнетоэлектрические свойства Bi₂PbNbO₉, который принадлежит к этому классу соединений. В дальнейшем было получено несколько десятков фаз Ауривиллиуса, и почти все они оказались сегнетоэлектриками [5–10]. Фазы Ауривиллиуса (ФА) образуют большое семейство висмутсодержащих слоистых соединений типа перовскита, химический состав которых описывается общей формулой $A_{m-1} \operatorname{Bi}_2 B_m \operatorname{O}_{3m+3}$. Кристаллическая структура семейства ФА состоит из чередующихся слоев $[{\rm Bi}_2{\rm O}_2]^{2+}$, разделенных m перовскитоподобными слоями $[A_{m-1}B_mO_{3m+1}]^{2-}$, где A — ионы с большими радиусами ($\mathrm{Bi^{3+}}$, $\mathrm{Ca^{2+}}$, $\mathrm{Gd^{3+}}$, $\mathrm{Sr^{2+}}$, $\mathrm{Ba^{2+}}$, $\mathrm{Pb^{2+}}$, $\mathrm{Na^+}$, $\mathrm{K^+}$, $\mathrm{Y^{3+}}$, $\mathrm{Ln^{3+}}$ (лантаноиды)) имеют додекаэдрическую координацию, а В — позиции внутри кислородных октаэдров заняты сильно заряженными $(\ge 3+)$ катионами с малым радиусом $(\mathrm{Ti}^{4+},$ Nb^{5+} , Ta^{5+} , W^{6+} , Mo^{6+} , Fe^{3+} , Mn^{4+} , Cr^{3+} , Ga^{3+} uт.д.). Значение m определяется количеством слоев перовскита $[A_{m-1}B_mO_{3m+1}]^{2-}$, расположенных между флюоритоподобными слоями $[Bi_2O_2]^{2+}$, и может принимать целое число или полуцелые значения в диапазоне 1-5 (рис. 1). Если m — полуцелое число, то в решетке есть альтернативные слои перовскита с т, отличающимся на 1. Например, при m = 1.5 в решетке равное количество слоев с m = 1 и m = 2. Например, значение m=1 соответствует соединению Bi_2WO_6 , m=2 соответствует Bi_2PbNbO_9 , m=3 соответствует $Bi_4Ti_3O_{12}$, m=4 соответствует $\mathrm{Bi_4CaTi_4O_{15}},\ m=5$ соответствует $Bi_4Sr_2Ti_5O_{18}$. Позиции A и B могут быть заняты одним и тем же или несколькими разными атомами. Атомные замены в положениях А и В оказывают существенное влияние на электрофизические характеристики ФА. В частности, происходят большие изменения значений диэлектрической проницаемости, проводимости, кроме того, температура Кюри $T_{\rm C}$ также может изменяться в широких пределах. Таким образом, изучение катионзамещенных соединений ФА играет важную роль в создании материалов для различных технологических приложений. Структура соединений СФА $\mathrm{Bi}_2 A_{m-1} B_m \mathrm{O}_{3m+3}$ выше точки Кюри $T_{\rm C}$ является тетрагональной и принадлежит пространственной группе 14/ттт. Тип пространственной группы ниже точки Кюри $T_{\rm C}$ зависит от значения числа т. Для нечетного т пространственной группы сегнетоэлектрической фазы является B2cb или $Pca2_1$, для четного m это $A2_1am$, а для полуцелого m это *Cmm*2 или *I2cm*.

Научный интерес к синтезу и изучению новых соединений ФА стимулируется многочисленными примерами их использования в различных электронных устройствах, благодаря своим уникальным физическим свойствам (пьезоэлектрическим, сегнетоэлектрическим и др.). Они демонстрируют низкие температурные коэффициенты диэлектрических и пьезоэлектрических потерь, а также низкие температуры старения в дополнение к высоким температурам Кюри ($T_{\rm C} \leq 965^{\circ}{\rm C}$) [11,12].

Рис. 1. Структуры ΦA с m=2, 3, 4.

Рис. 2. Структуры $Bi_3Ti_{1.5}W_{0.5}O_9$ с m=2.

Впервые в 1976 г. Кікисһі синтезировал $Bi_3Ti_{1.5}W_{0.5}O_9$ [13], а в 2005 г. Нуаtt опубликовал свое исследование кристаллической структуры $Bi_3Ti_{1.5}W_{0.5}O_9$ [14]. Целью настоящей работы было изучение микро- и кристаллической структуры, пьезо- и диэлектрических характеристик соединения $Bi_3Ti_{1.5}W_{0.5}O_9$ (см. рис. 2) и измерение температуры фазового перехода.

2. Эксперимент

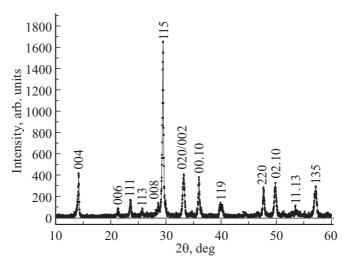
Поликристаллический образец ФА был синтезирован твердофазной реакцией соответствующих оксидов Bi₂O₃, TiO₂, WO₃, все исходные соединения были марки ЧДА. После взвешивания по стехиометрическому составу и тщательного измельчения исходных оксидов с добавлением этилового спирта прессованные образцы прокаливали при температуре 770°C в течение 4 h. Обжиг образцов проводился в лабораторной муфельной печи на воздухе. Затем образец дробили, многократно измельчали и прессовали в таблетки диаметром 10 и толщиной $1.0 \times 1.5 \, \text{mm}$ с последующим финальным синтезом ФА при температуре 1100°C (2 h). Рентгенограмма регистрировалась на дифрактометре Rigaku Ultima IV с Си-рентгеновской трубкой. Излучение Си $K\alpha 1$, $\alpha 2$ было выделено из общего спектра с помощью Ni-фильтра. Рентгенограмму измеряли в диапазоне углов 2θ от 10до 60° с шагом сканирования 0.02° и экспозицией (время регистрации интенсивности) 4 с на точку. Анализ профиля рентгенограммы, определение положения линий, их индексация (hkl) и уточнение параметров элементарной ячейки проводились с помощью программы PCW 2.4 [15]. Для измерения диэлектрической проницаемости и электропроводности на плоские поверхности

Таблица 1. Параметры элементарной ячейки. a_0 , b_0 , c_0 , V, a_t — параметр тетрагонального периода, c' — высота октаэдра по оси c, $\delta c'$ — отклонение от кубической формы, δb_0 — ромбическое искажение.

Соединение	a ₀ , Å	b_0 , Å	c ₀ , Å	V, Å ³	c', Å	a_t , %	$\delta c'$, %	δb_0 , %
Bi ₃ Ti _{1.5} W _{0.5} O ₉	5.3861	5.3742	24.8572	719.51	3.7586	3.8043	-1.2	-0.2

Таблица 2. Диэлектрические характеристики $\mathrm{Bi}_3\mathrm{Ti}_{1.5}\mathrm{W}_{0.5}\mathrm{O}_9$: температура Кюри T_C , пьезомодуль d_{33} , толеранс фактор t, относительная диэлектрическая проницаемость $\varepsilon/\varepsilon_0$, энергия активации E_n

Соединение	T _C , °C	<i>d</i> ₃₃ , pC/N	t	$arepsilon/arepsilon_0(T)$ (на $100\mathrm{kHz}$)	$E_1/E_2/E_3$, eV	
Bi ₃ Ti _{1.5} W _{0.5} O ₉	760	8	0.9778	1000	0.67/0.29/0.06	

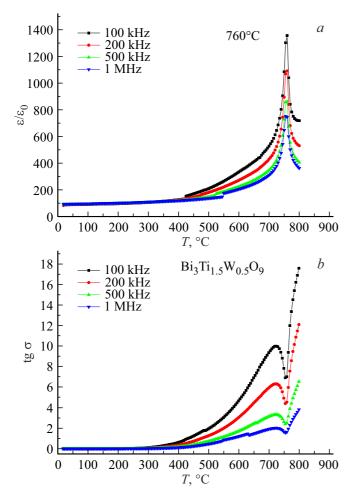

образцов ФА в виде дисков диаметром 10 и толщиной около 1.5 mm наносились электроды с использованием Ад-пасты, отожженной при температуре 700°C (для 1 h). Температурные и частотные зависимости диэлектрических характеристик измерялись с помощью измерителя иммитанса Е7-20 в диапазоне частот от 100 kHz до 1 MHz и в интервале температур от комнатной до 900°C. Образец подвергался поляризации в масляной бане при 125°C при напряжении 35 kV/cm в течение 30 min. Снимки сколов поверхности образца Bi₃Ti_{1.5}W_{0.5}O₉ получены в ЦКП ЮНЦ РАН на 3D-сканирующем лазерном микроскопе KeyenceVK-9700 (Япония), оснащенном коротковолновым лазером (408 nm). Фотографии получены в режиме отраженного света конфокальным методом, благодаря чему четкость достигалась одинаково во всей исследуемой области. Шаг сканирования по высоте (ось Z) составлял 0.08 μ m в режиме Real PeakDetection.

3. Результаты и обсуждение

Дифрактограмма исследуемого твердого раствора ${\rm Bi_3Ti_{1.5}W_{0.5}O_9}$ соответствует однофазной ФА с m=2 и не содержит дополнительных изоструктурных рефлексов. Было обнаружено, что синтезированное соединение ${\rm Bi_3Ti_{1.5}W_{0.5}O_9}$ семейства ФА кристаллизуются в орторомбическую систему с пространственной группой элементарной ячейки $A2_1am$ (No 36). На рис. 3 представлена экспериментальная порошковая рентгенограмма исследуемого соединения ${\rm Bi_3Ti_{1.5}W_{0.5}O_9}$.

По данным рентгеновской дифракции определены параметры и объем элементарной ячейки (табл. 1).

Также в табл. 1 приведены параметры орторомбической δb_0 и тетрагональной $\delta c'$ деформации; средний тетрагональный период a_t , толеранс фактор t и средняя толщина одного слоя перовскита c'; $c'=3c_0/(8+6m)$ — толщина одиночного перовскитоподобного слоя, $a_t=(a_0-b_0)/2$ — среднее значение тетрагонального периода; a_0 , b_0 , c_0 — периоды решетки; $\delta c'=(c'-a_t)/a_t$ — отклонение ячейки от кубической формы, то есть удлинение или сокращение от кубической формы;


Рис. 3. Экспериментальная кривая рентгенограммы соединения $Bi_3Ti_{1.5}W_{0.5}O_9$.

 $\delta b_0 = (b_0 - a_0)/a_0$ — ромбическая деформация [16–18]. Полученные параметры элементарной ячейки исследованных образцов ФА $\mathrm{Bi_3Ti_{1.5}W_{0.5}O_9}$ близки к определенным ранее: a=5.4018 (2) Å, b=5.3727 (4) Å, c=24.9388 (1) Å [14]. Толеранс фактор t был введен Гольдшмидтом [19] как геометрический критерий, определяющий степень устойчивости и искажения кристаллической структуры:

$$t = (R_A + R_O)/[\sqrt{2}(R_B + R_O)],$$
 (2)

где R_A и R_B — радиусы катионов в узлах A и B соответственно; $R_{\rm O}$ — ионный радиус кислорода. В настоящей работе толеранс фактор t был рассчитан с учетом ионных радиусов по Шеннону [20] для соответствующих координационных чисел (CN) (${\rm O^{2-}}$ (CN = 6) $R_{\rm O}=1.40$ Å, ${\rm W^{6+}}$ (CN = 6) $R_{{\rm W^{6+}}}=0.6$ Å, ${\rm Ti^{4+}}$ (CN = 6) $R_{{\rm Ti^{4+}}}=0.605$ Å).

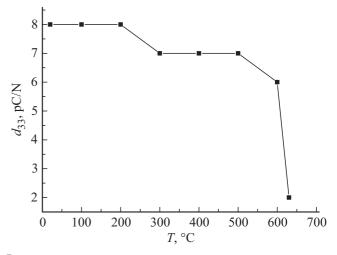
Чтобы получить степень искажения идеальной структуры перовскита, мы определили толеранс фактор t, который представлен в табл. 2.

Рис. 4. Температурные зависимости относительной диэлектрической проницаемости $\varepsilon/\varepsilon_0$ (a) и тангенса угла диэлектрических потерь ($\operatorname{tg}\sigma$) (b) для $\operatorname{Bi}_3\operatorname{Ti}_{1.5}\operatorname{W}_{0.5}\operatorname{O}_9$ на частотах от $100\,\mathrm{kHz}$ до $1\,\mathrm{MHz}$.

В таблице Шеннона не предоставлен ионный радиус $\mathrm{Bi^{3+}}$ для координации с $\mathrm{CN}=12$. Поэтому его значение было определено из ионного радиуса с $\mathrm{CN}=8$ ($R_{\mathrm{Bi^{3+}}}=1.17\,\mathrm{Å}$), умноженного на коэффициент аппроксимации 1.179 и для $\mathrm{Bi^{3+}}$ ($\mathrm{CN}=12$) мы получили $R_{\mathrm{Bi^{3+}}}=1.38\,\mathrm{Å}$. Помимо результатов структурных исследований были получены температурные зависимости относительной диэлектрической проницаемости $\varepsilon/\varepsilon_0$ и тангенса угла диэлектрических потерь $\mathrm{tg}\,\sigma$ на различных частотах. На рис. 4 показаны температурные зависимости относительной диэлектрической проницаемости $\varepsilon(T)$ (a) и тангенса угла диэлектрических потерь (b) для сегнетоэлектрического соединения $\mathrm{Bi_3Ti_{1.5}W_{0.5}O_9}$ в интервале частот от $\mathrm{100\,kHz}$ до $\mathrm{1\,MHz}$.

Максимум диэлектрической проницаемости, соответствующий фазовому переходу сегнетоэлектрика в параэлектрик ($T_{\rm C}$), отчетливо наблюдается при $T_{\rm C}=760^{\circ}{\rm C}$ (на частотах от $100\,{\rm kHz}$ до $1\,{\rm MHz}$) в работе Shi Luo и др. [21] указана температура Кюри $T_{\rm C}=730^{\circ}{\rm C}$. В нашем случае $T_{\rm C}=723^{\circ}{\rm C}$ соответствует максимуму значения тангенса угла диэлектрических потерь до фазового

перехода. Пиковое значение относительной диэлектрической проницаемости примерно $\varepsilon/\varepsilon_0$ в 14 раз превышает значение относительной диэлектрической проницаемости $\varepsilon/\varepsilon_0$ при комнатной температуре. Диэлектрические потери очень малы, особенно при температуре ниже 300°С. С повышением температуры диэлектрические потери увеличиваются до температуры 723°С и имеют четко выраженный максимум на всех измеряемых частотах, а затем резко снижаются до 754°С. Минимум диэлектрических потерь, обычно, опережает пик диэлектрической проницаемости на 5°С. При дальнейшем повышении температуры диэлектрические потери резко возрастают.


Энергия активации $E_{\rm a}$ определялась из уравнения Аррениуса

$$\sigma = (A/T) \exp[-E_a/(kT)], \tag{3}$$

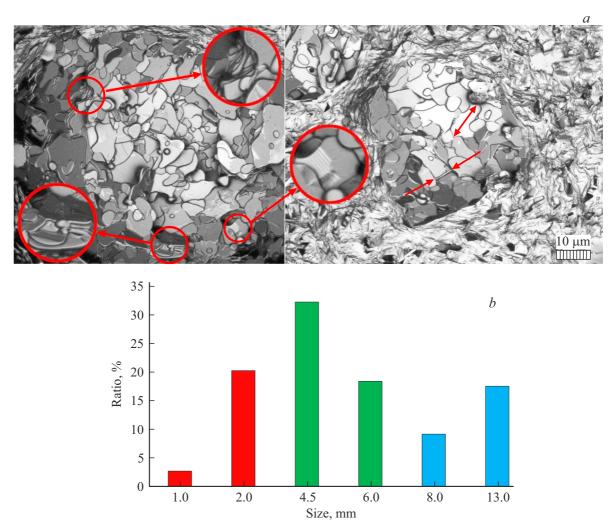

где σ — электропроводность, k — постоянная Больцмана, A — постоянная, $E_{\rm a}$ — энергия активации. Типичная зависимость $\ln \sigma$ (σ -проводимость) от 1/T (на

Рис. 5. Зависимость $\ln \sigma$ от 1/T для образца ${\rm Bi}_3{\rm Ti}_{1.5}{\rm W}_{0.5}{\rm O}_9$.

Рис. 6. Температурная зависимость пьезоэлектрической постоянной (d_{33}) Bi₃Ti_{1.5}W_{0.5}O₉

Рис. 7. СЭМ-изображения поверхности поперечного скола $Bi_3Ti_{1.5}W_{0.5}O_9$ (*a*) и распределение по размерам зерен (*b*).

частоте $100\,\mathrm{kHz}$), которая использовалась для определения энергии активации E_a , показана на рис. 5 для ФА $\mathrm{Bi_3Ti_{1.5}W_{0.5}O_9}$. Соединение $\mathrm{Bi_3Ti_{1.5}W_{0.5}O_9}$ имеет две области температур, в которых энергия активации E_a существенно различается по значению. В области низких температур электропроводность определяется, преимущественно, примесными дефектами с очень низкими энергиями активации порядка нескольких сотых электрон-вольта.

Для соединений ${\rm Bi_3Ti_{1.5}W_{0.5}O_9}$ мы наблюдаем область с ярко выраженной примесной проводимостью в интервале температур от 20 до $450^{\circ}{\rm C}$. В области высоких температур преобладает собственная проводимость.

На рис. 6 показана зависимость пьезомодуля (d_{33}) Ві $_3$ Ті $_{1.5}$ W $_{0.5}$ O $_9$ от температуры. Керамика Ві $_3$ Ті $_{1.5}$ W $_{0.5}$ O $_9$ демонстрирует хорошую стабильность после термического воздействия до температуры 550° С. В табл. 2 представлено значение пьезомодуля d_{33} для Ві $_3$ Ті $_{1.5}$ W $_{0.5}$ O $_9$.

На рис. 7, a показаны СЭМ-изображения керамики $\mathrm{Bi}_3\mathrm{Ti}_{1.5}\mathrm{W}_{0.5}\mathrm{O}_9$, спеченной при 1100 °С. Можно видеть, что зерна имеют пластинчатую морфологию, что является типичной характеристикой поликристаллической

керамики семейства ФА. Такой анизотропный характер объясняется тем, что скорость роста зерен в плоскости a-b значительно выше, чем в направлении оси cкристалла ВізТі_{1.5}W_{0.5}O₉, из-за существования жестких слоев $(Bi_2O_2)^{2+}$. Плоскость a-b параллельна плоскости пластинчатых зерен, а ось c параллельна направлению оси пластинчатых зерен. На СЭМ-изображениях керамики $Bi_3Ti_{1.5}W_{0.5}O_9$ смешанные пластинчатые зерна разной ориентации складываются вместе. В характере расположения кристаллитов наблюдаются стопки из тонких $(0.5\,\mu\text{m})$ пластинчатых зерен (рис. 7, a, выделенные области), что также характерно для керамики семейства ФА. Оценка размеровпроводилась с учетом всех видимых зерен в независимости от их взаимного расположения. При этом выбиралась линия наибольшей длины (рис. 7, *a*, стрелки).

На рис. 7, b показана гистограмма распределения по размеру зерна в процентном отношении к общему количеству зерен на поверхности скола. Видно, что основная масса зерен (около 70%) имеет размер $2-6\,\mu\text{m}$, что говорит о равномерности в их распределении. Это, вместе с высокой плотностью и низкой пористостью ке-

рамики, а также фактом отсутствия стекловидной фазы, позволяет сделать вывод, что выбранные температурные условия спекания (1100°C) являются оптимальными.

4. Заключение

Твердотельным методом синтезирован слоистый перовскитоподобный оксид висмута $Bi_3Ti_{1.5}W_{0.5}O_9$ семейства ФА. Проведенное в настоящей работе рентгеноструктурное исследование показало, что все полученное соединение однофазно с ромбической кристаллической решеткой ($A2_1am$, No 36).

В работе определены температура фазового перехода $T_{\rm C}$ параэлектрик-сегнетоэлектрик $T_{\rm C}=760^{\circ}{\rm C}$ и оптимальная температура спекания $T=1100^{\circ}{\rm C}$, исследована микроструктура поверхности скола керамики ${\rm Bi}_3{\rm Ti}_{1.5}{\rm W}_{0.5}{\rm O}_9$ и измерен пьезомодуль $d_{33}=8\,{\rm pC/N}$. Установлено, что слоистый перовскитоподобный оксид висмута ${\rm Bi}_3{\rm Ti}_{1.5}{\rm W}_{0.5}{\rm O}_9$ семейства $\Phi{\rm A}$ сохраняет неизменными пьезосвойства до температуры $T=550^{\circ}{\rm C}$.

Таким образом, слоистый оксид перовскита висмута $Bi_3Ti_{1.5}W_{0.5}O_9$ семейства ΦA может стать основой для создания новых высокотемпературных бессвинцовых пьезосегнетоэлектрических материалов.

Благодарности

Южный федеральный университет за использование оборудования и поддержку (грант № 21-19-00423 Российского научного фонда).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- [1] B. Aurivillius. Arkiv. Kemi. **54**, 463 (1949).
- [2] B. Aurivillius. Arkiv. Kemi. 58, 499 (1949).
- [3] B. Aurivillius. Arkiv. Kemi. 37, 512 (1950).
- [4] Г.А. Смоленский, В.А. Исупов, А.И. Аграновская. ФТТ 1, 169 (1959).
- [5] И.Г. Исмаилзаде. Изв. АН СССР 24, 1198 (1960).
- [6] B. Aurivillius. Phys. Rev. 12, 6893 (1962).
- [7] E.C. Subbarao. Am. Ceram. Soc. 45, 166 (1962).
- [8] E.C. Subbarao. Chem. Phys. **34**, 695 (1961).
- [9] E.C. Subbarao. Phys. Rev. **122**, 804 (1961).
- [10] E.C. Subbarao. Phys. Chem. Solids 23, 665 (1962).
- [11] С.В. Зубков, В.Г. Власенко. ФТТ 59, 2325 (2017).
- [12] S.V. Zubkov, S.I. Shevtsova. Adv. Mater. 6, 173 (2020).
- [13] T. Kikuchi. J. Less-Common Met. 48, 319 (1976).
- [14] Neil C. Hyatt, Ian M. Reaney, S. Kevin Knight. Phys. Rev. B 71, 024119 (2005).
- [15] W. Kraus, G. Nolze. PowderCell for Windows. Version 2.3. Federal Institute for Materials Research and Testing, Berlin, (1999).
- [16] В.А. Исупов. ЖНХ 39, 5, 731 (1994).
- [17] V.A. Isupov. Ferroelectrics 189, 211 (1996).

- [18] В.А. Исупов. Неорган. материалы 421, 353 (2006).
- [19] V.M. Goldschmidt. Geochemische Verteilungsgesetze der Elemente. Norske, Oslo (1927).
- [20] R.D. Shannon. Acta Crystallogr. A 32, 75 (1976).
- [21] Shi Luo, Y. Noguchi, M. Miyayama, T. Kubo. Mater. Res. Bull. 36, 531 (2001).

Редактор Ю.Э. Китаев