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Regularities of statistical distributions of a complex of mechanical properties, including the modulus of elasticity

(E), strength (σ ) and strain at break (εb), high-strength industrial oriented polypropylene (PP) fibers have been

analyzed using the Weibull and Gauss models based on a large array of measurements (50 identical samples in each

series). The values of the statistical Weibull modulus (m) — a parameter characterizing the scatter of the measured

values of the data arrays of E, σ and εb have been estimated for the PP samples of two types: single fibers

(monofilaments) and multifilament fibers consisting from several hundred single fibers. For the PP multifilament

fibers, a more correct description of the distributions of E, σ and εb has been received both in the framework of

the normal distribution (Gaussian distribution) and in the framework of the Weibull distribution in comparison with

the description of such distributions for the PP monofilaments. The influence of the polymer chain conformation

on the regularities of the statistical distributions of E, σ and εb for the high-strength oriented polymeric materials

with different chemical chain structures and the correctness of their descriptions in the framework of the Gauss and

Weibull models have been analyzed. For this purpose, the values of m calculated in this work for PP with a helical

chain conformation have been compared with the values of m determined by us earlier for ultra-high molecular

weight polyethylene and polyamide-6 with the chain conformations in the form of an in-plane trans-zigzag.

Keywords: polypropylene, mechanical properties, statistical analysis, Weibull distribution, Gaussian distribution.

DOI: 10.21883/PSS.2022.01.52493.199

1. Introduction

High-strength high-modulus polymeric materials are

promising reinforcing materials for application in vari-

ous current technical fields that require increased me-

chanical characteristics (armor protection, missiles, air-

craft and shipbuilding etc.), since high values of

strength (σ = 2−6GPa) [1–5] and modulus of elasticity

(E = 230GPa) [6], comparable with characteristics of in-

organic materials, can be achieved for them [7–16]. A dis-

tinctive feature of certain polymeric materials (as a rule,

highly-oriented) is the fact that the specific characteristics

of their mechanical properties, standardized according to

material density (ρ), are record-breaking as compared

to all other materials. For instance, the ratio of σ

to ρ for high-strength steel with the currently attained

largest values of σ = 1−2GPa [14–16] with the density of

ρ ≈ 8000 kg/m3 is σ/ρ = (0.13−0.25) · 10−3 GPa ·m3/kg,

while the value of σ/ρ for ultra-oriented gel-fibers

of ultrahigh-molecular weight polyethylene (UHMWPE)
with σ = 6GPa [1–3] and ρ ≈ 1000 kg/m3 can attain

6 · 10−3 GPa ·m3/kg, i.e. be in ∼ 25−50 times greater than

the one for steel. The value of this specific characteristic

for UHMWPE may decrease as compared to other types

of high-strength inorganic materials, e.g., quartz fibers

with σ = 6GPa [9]. It remains rather noticeable even

in this case, because the values of σ/ρ for quartz fibers

at ρ ≈ 2600 kg/m3 will be σ/ρ = 2.3 · 10−3 GPa ·m3/kg,

which is still ∼ 3 times lesser as compared to the value

of σ/ρ for UHMWPE.

However, an inevitable consequence of attained record-

high values of polymeric material strength (up to 6GPa)

is an increase of their rigidity and, consequently, occur-

rence of surface structural defects of the rotation type

under slightest bends and compressions (the so-called

deformation bands that generate localized micro- and

macrocrack [1–3]). These defects were shown in [3] to

cause a significant increase in the scatter of experimental

strength values, revealed during testing of a large number

of identical samples. In such cases, determination of a

statistically reliable averaged value of σ (σav) requires the

obtaining of a large data array (several tens of parallel

measurements) [3,7–13] instead of testing of maximum

five samples usually used in practice [17–22]. This

approach makes it possible not only to determine re-

liably the value of σav, but also to establish the type

of statistical distribution σ , which seems to be very

important for deeper understanding of material fracture

mechanisms.
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A number of papers showed (see, for instan-

ce, [3,5,7–13]) that the most correct description of strength

distribution for brittle and quasi-brittle ultrastrong materials

is provided by the Weibull statistics, initially suggested

exactly for this material class [23]. At the same time,

a Gauss model, most frequently used to describe the

statistics of a wide range of properties, phenomena and

processes of different natures, may turn out to be incorrect

when describing the mechanical properties of ultrastrong

quasi-brittle materials. In our opinion, the reason of

suitability of this or that statistical model is based on

the difference of approaches that underlie the notions

of fracture mechanisms for high-strength oriented and

conventional isotropic materials. In fact, while a Gaussian

distribution (often called a normal distribution) (see, for

instance, [24,25]) presupposes an equal-probability break-

down pattern in the whole sample volume, the key factor

in a Weibull model [3,5,7–13] is the presence of dangerous

defects (micro- and macroscopic cracks localized on the

sample surface). Moreover, as has been show in our

previous papers [3,26–30], the correctness of applicability of

this or that statistical model is determined by the material’s

deformational resource, i.e. the material brittleness/plasticity

ratio. Actually, in some cases (for more plastic materials)
we have demonstrated the manifestation of

”
statistical

dualism“, which means that one and the same array of

experimental strength values can be described using both

a Gauss model and a Weibull model [27–29]. It must

also be noted that, in this case, the type of the sample

of a high-strength oriented polymeric material turned out

to be critical, in particular, whether the sample is a single

monofiber having a sufficiently large (for fibers) cross-

section diameter (∼ 100−200µm) or a combination of

several hundred thinner single fibers (having a diame-

ter ∼ 1µm) in the form of a bundle which, as such, is

a statistical object. We think that this circumstance is a

favorable factor for correct applicability of Gaussian statistics

for a multifilament sample, even if the sample is quasi-

brittle.

It must also be noted that the applicability of the

Weibull model is not limited solely to a description of

strength distribution, but can be extended also to a de-

scription of statistics of other equally important mechanical

characteristics — elasticity modulus and strain at break

(εb) [27,29]. Consequently, there is a possibility for a

more complete characterization of high-strength oriented

polymeric materials by extending the number of analyzed

statistical mechanical properties.

A series of our previous papers [3,26–30] outlines a

detailed study of statistical regularities in mechanical be-

havior of high-strength oriented polymeric materials based

on linear polymers, UHMWPE and polyamide-6 (PA-6),
having a chain conformation (mutual arrangement of chain

sections in space) in the form of a flat trans-zigzag [31].
However, to our knowledge, polymer-based high-strength

materials with a significantly different type of chain confor-

mation have not been studied in this context. One of such

polymers is polypropylene (PP) with a heliciform chain

conformation [31]. It can be expected that a change in

chain conformation type can significantly affect the pattern

of statistical distribution of PP-based materials’ mechanical

properties.

Thus, the goal of this paper is an analysis of statistical

distribution of a complex of elastic and deformation-

strength properties of oriented single and multifilament

polypropylene fibers while using the Gauss and Weibull

statistical models.

It should be noted that the Gauss model is the most

widespread one in statistical analysis of databases of dif-

ferent natures, while the Weibull model is less frequently

used for these purposes. Therefore, let us consider the main

provisions of the Weibull model in more detail.

2. Weibull statistics

In a statistical Weibull model, the fracture probability

for identical samples at a given or lower value of applied

mechanical stress σ is determined as

P(σ ) = 1− exp[−(σ/σ0)
m], (1)

where m is the so-called Weibull modulus, a statistical

parameter which is measure of dispersion of measurement

results, σ0 is the scale parameter which has the physical

meaning of an average strength value (σav) [7–13,32]. To

perform an analysis, the obtained array of test results

for n samples is arranged in an increasing order of

the value of σ and is converted into an experimental

distribution of probabilities with assignment of the total

fracture probability P j to the j-th result. The value

of P j is determined by means of rather simple equa-

tions P j = f ( j, n), the most correct of which is the

equation (2) [32]:

P j = ( j − 0.5)/n. (2)

After double logarithmation of the left and right members

of the equation (1) and replacement of P(σ ) by P j we get

the equation (3):

ln ln[1/(1− P j)] = −m · ln σ0 + m · ln σ. (3)

Equation (3) is rather a simple linear equation

y = a + bx , (4)

where y = ln ln[1/(1 − P j)], a = −m lnσ0, b = m and

x = ln σ . Having determined m as the inclination angle of

dependence ln ln[1/(1 − P j)] = f (ln σ ) using the standard

linear regression analysis procedure, we can determine the

parameter σ0 by solving the equations (5) and (6):

lnσ0 = −a/m, (5)

σ0 = exp(−a/m). (6)
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The distributions εb and E can be analyzed in a similar

way [27,29]:

ln ln[1/(1 − P j)] = −m · ln ε0 + m · ln εb, (7)

ε0 = exp(−a/m), (8)

ln ln[1/(1 − P j)] = −m · lnE0 + m · lnE, (9)

E0 = exp(−a/m). (10)

Equations (7) and (9), where x = ln εb or lnE , and

a = −m · ln ε0 or −m · lnE0, also represent a simple linear

equation (4), which makes them attractive for analyzing

large arrays of measurements of εb and E .

3. Experimental part

3.1. Samples

The samples for the study were high-strength oriented

industrial monofibers with a sample diameter of 0.17mm

and multifilament PP fibers (made in Russia) having a linear

density of 1600 tex (this corresponds to an effective sample

diameter of 0.05mm).

3.2. Mechanical tests

To estimate strength, the samples of mono- and multifila-

ment fibers having a length of 50 cm were elongated on an

Instron-1122 tensile testing machine at room temperature

at a cross-head speed of 200mm/min in compliance with

GOST 6611.2-73, i.e. with a deformation rate of 0.4min−1.

Special cylindrical clamps from the manufacturer were used

for the studied samples; the clamps were used to fasten and

wind several fiber turns onto the cylinders’ surface in order

to prevent sample’s slipping from the clamps. To obtain

statistically reliable results, we tested 50 identical samples

of PP mono- and multifilaments each, i.e. 100 samples

in total.

4. Results and discussion

Figure 1 shows the typical stress-strain curves for samples

of PP mono- and multifilaments. It is seen that the

value of strain at break εb is about 10% for the samples

of two types, which in the first approximation makes

it possible to classify them as quasi-brittle materials, for

which fulfillment of the equation (3) for strength can be

anticipated within the Weibull model framework. For

this purpose, the strength measurement results were ar-

ranged in an increasing order of their values depending

on sample number n (see Fig. 2, a) and then rebuilt

in coordinates ln ln[1/(1 − P j)] = f (ln σ ) (see Fig. 2, b).
The results of analysis of the obtained data are given

in Table 1. Linear approximations of each of the de-

pendencies given in Fig. 2 during computer processing

with the use of one straight approximating line (standard
Weibull distribution function) were obtained with rather
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Figure 1. Stress-strain curves for high-strength oriented

mono- (1) and polyfilament PP fibers (2).

high values of the determination coefficient R2 > 0.95.

Consequently, the results of the performed approximation

seem to be correct. Thereat, it can be noted that the

approximation for the multifilament (R2 = 0.973) seems

to be more correct as compared to the monofilament

(R2 = 0.954). Moreover, it is also necessary to note

a twofold increase in the value of m for the multi-

filament (m = 23.02) as compared to the monofilament

(m = 12.02), which means a significantly more narrow

distribution of the experimental values for the multifilament

samples.

In principle, during a more detailed consideration of

the curves ln ln[1/(1− P j)] = f (ln σ ), given in Fig. 2, b,

each of the considered dependences, in particular the

monofiber curve, can be described using two approximating

lines with different inclinations: m = 20.38 and m = 8.20

for the monofiber and m = 29.80 and m = 15.20 for

the multifilament sample. In this case, the results of

computer processing of experimental strength values with

R2 = 0.980 and 0.986 (as compared to R2 = 0.973 while

using a straight line with one inclination) and R2 = 0.960

and 0.975 (as compared to R2 = 0.954 for a straight line

with one inclination) for multi- and monofilament samples,

respectively, turn out to be more correct. It should be

noted that steeper sections, by definition corresponding to

a smaller data spread, are typical for lower values of σ for

the samples of two types.

Figures 2, c and 2, d show the histograms of the probabil-

ity density function (PDF), obtained using the universally

adopted approach (see, for instance, [24,25]), for the

strength of a single fiber (c) and multifilament (d), analyzed
with computer processing of the data given in Fig. 2, a,

using the Gaussian function. The approximation results

are shown by solid lines. It follows from the obtained

processing results that, on the whole, the histograms for

the samples of two types can be satisfactorily described

by means of enveloping bell-shaped curves. However,

Physics of the Solid State, 2022, Vol. 64, No. 1
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Figure 2. a — tensile strength σ in the increasing order of its value depending on sample number n for single (1) and multifilament fibers

of oriented PP (2); b — Weibull diagrams plotted using the data presented in (a); the solid and dashed lines show the results of linear

approximation in case of the use of a straight line with one inclination and two straight lines having different inclinations, respectively;

c, d — histograms of the probability density function (PDF) for strength of a single (c) and multifilament PP fiber (d) and their description

with the use of the Gaussian function (solid bell-shaped curves).

Table 1. Results of strength distribution analysis for high-strength mono- and multifilament polypropylene fibers within the Weibull

model framework

Sample type y = a + bx R2 m σ0, MPa σav, MPa σ0/σav

Monofilament y = −76.68 + 12.02x 0.954 12.02 590 570 1.04

y = −128.89 + 20.38x∗ 0.960 20.38 560 570 0.98

y = −52.29 + 8.20x∗ 0.975 8.20 590 570 1.04

Multifilament y = −130.45 + 23.02x 0.973 23.02 290 280 1.04

y = −168.44 + 29.80x∗ 0.980 29.80 286 280 1.02

y = −85.99 + 15.20x∗ 0.986 15.20 287 280 1.03

Note. ∗ approximation in case of the use of two linear sections having different inclinations.

the theoretical distribution curve for the multifilament (see

Fig. 2, d) more correctly describes the experimental data

(R2 = 0.751), as compared to the monofilament curve (see

Fig. 2, c, R2 = 0.563). Consequently, a description of

strength distribution for oriented PP fibers in the form of

multifilaments is more correct as compared to a description

of strength distribution for oriented PP fibers in the form

of monofilaments when using both the Weibull function

and the Gaussian function. In other words, the sample

type considerably affects the degree of strength distribution

homogeneity. Such behavior can be due to the following

reasons.

Physics of the Solid State, 2022, Vol. 64, No. 1
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Figure 3. a — strain at break εb in the increasing order of its value depending on sample number n for single (1) and multifilament

fibers of oriented PP (2); b — Weibull diagrams plotted based on the data presented in (a) (the same designations); the solid and dashed

lines show the results of linear approximation in case of the use of a straight line with one inclination and two straight lines having

different inclinations, respectively; c, d — histograms of the probability density function (PDF) for strain at break of a single fiber (c) and

multifilament PP fiber (d) and their description with the use of the Gaussian function (solid bell-shaped curves).

As already noted, the multifilament sample (cord),
comprising several hundred (∼ 200) thin monofibers (fila-
ments), is an object, apriori endowed with a statistical

nature and is statistically more homogeneous as compared

to the monofiber. Integral mechanical load applied to the

cord will be distributed comparatively uniformly among its

multiple filaments. Therefore, the presence of single dange-

rous structural defects (surface microcracks that initiate the

fracture process) in some monofibers of such a cord will not

necessarily cause the fracture of the whole sample, because

a crack in one filament will stop propagating when it

encounters another filament. This situation is fundamentally

different from deformation of the monofiber, for which even

a single dangerous defect (one microcrack) may initiate the

fracture of the whole sample.

It should be also noted that the linear approximation

results obtained using the Weibull model (R2 > 0.95) seem

to be more correct as compared to the approximation

results obtained using the bell-shaped Gaussian curves

(R2 < 0.76). The obtained result means that, despite

the more complex nature of bell-shaped dependences as

compared to linear dependencies, which presupposes a

lesser convergence of data (decrease of R2) in the first

case, the fracture mechanism for the studied mono- and

multifilament PP fibers to a greater extent corresponds to

quasi-brittle materials than to plastic ones.

While using the above-mentioned approaches, let us

analyze the nature of the statistical distributions of another

mechanical characteristics at fracture of oriented PP multifil-

aments (strain at break εb). For this purpose, the two large

arrays with the measured values of εb (50 values for each of

the two sample types), considered in Fig. 3, a, were rebuilt

in Weibull coordinates ln ln[1/(1− P j)] = f (ln εb) (see
Fig. 3, b). Then they underwent linear approximation by

computer processing in order to find out their compliance

with the equation (7). The analysis results are given in

Table 2. It is seen that, when an approximating line with one

inclination is used (standard Weibull distribution function),

Physics of the Solid State, 2022, Vol. 64, No. 1
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Table 2. Results of strain at break distribution analysis for high-strength mono- and multifilament polypropylene fibers within the Weibull

model framework

Sample type y = a + bx R2 m ε0,% εav, % ε0/εav

Monofilament y = −18.01 + 7.08x 0.937 7.08 12.7 11.7 1.09

y = −32.89 + 13.45x∗ 0.966 13.45 11.6 11.7 0.99

y = −12.54 + 4.96x∗ 0.974 4.96 12.6 11.7 1.08

Multifilament y = −35.88 + 15.15x 0.971 15.15 10.7 10.3 1.04

y = −69.86 + 30.40x∗ 0.988 30.40 9.97 10.3 0.97

y = −29.09 + 12.29x∗ 0.988 12.29 10.7 10.3 1.00

No t e. ∗ approximation in case of the use of two linear sections having different inclinations.

the obtained dependence is characterized by determination

coefficients R2 = 0.94 and 0.97 for mono- and multifilament

fibers, respectively.

This means that the approximation result seems to be

correct for the multifilament, but for the monofilament it

is better to use two tangent lines, since the value of R2

upon transition from a single inclination to two inclinations

increases from 0.94 to 0.97. A similar procedure for

analysis of a multifilament curve makes it also possible

to considerably increase approximation reliability (increase
of R2 from 0.97 to 0.99). Consequently, in any case, when

we compare the results of approximation both using two

segments of straight lines having different inclinations and

one straight line with a single inclination, values of m for

the multifilament is always 2−2.5 times greater than the

corresponding values of m for the monofilament.

Thus, as in the previously considered case for breaking

strength, the distribution of strain at break for the samples of

multifilament PP fibers is significantly narrower as compared

to its distribution for single PP fibers.

Let us also note that the ratio of the parameter ε0,

calculated using the equation (8), to the average value

of εb, εav, in all the considered cases is ε0/εav ≈ 1 (see
Table 2), which also confirms the correctness of Weibull

model application for analyzing the statistical distribution εb

of high-strength PP mono- and multifilaments.

The results of the statistical analysis for the values

of εb within the Gauss model framework are given in

Figs. 3, c and 3, d. It is seen that the distribution curve

for the multifilament (see Fig. 3, d) is more symmetrical

as compared to the curve for the monofilament (see
Fig. 3, c). Moreover, approximation for the multifilament

is characterized by a higher value of R2 = 0.766 as

compared to the monofilament (R2 = 0.593). Consequently,
a description of the distribution εb within the Gauss model

framework for the multifilament is more correct than for the

monofilament.

A comparison of the results of computer processing of

values εb with the use of two different statistical models

shows that the linear approximation results obtained using

the Weibull model (R2 > 0.93) seem to be more correct

as compared to the approximation results obtained using

bell-shaped Gaussian curves (R2 < 0.77), as in the strength

case considered above. They confirm the above-mentioned

conjecture on correspondence of the fracture mechanism for

the studied mono- and multifilament PP fibers to the fracture

mechanism for quasi-brittle materials, where the main role

in the sample fracture plays surface cracks.

Let us consider the peculiarities of statistical distributions

for another very important mechanical characteristic during

practical application of high-strength oriented PP fibers —
their elasticity modulus E . For this purpose, the two

arrays of the values of E for PP mono- and multifilaments,

shown in Fig. 4, a, were analyzed in compliance with the

Weibull model (see Fig. 4, b and Table 3) and Gauss model

(see Figs. 4, c and 4, d). As is seen from the results of

computer processing for the Weibull diagrams given in

Fig. 4, b and in Table 3, approximation of a straight line with

one inclination can be considered as satisfactory only for

PP multifilaments (m = 21.54, R2 = 0.939). It is unsatisfac-
tory for PP monofilaments (m = 11.20, R2 = 0.866), which

requires approximation using two tangent straight lines to

the analyzed curve. This procedure yields the values of

m = 125.75 and m = 7.71 for regions with lower and higher

values of E , respectively.
It should be noted that the very high value of m ≈ 126,

calculated for the given statistical characteristic in the

region of lower values of E < 8GPa, does not seem

to be unrealistic, since it is comparable to the val-

ues of m = 74−76 and m = 98, obtained for ultrastrong

(σ = 4−6GPa) fibers of the organic (UHMWPE [3,26])
and inorganic natures [7–13], respectively. The fact of

a considerable exceedance (by more than one order of

magnitude) by value m = 126 of value m ≈ 8, calculated

for the region of higher values of E > 8GPa, means an

abrupt decrease of the data spread for PP monofilament in

the region of lower values of E . One is inclined to think

that a certain part of the tested PP monofilaments (∼ 25%),
owing to the comparatively large fiber diameter (170µm),
underwent less homogeneous deformation along the sample

cross-section in the course of manufacture. This caused the

attainment of lower, but better reproducible values of E .
If we analyze the dependence ln ln[1/(1 − P j)]

− lnE in Fig. 4, b for multifilaments by approximation with

the use of two tangent lines, then the value of m = 29.06

obtained at lesser values of E will be also greater than

the value of m = 17.98 for greater values of E , as in

the monofilament case. However, the ratio of these two
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Figure 4. a — elasticity modulus E in the increasing order of its value depending on sample number n for single fibers (1) and

multifilaments of oriented PP (2); b — Weibull diagrams plotted using the data presented in (a); the solid and dashed lines show

the results of linear approximation in case of the use of a straight line with one inclination and two straight lines having different

inclinations, respectively; c, d — histograms of the probability density function (PDF) for the elastic modulus of a single fiber (c) and

polyfilament PP (d); solid bell-shaped curve on (d) — result of computer processing when using the Gaussian function.

Table 3. Results of analysis of elasticity modulus distribution for high-strength polypropylene mono- and multifilaments within the

Weibull model framework

Sample type y = a + bx R2 m E0, GPa Eav , GPa E0/Ec p

Monofilament y = −24.67 + 11.20x 0,866 11.20 9.06 8.64 1.05

y = −259.02 + 125.75x∗ 0.723 125.75 7.85 8.64 0.91

y = −16.88 + 7.71x∗ 0.927 7.71 8.94 8.64 1.03

Multifilament y = −30.64 + 21.54x 0.939 21.54 4.15 4.00 1.04

y = −40.95 + 29.06x∗ 0.969 29.80 4.10 4.00 1.02

y = −25.38 + 17.98x∗ 0.964 17.98 4.11 4.00 1.03

No t e. ∗ approximation in case of the use of two linear sections having different inclinations.

values of m is considerably lesser than (∼ 29/18 < 2) as

compared to the corresponding ratio of the values of m for

monofilaments (∼ 126/8 > 10). It means that scatter of

the values of E for multifilaments is more homogeneous as

compared to monofilaments.

Let us also note the closeness of the average measured

values of E, Eav, and theoretical values of E0, calculated

using the equation (10), for all the cases considered above.

The observed fulfillment of the condition E0 ≈ Eav (see

Table 3) confirms the correctness of the performed analysis
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Table 4. Values of statistical Weibull modulus m, calculated from

the distribution curves of σ , εb and E for high-strength mono- and

multifilament polypropylene fibers in linear approximation using

one inclination

Sample type
Characteristic

σ εb E

Monofilament fiber 12.02 7.08 11.20

Multifilament fiber (cord) 23.02 15.15 21.54

of the statistical distributions of E within the Weibull model

framework.

In conclusion, let us consider the PDF histograms de-

pending on the value of E (see Figs. 4, c and 4, d) to find out

their correspondence to the Gaussian distribution. It follows

from the data in Fig. 4, c that an enveloping bell-shaped

curve cannot be obtained for a single fiber with computer

processing of the experimental data. At the same time,

such a curve, typical for a normal distribution (or Gaussian
distribution), is observed for the multifilament (see Fig. 4, d).
The revealed difference can be due to the following reasons.

It appears that in the case of multifilaments, consisting of

several hundreds of very fine (∼ 1µm) monofiber threads

(monofilaments), the applied integral mechanical tensile

load is averaged among a large number of monofilaments,

thereby preventing the detection of an abrupt boundary of a

crossover of a change in E , revealed for a single fiber. Such

behavior can be also explained by more perfect orientation

drawing when producing monofilaments (PP) as compared

to the technology of PP multifilament production, which is

confirmed by higher (in 2 times) values of E and strength

for monofilaments as compared to the values of E and σ

for multifilaments (see Fig. 4, a and Fig. 2, a).
The summary Table 4 summarizes the statistical analysis

results for the distribution curves of σ , εb and E for high-

strength mono- and multifilament PP fibers, obtained by

linear approximation of Weibull diagrams with the use of

one inclination. It is necessary to note that, the value

of m for multifilaments is always ∼ 2 times greater than

the corresponding value of m for monofilaments for all

the three studied mechanical characteristics. In other

words, the established difference between the values of m
for the samples of two types is a constant, both for

the elasticity modulus (E) and for mechanical breaking

characteristics (σ and εb). This circumstance seems to

be rather unexpected because these two different types

of mechanical characteristics are controlled by different

molecular-structural mechanisms. As is known [3,7–12], the
critical role in case of breaking characteristics is played by

surface cracks, while in case of determination of E , at the
initial deformation stages, the cracks’ role is negligible, and

the main role is played by rigidity of an individual chain.

The higher values of m for multifilaments, which mean

a lesser data scatter, can be related to the already noted

statistical nature of the multifilament sample, which ensures

a more uniform (as compared to the monofiber) distribution
of the applied mechanical load among multiple filaments.

Regarding the approximation results for the distribution

curves of σ , εb and E within the Gauss model framework,

the bell-shaped curves, typical for the given distribution

type, for PP multifilaments were obtained for all the

three studied mechanical characteristics (see Figs. 2, d,

3, d and 4, d). At the same time, such curves for

PP monofilaments can be obtained only for strength and

strain at break (see Figs. 2, c and 3, c), thereat, their

shape is considerably more asymmetric as compared to

multifilaments. In other words, on the whole, the computer

processing results for monofilaments seem to be less correct

than for multifilaments.

Thus, the statistical distributions of all the three studied

mechanical characteristics (strength, strain at break and the

elastic modulus) for PP multifilaments can be described

correctly both within the Weibull model framework and

within the Gauss model framework when analyzing the

same experimental results. In our opinion, in this case the

”
dualism“ of statistics of σ , εb and E manifests itself; we

have observed it earlier for the strength of multifilament

fibers of PA-6 [28] — a polymer with a different chain

conformation type: in-plane trans-zigzag.

The revealed manifestation of the statistical dualism in the

distribution of elastic and deformation-strength mechanical

characteristics for PP-based materials can be caused by

the following factors. On the one hand, though the

values of εb = 8−17% for the studied plastic polypropylene

materials exceed the values of εb < 5% for quasi-brittle

materials, for which the Weibull model was the most

efficient, both deformation intervals εb are same-order

values. Therefore, applicability of the Weibull model is also

possible in the interval εb from 8 to 17%. On the other

hand, it has turned out that the Gaussian statistics is also

applicable for multifilament samples, because this material is

statistically more homogeneous (several hundreds of single

fibers deform simultaneously). This system corresponds

to a normal distribution of the fracture process along the

sample cross-section, regardless of the fracture mechanism.

Moreover, multifilament PP fibers are characterized by rel-

atively small values of the elasticity modulus E = 3−5GPa

and greater values of strain at break (8−17%), i.e. they

have a certain plasticity resource. This circumstance is also

a favorable factor for correct description of the statistical

distribution of mechanical characteristics within the Gauss

model framework.

The values of m = 7−23 determined in this paper

for high-strength mono- and multifilament PP fibers (see
Table 4), in particular for multifilaments (m = 15−23),
are higher as compared to the values of m from the

literature for ultrastrong ultra-oriented (drawn in 120 times)
UHMWPE samples (m = 7−10) [26,27,30], quartz

(m = 12) [9], ceramic (m = 8−9) [7], glass and carbon

fibers (m = 3−11) [8,13], as well as carbon nanotubes

(m = 3−7) [11]. This means a lesser scatter of the

experimental data in the case of PP-based materials;
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it can be explained by the more pronounced plastic-

ity of the studied PP fibers (greater strain at break

εav = 10−11%) as compared to quasi-brittle ultrastrong

materials (εav < 5%). This argument correlates with the

observation of higher values m = 43−45 for strength of a

rather plastic soft high-strength material — polyamide-6

(εb = 16%) [28,29]. Moreover, the strength of PP plastic

fibers (εav = 0.3−0.6GPa) is significantly, by an order of

magnitude, lower as compared to the strength of brittle

ultrastrong materials (εav = 2−6GPa), which may also lead

to an increase in the data scatter (a decrease in the values

of m) for the latter ones.

It should be also noted that the Weibull modulus

values m = 7−23 for the PP-based materials (heliciform
chain conformation) are intermediate between the values

of m = 7−10 and m = 43−45 [3,26–30], calculated by

us for the materials based on UHMWPE and PA-6,

respectively, that have the conformation of in-plane trans-

zigzag. Consequently, the impact of the chain conformation

type on the value of scatter of mechanical characteristics

of polymers’ oriented fibers is ambiguous. Its clarification

requires further additional studies involving polymeric ma-

terials having other types of the chain chemical structure.

5. Conclusion

Using the example of high-strength polymeric materials

(multifilament PP fibers with a heliciform chain con-

formation) it has been shown that the distributions of

elastic (E) and deformation-strength mechanical characte-

ristics (σ and εb) can be correctly described using two

statistical approaches, the Weibull and Gauss approach,

which are based on different concepts for describing the

probability of material mechanical fracture. The obtained

data confirms the occurrence of statistical dualism in

the distribution of mechanical properties, which we have

found earlier [26–30] for high-strength materials based

on other polymers (UHMWPE and PA-6 with the chain

conformation of the in-plane trans-zigzag type).
The parameters of the Weibull distribution for the

oriented mono- and multifilament PP fibers have been

determined based on a large statistical data array (50 mea-

surements of identical samples for each material type). It

was established that the values of the statistical Weibull

modulus m (data scatter characteristics) for each of the three

studied mechanical properties of the multifilament fibers are

2 times greater than the corresponding values of m for the

single fibers. This means that the data scatter during me-

chanical tests of multifilament fibers is much lesser than for

the monofibers. This result is related to a more pronounced

statistical homogeneity of the multifilament fibers composed

of several hundreds of thin single fibers. The results of this

paper confirm the significant impact of the sample type on

the specificity of experimental data scatter, found previously

for the UHMWPE-based ultrastrong materials [30]. It was

shown that the impact of the chain conformation on the

value of mechanical characteristics scatter is ambiguous and

requires further clarification.
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