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Nonlinear splitting of magnetoelastic resonance line in powerfully excited

ferrite
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The nonlinear splitting of magnetoelastic resonance line in powerfully excited ferrite is investigated. It is shown

that the amplitude of splited resonance has the same order of value that the amplitude of basis resonance and its

frequency is determined by the upper boundary of nonlinear amplitude-frequency characteristic of magnetic system.

It is found the threshold character of splitting additional resonance from general. It is determined the possibility

of operation of splited elastic resonance frequency by changing of exited magnetic field value which has practical

importance.
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Introduction

High-power ultrasonic vibrations excited by magnetostric-

tive transducers find numerous applications in different

branches of technology [1,2]. The excitation of hypersonic

vibrations at frequencies up to 10GHz (and above) is of

special interest. The use of magnetoacoustic resonance

is rather promising in this regard [3–5]. Garnet ferrite

films open up additional opportunities for significant broad-

ening of the frequency range of transducers through the

excitation of up to several hundred elastic modes over

the thickness of the film–substrate structure [6]. The

power of excitation of hypersound in such transducers is

limited to several tens of milliwatts. This is attributable to

the parametric excitation of exchange spin waves, which

induces strong absorption of the incoming signal after

a certain threshold is exceeded [7–9]. This excitation

may be prevented by using a normally magnetized thin

ferrite disk as a working medium of a transducer. The

frequency of ferromagnetic resonance in such a geometry

is at the bottom of the spectrum of exchange waves.

As a result, the excitation of these waves is inhib-

ited [10–12]. Such conditions were implemented in [13–16],

and the possibility to raise the level of excitation of

hypersound by 2−3 orders of magnitude or more was

demonstrated.

However, little attention was paid in these studies to the

amplitude-frequency properties of the nonlinear resonance

of the magnetic system and to the dissipation of the elastic

system. This prevents one from realizing fully the potential

of high level of excitation.

The present study is a more detailed examination of the

resonance frequency properties of both systems aimed at

revealing additional opportunities for generation of high-

power hypersound.

1. Geometry of the problem and main
equations

Figure 1 illustrates the overall geometry of the prob-

lem [13–16]. Fundamental to it is a ferrite plate with

thickness d magnetized along a normal to its surface.

We assume that ferrite is isotropic in magnetic properties

and features cubic symmetry in elastic and magnetoelastic

properties. The planes of the cube face and the ferrite

plate correspond to each other. Plane Oxy of Cartesian

coordinate system Oxyz is aligned with the plate plane. The

external field is H = {hx ; ht ;H0}, where H0 is a constant

bias field and hx ,y are components of a variable field. When

shear elastic vibrations are excited along axis Oz (i.e., at

uz = 0 and ∂/∂(x , y) → 0), the elastic and magnetoelastic
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Figure 1. Geometry of the problem.
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properties of the medium are characterized by constants c44

and B2, respectively.

The equation of motion for magnetization component mx

takes the form

∂mx

∂t
= −

γ

1 + α2

[

(my + αmx mz )Hez

− (mz − αmy mz )Hey − α(m2
y + m2

z )Hex

]

, (1)

and the equations for my and mz are derived from (1)
by cyclic interchange of x , y, Z. Here, m = M/M0 is

the normalized magnetization vector, M0 is the saturation

magnetization, and α is the Gilbert damping constant.

The effective fields in these equations take the form

Hex = hx + Hax , (2)

Hey = hy + Hay , (3)

Hez = H0 − 4πM0mz + Haz , (4)

where

Hax = −
B2

M0

mz
∂ux

∂z
, (5)

where ux is the elastic displacement component and Hay

and Haz are derived from (5) by cyclic interchange

of x , y, z .
The equation for displacement component ux has the

form
∂2ux

∂t2
+ 2β

∂ux

∂t
−

c44

ρ

∂2ux

∂z 2
= 0, (6)

and the equation for uy is derived from (6) by substituting x
with y .
The boundary conditions for displacement component ux

at free plate surfaces have the form

c44

∂ux

∂z

∣

∣

∣

∣

z=±d/2

= −B2mx mz , (7)

and the conditions for uy are derived from (7) by substitut-

ing x with y .
In the present study, the variable field is assumed to be

sinusoidal with right-hand circular polarization:

hx = h0 sin(2π f t), (8)

hy = −h0 cos(2π f t), (9)

where h0 is the excitation amplitude.

Solving the system of Eqs. (1)−(6) with boundary

conditions (7) using the Runge−Kutta method (as it was

done in [13–16]), one may determine the temporal evolution

and the frequency characteristics of magnetic and elastic

vibrations excited by the variable field.

Material parameters typical for single crystals of yttrium

iron garnet (YIG) were used in calculations in the present

study: 4πM0 = 1750Gs, B2(YIG) = 6.96 · 105 J/m−3,

c44 = 7.64 · 1010 J/m−3. The damping (Gilbert) parameter

of the magnetic subsystem was α = 0.02. The values of

damping parameter of the elastic subsystem β were chosen

from the 106–109 s−1 interval, and the value of β = 0 s−1

was used additionally as a reference. The other parameters

were chosen so that the resonance frequencies of uniform

precession and the first mode of elastic vibrations were

both equal to 2800MHz with no magnetoelastic coupling

in the case of linear vibrations. The constant field was

H0 = 2750Oe, and the thickness of the magnetic plate was

0.06865 · 10−6 m. The amplitude of the variable field was

h0 = 0.01Oe and 10Oe in linear and nonlinear modes,

respectively.

2. Frequency characteristics of nonlinear
magnetoelastic vibrations

In accordance with the formulation of the problem,

vibrations are excited in the complete magnetoelastic system

by applying a variable field to the magnetic subsystem.

Therefore, we first consider how the elastic subsystem

manifests itself in this case.

Let us turn to Fig. 2 where the frequency characteristics

of the amplitude of magnetic (a) and elastic (b) vibrations at
different levels of coupling between the magnetic and elastic

systems are presented. Since this coupling is due to the

magnetoelastic interaction, we examine the characteristics at

two different values of the magnetoelastic coupling constant:

one corresponding to YIG (curves 1) and another one

that is five times lower (curves 2). In the first case, the

coupling is typical of the experimental conditions, while the

coupling in the second case is almost nonexistent (although
still sufficient to excite vibrations in the elastic system).
Let us examine the case of weak coupling first (curves 2).

The nonlinear resonance characteristic seen in Fig. 2, a

has the typical shape of a triangle skewed toward higher

frequencies due to the detuning mechanism with a max-

imum near 3.02GHz. It follows from Fig. 2, b that the

frequency characteristic of elastic vibrations in this case

is symmetrical with a central maximum at the resonance

frequency of natural elastic vibrations of the plate (2.8 GHz).
The high-frequency peak of magnetic resonance (curve 2 in

Fig. 2, a) has almost no effect on elastic vibrations (curve 2

in Fig. 2, b). The magnetic characteristic has a notch in

the region of elastic resonance (2.8GHz), but this notch is

rather insignificant.

In the case of strong coupling (curves 1), both charac-

teristics change substantially. The magnetic characteristic

(curve 1 in Fig. 2, a) exhibits first an upward spike and

then a downward spike in the region of elastic resonance

(2.8GHz), and the characteristic itself rises up by more

than 20% in the region from 2.94 to 3.02GHz. The primary

peak of the elastic characteristic is amplified significantly

(approximately by a factor of 2) and shifts downward

slightly (from 2.89 to 2.78GHz), and a strong additional

resonance rise with a magnitude of almost 50% of the

primary peak emerges in the region from 2.94 to 3.02GHz.

This rise has the shape of a
”
split-off“ from the primary peak
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Figure 2. Frequency characteristics of the amplitude of mag-

netic (a) and elastic (b) vibrations at different values of the

magnetoelastic interaction constant: 1 — B2 = B2(YIG), 2 —
B2 = 0.2B2(YIG).

and corresponds to the rise of the magnetic characteristic

(i.e., is located in the region of influence of the detuning

mechanism). Note that this rise is not integral: in its

high-frequency part, a relatively small second additional rise

corresponding in frequency to the high-frequency cutoff of

the magnetic characteristic (3.02GHz) is apparent.

3. Influence of the excitation level on the
elastic resonance parameters

Let us consider the dependences of the frequency and the

amplitude of the first and the second additional resonances

on the excitation level (see Figs. 3 and 4).

Figure 3 shows the dependences of the frequency of the

primary rise 1 and the first 2 and the second 3 additional

rises of the frequency characteristic of the amplitude of

elastic displacement on the excitation amplitude.

It can be seen that the primary rise, which corresponds

to the frequency of partial resonance of the elastic system

(2.8GHz, curve 1), persists at all levels of excitation. Its

frequency is almost independent of the excitation amplitude.

The first additional resonance (curve 2) emerges at an

excitation level exceeding 4Oe and persists at all higher

excitation levels. The frequency of this resonance depends

linearly on the excitation amplitude with a slope ratio of

0.0124GHz/Oe. The second additional resonance (curve 3)
exists only at excitation levels falling within the interval

from 9 to 32Oe. Its frequency also depends linearly

on the excitation amplitude with the same slope ratio,

but lies 0.06GHz higher than the frequency of the first

additional resonance.

Figure 4 shows the dependences of the amplitude of the

primary resonance and the first and the second additional
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Figure 3. Dependences of the frequency of the primary

resonance (1) and the first (2) and the second (3) additional

resonances of the frequency characteristic of elastic displacement

on the excitation amplitude.
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Figure 4. Dependences of the amplitude of the primary

resonance (1) and the first (2) and the second (3) additional

resonances of the frequency characteristic of elastic displacement

on the excitation amplitude.
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resonances of the frequency characteristic of elastic displace-

ment on the excitation amplitude.

It can be seen that the primary rise, which corresponds

to the frequency of partial resonance of the elastic system

(2.8 GHz, curve 1), becomes more prominent as the levels

of excitation increases. At excitation amplitudes below 8Oe,

the magnitude of this rise increases fairly rapidly, but its

growth slows down as the excitation amplitude increases

further to approximately 25Oe. This is attributable to the

partial transfer of energy of the system from the primary

resonance to additional resonances. As the excitation level

crosses the threshold of 25Oe, the magnitude once again

starts increasing rapidly (apparently, due to the restrictions

on the energy transfer to additional resonances). The

amplitude of the first additional resonance (curve 2) also

increases at first, but starts saturating at approximately

17Oe and remains almost constant at higher excitation

levels. The amplitude of the first additional resonance in

the excitation interval of 3–25Oe (i.e., up to pronounced

saturation) is approximately two times lower than the

amplitude of the primary resonance in the same interval.

The amplitude of the second additional resonance (curve 3)
also increases rapidly at first, but its growth soon reaches

saturation at a level approximately two times lower than

that of the amplitude of the first additional resonance. At

excitation levels higher than 32Oe, the second additional

resonance, lacking its own pronounced peak, merges with

the first one.

The results presented in this section may be regarded as

a demonstration of feasibility of tuning of the frequency

of elastic resonance in the interval from 2.86 to 3.32GHz

(i.e., within 15%) by varying the excitation level from 5 to

40Oe. This opportunity to control the frequency of elastic

resonance is likely to have certain applications in practice.

This control technique has an important advantage in that

it does not require altering the mechanical parameters

of the system (specifically, the thickness of the ferrite

plate).

4. Influence of the level of elastic
dissipation

The results presented in the previous section were

obtained at a specifically chosen relatively low level of

elastic dissipation. This choice was made for the sake of

clarity. Let us now consider the above phenomena in a

wide interval of elastic dissipation.

Figure 5 demonstrates the dependences of the amplitude

of the primary resonance and both additional resonances of

the frequency characteristic of elastic displacement on the

elastic dissipation parameter.

It can be seen that the amplitudes of all resonances

decrease gradually as the dissipation parameter increases.

The primary rise, which corresponds to the partial frequency

of the elastic resonance of the plate (curve 1), remains

fairly well-pronounced within the entire examined interval
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Figure 5. Dependences of the amplitude of the primary

resonance (1) and the first (2) and the second (3) additional

resonances of the frequency characteristic of elastic displacement

on the elastic dissipation parameter. The horizontal axis is

logarithmic in scale.

of variation of parameter β (from 106 to 109 s−1), but

its magnitude decreases approximately by a factor of 20.

Although the resonance rise broadens in frequency, retains

its distinctive character (i.e., the shape of a central maximum

with downward slopes at both sides). As the dissipation

parameter increases further (not shown), the resonance be-

comes aperiodic: it replicates the triangular skewed (toward

higher frequencies) shape of the magnetic resonance with a

decreasing amplitude.

The amplitudes of both additional resonances (curves 2

and 3) also decrease as the dissipation parameter increases,

but the side resonances merge with the primary one at β

approximately equal to 5 · 107 s−1. Thus, the first and the

second additional resonances may be distinguished clearly

only if the dissipation parameter is lower than 5 · 107 s−1. If

magnetic dissipation parameter α decreases by a factor of 4

(from 0.020 to 0.005), the additional resonances merge with

each other, although the critical value of β = 5 · 107 s−1

at which they merge with the primary resonance remains

almost unchanged.

The results of a control check demonstrate that if dissi-

pation parameter β drops below 106 s−1 down to zero (not

shown in Fig. 5), the amplitude of resonances remains lim-

ited at 1.7 · 10−8 cm (the primary resonance), 0.8 · 10−8 cm

(the first additional resonance), and 0.6 · 10−8 cm (the

second additional resonance).

Thus, a sufficiently small value of the elastic dissipation

parameter is a prerequisite for implementing excitation-level

control over an elastic resonance. In the present case, β

needs to be below 5 · 107 s−1, which is perfectly feasible

for YIG [3,4].
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5. Temporal evolution of vibrations

Since the elastic resonance is split in the strongly

nonlinear mode, it is of some interest to examine the

temporal evolution of vibrations.

Let us turn to Fig. 6 where the temporal evolution

of vibrations occurring after the application of magnetic

excitation is presented. Two frequencies were considered.

The first one corresponds to the primary frequency of elastic

resonance (2.80GHz), and the second one is the central

frequency of the dominant additional resonance of elastic

vibrations (2.97GHz).
It can be seen from Figs. 6, a and 6, c that the amplitude

of magnetic vibrations (Fig. 6, a) increases sharply right

after the application of excitation, since the excitation

energy needs more time to reach the elastic system with

its amplitude of vibrations (Fig. 6, b) increasing much more

slowly. The amplitude of magnetic vibrations then decreases

gradually, while the amplitude of elastic vibrations increases.
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Figure 6. Temporal evolution of magnetic (a, c) and elastic (b, d)
vibrations at different frequencies: a, b — 2.80GHz (primary

resonance); c, d — 2.97GHz (first additional resonance).

This corresponds to the transfer of energy from the magnetic

system to the elastic one. After about 0.5 · 10−7 s, an energy

balance is established and the amplitudes of vibrations in

both systems reach steady levels. This pattern corresponds

to the usual excitation of vibrations in a system of two

coupled oscillators and remains like this in the linear mode.

The same, however, is not true for the frequency of the

additional resonance of the elastic system. It can be seen

from Fig. 6, c that magnetic vibrations here also increase

sharply at first, but the excitation of elastic vibrations (i.e.,
the transfer of energy from the magnetic system to the

elastic one) proceeds much more slowly (Fig. 6, d) than in

the previous case. As a result, the steady-state mode of both

vibrations is established only at approximately 1.5 · 10−7 s

(i.e., three times later than at the frequency of the primary

resonance). This greatly delayed excitation of elastic

vibrations is likely associated with the fact that the excitation

frequency (2.97GHz) shifts away from the frequency of

natural vibrations of the elastic system (2.80GHz). In other

words, strong magnetic vibrations force the elastic system

to vibrate at an unnatural frequency, and it demonstrates

a certain resistance. The amplitude of both magnetic and

elastic vibrations is highly jagged in nature due to beats. The

beats period is approximately 5.7 · 10−9 s. This corresponds

to a frequency of 0.17GHz that is the difference between

the excitation frequency and the frequency of the primary

resonance, as is typical of forced vibrations.

Concluding remarks

The main result of this study is arguably the demon-

stration of splitting of the elastic resonance in the case of

strongly nonlinear excitation of the magnetic system. This

splitting is manifested in the emergence of two additional

resonances at separate frequencies. The threshold nature of

splitting was established. It was found that the maximum

additional resonance is comparable in amplitude to the

primary one, while its frequency is defined by the upper

frequency of the nonlinear frequency characteristic of the

magnetic system. The potential to control the frequency

of the additional elastic resonance by varying the level

of magnetic excitation was demonstrated. The practical

relevance of this control method, which does not require

altering the mechanical parameters of the system, was noted.
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