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Within the framework of the quantum-statistical functional and the Ritz method, the the problem of finding the

surface energy per unit area and work function electrons of a metal flat surface with a inhomogeneous dielectric

coating, taken into account in the approximation of a continuous medium. For a uniform coating, the calculated

values are insensitive to the selection one-parameter functions for an electronic profile, but sensitive to the gradient

series of kinetic energy non-interacting electrons. Calculations are performed for Al, Na and the comparison with

the calculations by the Kohn–Shem method is made. Analytically the connection between the theory of the Ritz

method for inhomogeneous coatings and calculations by the Kohn–Shem method work function of electrons for

metal-dielectric nanosandwiches. As it turned out, the influence inhomogeneous coating on the characteristics of

the metal surface can be scaled down to a uniform coverage case. The possibility of using the obtained results in

various experimental situations are discussed.
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1. Introduction

Studies of electronic properties of a metal surface with a

complex coating are of interest for modern technologies in

the creation, for instance, of materials having a significant

sensor response and selectivity. The end task of the coating

industry is the engineering of
”
smart“ coatings that retain

their properties in unpredictable conditions.

The complexity of the making of appropriate study

objects and measurement methods is evidenced by the

comparatively small number of experimental studies, the

goal of which is usually quantum-size effects. One of

the most important equilibrium characteristics of metal

nanostructures is the electron work function.

Films (plates), grown on various substances [1–3], are

of technological interest. For instance, the paper [3]
experimentally studied the Pb(111) films having thickness L
of 1 to 16 monolayers grown on the Ge(111) substrate.

The work function to vacuum was measured by the

photoemission spectroscopy method.

In a continuous medium approximation, when calculating

metal-dielectric interfaces, the insulator is characterized by

the dielectric constant ε only. Within the framework of

this approach, with the use of local density approximations

(LDA), multiple calculations of polarizability and surface

plasmonic resonance in metallic nanospheres and threads

in different dielectric matrices, nanofilms on dielectric

substrates have been performed (see, for instance, [4]),
and a change in the sign of positron work function

depending on ε of the metal dielectric coating has been

predicted [5]. We used the Kohn–Sham method to calculate

the surface characteristics of metal-dielectric nanosand-

wiches [6,7].

Schottky barrier height 8 for the metal-insulator contact

is estimated based on the Schottky–Mott rule [8,9] with

characteristics of the metal and the insulator isolated from

each other

8 ≈ W − χ, (1)

where W and −χ are the electron work function from

metal to vacuum and depth of location of the electron

conductivity band in the insulator prior to contact. In

case of small gaps of the metal and the insulator, the

tail of the electron distribution of a metal is affected by

insulator polarization. The rule (1) can be clarified by

introducing a dependence W (ε), where ε is the dielectric

constant of the insulator. Then, based on the analysis, it

can be assumed that the authors [3] observed Fermi level

pinning in a Pb(111) film: all values of W (ε, L) are below

approximately 4 eV (this values corresponds to χ for Ge),
while dimension fluctuations are 1W (ε, L) ∈ (0.2, 0.5) eV.
We obtained approximately such values of 1W (L) [7] for

Vacuum/Al/Al2O3 in the absence of pinning (experimental

values of the Al and Pb work function are close to each

other).
The problem of describing a metal with inhomogeneous

coating is directly related to the issue of anisotropy of

the work function or of local work function, which as

such corresponds to the local value of effective one-

electron potential, dependent on coordinates [10–15].
Such studies are usually conducted either by the Kohn–
Sham method [12,14], or by ab initio methods [11,13,15],
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which often prevent from making a detailed analysis of the

obtained results. Such an analysis is possible within the

framework of the variational Ritz method using the simplest

trial functions that model the electron density profile.

The work goal is determination of the work function and

surface energy of a flat metal surfaces, areas whereof are

coated with various dielectrics, by the Ritz method.

2. Problem formulation

According to the work goal, it is technically convenient, at

first thought, to use the cylindrical coordinate system. For

instance, let us imagine that a part of the surface on the

butt of a macroscopic cylinder is coated with a dielectric,

while the remaining cylinder surface is coated with another

dielectric. A limit transition to an infinite cylinder radius

is complicated by the arising uncertainties, in particular, the

electrostatic part of the problem. This makes us use the

spherical coordinate system.

Let us consider a macroscopic metallic solid sphere of

radius R, coated with a layer of dielectrics having different

constants εi (continuous medium approximation).
Guiding by the experience outlined in our previous

paper [14], we have adopted infinitely large dielectric

thickness to simplify calculations. The rather fast decrease

of electron distribution outside the metal (approximately

to the distances of 5−10 Angstrom) makes it possible

to neglect the effect of the thickness of this coating, the

minimum thickness of which must be much greater than the

monoatomic (or monomolecular) dielectric layer. Free-path

length of electrons in dielectrics is tens of Angstrom [16].
For an analytical solution of the problem, let us assume

that only two dielectrics 1 and 2 (i = 1, 2) are adjacent on

a metallic surface. The dielectric region with ε1 can be set,

for instance, by the polar angle θm (Fig. 1). Figure 1 in

case of ε2 = 1 can be applied to a metal drop lying on a

dielectric substance with ε1.

By setting a fraction of the

α = S1/S (2)

sphere surface occupied with dielectric 1 (S1=2πRh, h is

the spherical segment height), we obtain a value of the

boundary angle

cos θm = 1− h/R = 1− 2α. (3)

Distribution of positive (ionic) charge in the metal jelly

model is homogeneous and isotropic, and is set by the

Heaviside function

ρ(r) = ρ̄2(r − R), ρ̄ = n̄ (4)

(it is identical for regions 1 and 2), 2(r − R) =

= {1, r ≤ R; 0, r > R}. Here, n̄ =
(
4πr3s /3

)−1
is the

electron gas concentration in the metal volume, r s is the

average distance between electrons.

R

e2

e1

R

q
m

h

z

Figure 1. Geometric layout of a metallic surface coated with two

different dielectrics.

In the isotropic case, by the example of a jelly-sphere in

vacuum (εi = 1), with a limitation to electron profiles n(r)
in the form of one-parameter trial functions (the Ritz

method), it is known that the electron cloud effective

radius R′ differs from R [17]. This difference is ∝ R−1

and is found from the electroneutrality condition
∫

dr ν(r) = 0, ν(r) ≡ n(r) − ρ(r). (5)

Acting differently, for a jelly-sphere in vacuum (the same

can be also affirmed for a ball with homogeneous dielectric

coating), let us equate the electron cloud radius R′ to the

ion jelly radius R, and let us chose a profile as follows

n(r) = n̄





1− Ae(r−R)/λ, r ≤ R,

Be(R−r)/λ, r > R,
(6)

A =
1

2
f , B = 1− A, (7)

where f takes into account the difference of R′ from R.
By integration in (5) we obtain

f = 1 +
2

β
−

4

β3
, (8)

where β = λ/R ≪ 1.

In the flat case (R → ∞, z = r − R), the coeffi-

cients A = B = 1/2 match the profile suggested in [18]
in the discussion of electron work function for different

crystallographic metal edges and used for the first time in

the density functionality method for a flat metallic surface

in [19].
In compliance with Fig. 1, each region corresponds to

its own profiles. We will use (6) as the first step and

for a ball with inhomogeneous coating, by introducing the

corresponding indices for n(r), A, B, f

ni(r) =

{
n1(r), θ ∈ (0, θm),

n2(r), θ ∈ (θm, π),
(9)
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It is known that electron work function W (ε) for metals

with a homogeneous coating decreases as ε increases [14].
Application of different dielectrics (ε1 6= ε2) on a metal

surface will cause electron liquid flow-over near the surface

from region 1 into region 2 (or vice versa) due to the arising

contact potential difference. The distributions n1(r) or n2(r)
in this case will shift to opposite sides along the normal

line deep either into the metal or the dielectric. This effect

can be reflected by introducing the parameter δ into the

corresponding coefficients (7):

Ai =
1

2
f i + δi , B i = 1− Ai .

The parameters A1,2, B1,2 and λ1,2 characterize the

dimensions of the local dipole barriers for the regions 1

and 2.

Integration into (5), taking into account (6)−(9) and (3),
results in a ratio

δ1 = −

(
α

1− α

)
λ2

λ1
δ2 + O

(
1

β2
1

,
1

β2
2

)
. (10)

It is interesting to note that the parameters δi in the

flat case (R → ∞, z = r − R) should give a nonvanishing

contribution to (5), which is related to the fixed value of the

coefficient α regardless of transition R → ∞. The opposite

sign of δ1 and δ2 means a loss of local electroneutrality in

regions 1 and 2 due to electron flow-over, but the sphere’s

full electroneutrality is maintained. In case of α = 0, 1, we

have λ1 = λ2 and δ = 0 (homogeneous coating), and in case

of α = 1/2, when the sphere area halves are coated with

different dielectrics, δ1 = −(λ2/λ1)δ2.
By using (4) in the flat case and calculating the number

of electrons flowing over from one region to another, an

equation can be made up

ρ̄[(1− α)S δ1] = −ρ̄(αS δ2),

from which it follows that

δ1 = −

(
α

1− α

)
δ2. (11)

Then, by comparing (10) and (11) for the chosen class of

trial functions, we obtain an important condition

λ1 = λ2. (12)

Let us first consider the case α = 0, 1 in Fig. 1 in the limit

R → ∞ — a flat metal surface coated with homogeneous

dielectric.

3. Homogeneous coating of a flat
surface

In a model of conventional jelly (J) and the Ritz method

we use a one-parameter electron profile n(z ) and a ho-

mogeneous distribution of a positively charged background

ρ(z ) = n̄2(−z ). The quantum-statistical functionality with

volume density of electron energy g in LDA consists

of: quasi-homogeneous kinetic energy of non-interacting

electron gas (hereinafter the Hartree atomic units are used)

g t(n) = n
3

10
(3π2n)2/3;

terms of Weizs’cker–Kirzhnits–Hodge gradient decomposi-

tion [20] of kinetic energy, which contains the even powers

of gradients

gg ≡ gg1 + gg2 + gg3 + gg4 =
|∇n|2

72n
+

n1/3

540(3π2)2/3

×

[(
∇2n

n

)2

−
9

8

(
∇2n

n

) ∣∣∣∣
∇n
n

∣∣∣∣
2

+
1

3

∣∣∣∣
∇n
n

∣∣∣∣
4
]
; (13)

Dirac exchange energy

gex(n) = −n
3

4π
(3π2n)1/3

and Pines–Nozieres correlation energy

gcor(n) = n
[
0.0474 + 0.0155 ln(3π2n)1/3

]
.

The non-local (electrostatic) component of energy is as

follows

Eq(n) =
1

2

∫
drφ ν (14)

[value of ν was determined in (5)].
Electrostatic potential φ is found by solving the Poisson’s

equation

∇2φ(z ) = −
4π

ǫ(z )
ν(z ) (15)

with a boundary condition φ(z ) → 0 at z → +∞. The

function ǫ(z ) is equal to 1 inside the metal, where the

electrons and ions are in vacuum, and is equal to ε outside

the metal. A solution of the equation (15) is as follows

φ(z ) = φ̄ − 4π

z∫

−∞

dz ′ (z − z ′)
ν(z ′)

ǫ(z ′)
(16)

with a potential value in the metal depth

φ̄ ≡ φ(−∞) = −4π

+∞∫

−∞

dz z
ν(z )

ǫ(z )
< 0. (17)

Specific surface energy in the conventional jelly model is

by definition equal to

σJ =

∞∫

−∞

dz

[
g(n(z )) +

1

2
φ(z ) ν(z ) − g(n̄)2(−z )

]
, (18)

while in the stable jelly model [21,22]

σ = σJ + 〈δv〉WS

∫ 0

−∞

dz ν(z ). (19)
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Table 1. Values of the coefficients in expression (26), calculated using the functions (21) (upper value) and (22) (lower value)

Cq C t Cex Ccor · 10
3 Cg1 · 10

3 Cg2 · 10
4 Cg3 · 10

4 Cg4 · 10
4 CWS

0.785 −1.842 0.2502 6.589 9.627 5.115 −4.832 1.611 −1/2

1.886 −2.179 0.3288 3.499 6.944 2.861 −3.359 1.120 −0.693

Stabilization potential is as follows

〈δv〉WS = 2
(
0.0026 + kF/8π − k2

F/10
)
,

kF = (3π2n̄)2/3.
Electron work function in the stable jelly model is

determined as

W = −φ̄ −
dg(n̄)

dn̄
− 〈δv〉WS . (20)

For comparative analysis, calculations were performed for

two functions:
”
antisymmetric“ function

n(z ) = n̄






1−
1

2
ez /λ, z ≤ 0,

1

2
e−z /λ, z ≥ 0,

(21)

that coincides with (6) at R → ∞, as well as Fermi

functions

n(z ) =
n̄

1 + ez /λ
. (22)

By substituting (21) and (22) in (16) and (17), and then by

integration we obtain

φ(z ) = −2πn̄λ2






1 +
1

ε
− ez /λ, z ≤ 0,

1

ε
e−z /λ, z ≥ 0,

(23)

and

φ(z ) =

= n̄λ2






−
1

3
π3

(
1+

1

ε

)
−4π

∞∑

k=1

(−1)k 1

k2
ekz /λ, z ≤ 0,

4π

ε

∞∑

m=1

(−1)m 1

m2
e−mz /λ, z ≥ 0,

(24)
respectively (the potentials join in case of z = 0).
The expression (23) coincides with the previous result

given in paper [23]. In (23) and (24) with z = 0 we can

easily trace a relation to the value of electrostatic potential at

the boundary of a conducting ball in the dielectric [24]. For
this, the contribution of ion jelly and electron cloud must be

considered separately in the spherical case.

When developing (24) in internal integration into (16),
an expansion of (22) by smallness powers e−|z |/λ ≪ 1

has been used. Such decomposition works well, except

the vicinity of z = 0. By integration this peculiarity is

1 2 3 4 5
e

Al
0.8

0.7

0.6

l
,
a

0

Figure 2. Dependence of the optimized parameter λ (
”
width“

of the transition layer) in the Ritz method for polycrystalline Al

(r s = 2.07 a0) on the dielectric constant of homogeneous coating:

for the function (21) and a full gradient series (the solid line), with
Kirzhnits correction (dash-and-dot line); for the function (22) and

a full gradient series (dashed line). a0 is the Bohr radius.

dropped out during development of φ(z ) and finding of

the electrostatic component of surface energy

σq =
1

8π

+∞∫

−∞

dz (∇φ)
2
. (25)

The result of analytical calculations can be compactly

written as

σ = n̄2λ3Cq

(
1 +

1

ε

)
+ λ

(
n̄5/3C t + n̄4/3Cex + n̄Ccor

)

+
n̄
λ

Cg1 +
n̄1/3

λ3

(
Cg2 + Cg3 + Cg4

)
+ n̄λCWS 〈δv〉WS .

(26)

Values of coefficients C depend on trial function type and

are given in Table 1.

Figure 2 gives (for Al) the optimal values of the

variational parameter λ(ε), which characterizes the surface

profile of the electron distribution, determined from the

condition
d

dλ
σ (n̄, ε, λ) = 0.
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The values of λ(ε) are sensitive both to the used gradient

series and to the trial function type. As the coating

constant ε increases, the value of the parameter λ increases

and levels off. The dependence λ(ε) qualitatively agrees

1

0

n
z

n
(

)/
–

Al
e = 1

e = 4

z  a, 0

–4 –2 0 2 4

" "l

Figure 3. One-dimensional electron profiles calculated by the

Kohn–Sham method.
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Figure 4. Dependence of specific surface on energy σ (ε) for

Al and Na (r s = 3.99 a0), calculated with the function (21) for a

full gradient series (1) and only with a Kirzhnits correction (2).
The values calculated by the Kohn–Sham method are given for

comparison (3).
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3
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1 2 3 4 5
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W
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2.8
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Figure 5. Dependence of electron work function W(ε) for Al and
Na, calculated with function (21). The designations are the same

as in Fig. 4.

with the behavior of the electron profiles calculated by the

Kohn–Sham method, but the values of λ are significantly

lesser in case of a conventional comparison with Fig. 3,

where Friedel oscillations of electron densities can be seen.

The fully self-coordinated calculations in the Kohn–Sham
method and LDA lead to more significant values of surface

layer width, while jointing with the image potential leads

to even greater values [7]. Therefore, the used Ritz

method of partial procedure self-coordination, though it

allows for analytical consideration of such problems, is less

efficient in reproducing the profile of the effective one-

electron potential veff(z ) near the surface in case of full

self-consistency.

The obtained dependence λ(ε) can be also commented

from the viewpoint of
”
mechanical“ equilibrium of the

coated metal in terms of stress or pressure tensor [25].

The stress tensor contains non-electrostatic components,

as well as Maxwellian stress tensor. In the general case, it

depends on the coating constant ε and makes a contribution

∓ 1
8π

(∇φ)2 to the normal and tangential components of

pressure, respectively, thereby determining the dependence

of electron profile n(ε, z ), i.e. λ(ε), as well as the

electrostatic component of surface energy (25). The surface

equilibrium conditions require a zero normal component of

pressure while external pressure is absent.

This stress tensor in the Kohn–Sham method (see Fig. 3,

as well as Fig. 3 in [14]) is responsible for
”
pulling-out“ of

profiles n(ε, z ) and one-electron effective potential veff(z )
into the dielectric region, and at the same time for

”
forcing“
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of the profile φ(z ) into the metal [φ(z ) is a component of

veff(z )].

Figures 4 and 5 give dependences of surface energy σ (ε)
and electron work function W (ε). As the coating constant ε

increases, the values of σ and W decrease and level off. The

estimated values of the observed characteristic W , as well as

σ , do not much depend on trial function type (the difference
is mainly observed in the third significant digit), but are

rather sensitive to gradient approximation. The calculations

for a full gradient series agree better with the known

experimental values in case of ε = 1 and the calculation

by the Kohn–Sham method for σ , but at the same

time they yield overestimated values for W . Calculations

with only a Kirzhnits gradient correction [Cg2,Cg3,Cg4 = 0

in (26)] ensure, on the opposite, better agreeing in terms

of W than in terms of σ . With ε = 1 the experimental

values are σ = 926 erg/cm2 (Al), 191 erg/cm2 (Na) and

W = 4.25 eV (Al), 2.35 ÷ 2.75 eV (Na).

4. Inhomogeneous surface coating

Let us consider the case α = 1/2 in Fig. 1, when the

metallic ball’s center is located on the flat boundary of two

dielectrics. The Z axis is perpendicular to the boundary

(θm = π/2). By
”
flattening“ the ball into a disk (Fig. 6, a),

we obtain a macroscopic
”
plate“ with thickness L in a

dielectric setting — metal-dielectric sandwich with a flat

interface (Fig. 6, b).

For a sandwich, we choose an electron distribution profile

in the form

n(z ) = n̄





B1e(z+Z1)/λ1 , z < −Z1,

1− A1e−(z+Z1)/λ1 , −Z1 ≤ z ≤ 0,

1− A2e(z−Z2)/λ2, 0 ≤ z ≤ Z2,

B2e−(z−Z2)/λ2, z > Z2,

(27)

where Z1,2 = L/2 + δ1,2.

The condition of profile jointing (27) in z = 0 for a

random L and the electroneutrality condition confirm (12)
and are fulfilled at δ1 = −δ2 = 0. The latter can be also

easily checked by calculating, for instance,

[
1

2
σt (λ1, δ1) +

1

2
σt (λ2, δ2)

]

λi≡λ

= σt (λ) .

A limitation by the condition δi = 0 is only a consequence

of the use of a one-parameter trial function.

Substituting (27) into the expression of the sandwich

electrostatic potential

φ(z ) = −4π

∞∫

z

dz ′

∞∫

z ′

dz ′′ ν(z ′′)

ǫ(z ′′)
, φ(∓∞) = 0

z

e1 e2

Metal

a = 1/2

e = 1 e = 1eleft eright

– /2L

e c1 1, e c2 2,

0 L/2

a

b

Figure 6. Geometrical construction that explains the relation of

the particular case of α = 1/2 for a coating with metal-dielectric

nanosandwiches from paper [6].

and retaining only the exponential coordinate dependence

with L → ∞, we obtain

φ(z )=−2πn̄λ2





1

〈ε〉
e(z+L/2)/λ, z < −L/2,

1 +
1

〈ε〉
− e−(z+L/2)/λ, −L/2≤z ≤ 0,

1 +
1

〈ε〉
− e(z−L/2)/λ, 0 ≤ z ≤ L/2,

1

〈ε〉
e−(z−L/2)/λ, z > L/2,

,

(28)
where

〈ε〉 =
ε1 + ε2

2
. (29)

The profile (28) reflects the plate surface equipotentiality di-

rectly at the boundary of the positively charged background.

Therefore, φ(r) changes only along the normal line to the

surface.

Thus, the same expression (26) can be applied for the

plate, using (29), while for the work function φ̄ in (20)
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must be replaced by the value of potential in the plate center

φ(0) = −2πn̄λ2
(
1 + 〈ε〉−1

)
.

The formula (29) has analogs. Firstly, there is direct

relation to the value of electrostatic potential at the bound-

ary of a conducting ball located symmetrically between two

dielectrics having ε1 and ε2 [24]. Secondly, the formula (29)
is directly related to the numeric results of the Kohn–
Sham method [6] of the surface energy and electron work

function for metal-dielectric nanosandwiches, e.g., an Al

nanoplate, on the left and right of which dielectrics are

located: {εleft|AlL|εright} (Fig. 6, b).
In the results of the paper [6] some peculiarities

have not been explained. The dependences W (L) for

sandwiches {1|AlL|5} and {3|AlL|3} coincided. The

calculation for {1|AlL|9} and {5|AlL|5} yielded the same

result, i.e. the work function for asymmetric sandwiches

{εleft|AlL|εright} matched the work function of symmetric

sandwiches {〈ε〉|AlL|〈ε〉} with an arithmetic mean value

〈ε〉 = (εleft + εright)/2 (see Fig. 5 in [6]). This was not ob-

served for specific surface energy calculated as an arithmetic

mean. The profile of one-electron effective potential was

a peculiar
”
two-faced Janus“ with a potential hump, e.g.,

for {1|AlL|5} on the vacuum side (εleft = 1). Now brief

comments can be given based on the Ritz method.

The results of Ritz method calculations for Al and Na

with α = 1/2 are given in Tables 2 and 3. A comparison

of the values of σ and W in case of α = 1/2; ε1 = 3 and

ε2 = 1, as well as ε1 = 5 and ε2 = 1, shows a coincidence

with the values of σ and W for 〈ε〉 = 2 and 3 in Figs. 4

and 5.

The potential hump for an asymmetric sandwich

{1|AlL|5} in [6] is related to surface recharging. Accord-

ing to the condition of equilibrium for chemical poten-

tial µ(z ) = const, the electrons flowed over from the plate

right side to the left one. The Ritz method with monotonous

functions cannot reflect this effect.

In case of α 6= 1/2 and R → ∞ the potential

φ(r) =

∫
dr′

ν(r′)

|r − r′|ǫ(r′)

is not expressed in analytical functions even approximately,

because α is not a small parameter. The following can be

done in this case.

In electrostatics, when calculating the capacitance of

a plane capacitor partially filled with different dielectrics,

the values of εi make part of the combinations εi Si ,

where Si = αi S are contact areas. Generalization of the

expressions (23) and (26) by the following substitution can

be suggested

ε̃ →
∑

i

εiαi (30)

for a random number of contacts of a flat metallic surface

with dielectrics. In the case of two dielectrics under

consideration

ε̃ → ε1α + ε2(1− α) (31)

and for α = 1/2 we have ε̃ = 〈ε〉.

Table 2. Results of calculations with the function (21) for Al

with a full gradient series (upper values) and with a Kirzhnits

correction (lower values)

α ε1 ε2 λ, a0 σ, erg/cm2 W, eV

1/2 1 1 0.709 872 4.88

0.602 567 3.60

1/2 2 1 0.741 760 4.47

0.638 497 3.39

1/2 3 1 0.760 698 4.25

0.661 456 3.27

1/2 4 1 0.774 658 4.12

0.678 430 3.20

1/2 5 1 0.784 630 4.03

0.687 411 3.16

1/2 4 3 0.791 609 3.96

0.695 397 3.12

1/3 2 1 0.732 790 4.58

0.628 516 3.44

1/3 3 1 0.748 736 4.39

0.647 481 3.34

1/3 4 1 0.760 698 4.25

0.661 456 3.27

1/3 5 1 0.770 669 4.16

0.671 438 3.22

1/3 4 3 0.789 615 3.98

0.692 402 3.13

1/4 2 1 0.727 807 4.64

0.623 527 3.48

1/4 3 1 0.741 760 4.47

0.638 497 3.39

1/4 4 1 0.752 725 4.35

0.651 474 3.32

1/4 4 3 0.787 619 3.99

0.691 404 3.14

Values of the parameter λ, values of σ and W in case of

ε1 = ε2 correspond to homogeneous coatings and the points

in Figs. 2, 4 and 5. The case ε1 = ε2 = 1 corresponds to

a metal-vacuum interface and the
”
first“ points in the same

figures.

Coating inhomogeneity is formally determined by sum-

mands

n̄2λ3Cq

(
1 +

1

ε1α + ε2(1− α)

)

and

φ̄ = −2πn̄λ2
(
1 +

1

ε1α + ε2(1− α)

)

for σ and W in (26) and (20), respectively. Therefore,

while the combination ε1α + ε2(1− α) for different values

Physics of the Solid State, 2022, Vol. 64, No. 1



128 V.V. Pogosov

Table 3. Results of calculations with the function (21) for Na.

The designations are the same as in Table 2

α ε1 ε2 λ, a0 σ, erg/cm2 W, eV

1/2 1 1 1.061 178 3.66

0.749 121 2.94

1/2 2 1 1.090 171 3.49

0.775 119 2.86

1/2 3 1 1.107 167 3.40

0.789 118 2.82

1/2 4 1 1.119 164 3.34

0.799 117 2.79

1/2 5 1 1.127 163 3.30

0.805 116 2.77

1/2 4 3 1.132 162 3.28

0.810 116 2.76

1/3 2 1 1.082 172 3.53

0.768 120 2.88

1/3 3 1 1.097 169 3.45

0.780 118 2.84

1/3 4 1 1.107 167 3.40

0.789 118 2.82

1/3 5 1 1.115 165 3.36

0.796 117 2.80

1/3 4 3 1.31 162 3.28

0.809 116 2.76

1/4 2 1 1.078 174 3.56

0.764 120 2.89

1/4 3 1 1.090 171 3.49

0.775 119 2.86

1/4 4 1 1.100 168 3.43

0.783 118 2.84

1/4 4 3 1.130 162 3.29

0.808 116 2.76

of α, ε1, ε2 is integer, then the points in Figs. 4 and 5 for

homogeneous coatings correspond to exactly these numbers.

Thus, Figs. 4 and 5 will be the key ones, and values

of σ and W for an inhomogeneous coating can be estimated

using the ratio (29) as a scale transformation.

While commenting the role of the parameters δ1 and δ2,

it should be stated that if monotonous trial functions of

type (21) or (22) are chosen, the electroneutrality condition

in the flat case makes it possible to use only one variational

parameter (λ). Therefore, the role of δ1 and δ2 in this

approach is reduced to development of a condition of

the equation (12). The sandwich problem is found with

precision by solving a system of one-dimensional Kohn–
Sham and Poisson equations [6]. These solutions in a three-

dimensional case must meet the condition

µ(εi , x , y, z ) = const = −W (εi).

A computational procedure in this setting has not still been

implemented.

Thus, the paper has made an analytical attempt at

demonstrating that the electron work function W (ε̃), as

electron energy deep in the metal, counted from the vacuum

level, is isotropic, regardless of surface shape of the metal

sample and dielectric coating. This conclusion results from

equipotentiality of the metallic surface [10–12].
A Schottky barrier for inhomogeneous coating

8(i) = W (ε̃) − χ(i), (32)

on the contrary, is an anisotropic value and is determined in

transfer processes by the largest value of χ(i) (the smallest

8(i)). χ = 0.1, 0.2, 0.45, 0.68, 1.1, 1.35, 4.05 and 4 eV for

Ne, Ar, Kr, Xe, Al2O3, Si and Ge, respectively.

5. Conclusion

This paper has studied (within the Ritz method frame-

work) the surface energy and electron work function

for a flat metallic surface with inhomogeneous dielectric

coating. The estimated values for a homogeneous coating

are insensitive to selection of one-parameter functions for

the electron profile, but are sensitive to the gradient series

of kinetic energy of non-interacting electrons. Nevertheless,

this did not affect the qualitative conclusions of the paper.

The results of calculations by the Ritz method and Kohn–
Sham method were also compared.

An analysis by the Ritz method made it possible to

interpret some peculiarities of the calculation results of

the Kohn–Sham method for asymmetric metal-dielectric

nanosandwiches.

It was suggested to reduce the impact of coating inhomo-

geneity on the metallic surface characteristics to the case of

a homogeneous coating by scaling.

It was showed that the electron work function, counted

from the vacuum level, is a scalar quantity, regardless of

dielectric coating. A Schottky barrier for a composite

coating, on the contrary, is an anisotropic quantity.

Two situation regimes should be considered while dis-

cussing the possibility of observation of the dependences

W (ε, χ) for various contacts. If the electron work function

to vacuum W (ε, χ) is measured as a result of an external

photoeffect, this possibility refers only to a metal with

dielectric coating having a thickness less than the free-

path length (absence of electron’s energy exchange with the

insulator). Value of W in case of energy exchange can be

restored using the formula (32) and measurement of 8 as a

result of an internal photoeffect. In the given situations, the

electron free-path length in the insulator can be estimated by

solving the reverse problem according to the measurements

of W (ε, χ).
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Our study has supposed the absence of chemical changes

in the contact, which is rather plausible for insulators

having a small χ . The presence of surface states for Si,

Ge semiconductors leads to Fermi energy pinning. The

problem in this case is solved by the cluster method (see,
for instance, [26]).
Specific surface energy in the Ritz method for a metallic

surface with dielectric coating plays a secondary part: as

a result of optimization, the
”
true“ value of the parameter

λ(ε1, ε2) was determined; it is necessary for the measured

characteristic–electron work function W (λ). The following

practical use of the obtained results for σ (ε1, ε2) can be

suggested.

Surface tension is determined experimentally by the

contact angle of wetting according to the Young law [27].
Thereat, the dependence σ (α, ε1, ε2)|ε2=1, obtained in this

paper, in a sense models a metal drop the area αS of which

touches a dielectric substrate with the constant ε1. The

approach suggested in this paper will possibly allow for

clarifying the measurements of σ .
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