08,03

Точечные дефекты висмута в кристаллах TllnTe₂, электрофизические и диэлектрические свойства твердых растворов

© А.И. Наджафов 1 , Р.С. Мадатов 2 , К.Г. Халилова 1 , Г.М. Искендерова 1

Баку, Азербайджан

Баку, Азербайджан

Поступила в Редакцию 1 марта 2022 г. В окончательной редакции 1 марта 2022 г. Принята к публикации 10 марта 2022 г.

Комплексными методами физико-химического анализа была исследована фазовая диаграмма $TIInTe_2-Bi$ в концентрационной области 0-10 at.% Bi, установлена растворимость висмута в $TIInTe_2$ в количестве 5.0 at.% при комнатной температуре. Проведены исследования электрофизических и диэлектрических свойств $TIInTe_2$ в $TIInTe_3$ в $TIInTe_3$ в $TIInTe_4$ в $TIInTe_5$ в количестве $TIInTe_5$ в $TIInTe_5$

На примере состава (TIInTe₂)_{1-x}Bi_x, где x=0.05 показано, что примеси висмута повышают значение проводимости в направлении (001), приводят к изменению типа проводимости кристалла TIInTe₂ с дырочной на электронную, сильно повышают значение электрической анизотропии кристалла TIInTe₂ $\rho_{\perp}/\rho_{\parallel}$ более, чем в 10^3 раз.

Наблюдается также влияние примесей висмута на диэлектрические свойства кристаллов TllnTe₂. Примеси висмута образуют барьеры на пути движения ионов таллия и повышают температуру фазового перехода в ионно-проводящую фазу (Ti): в кристаллографическом направлении [001] — на 69 K, а в направлении [110] — на 87 K

Ключевые слова: фазовая диаграмма, физико-химический анализ, примесь, тип проводимости, электропроводность, диэлектрическая проницаемость.

DOI: 10.21883/FTT.2022.07.52566.302

1. Введение

Полупроводниковое соединение TIInTe₂ принадлежит к классу соединений группы $A^3B^3C_2^6$ (где A — TI; B — Ga, In; C — S, Se, Te) с цепочечной структурой, кристаллизуются в тетрагональной сингонии в структурном типе TISe [1] и имеет кристаллографические параметры: a=8.075 Å, c=7.181 Å, $d_r=7.196$ g/cm³, Z=4.

Проводимые в последние годы исследования показали перспективность применения этих соединений в различных областях техники. В частности, на их основе созданы высокочувствительные тензометрические датчики гидростатического давления [2], пироэлектрические приемники излучения, функционирующие в широком интервале температур [3] и т. д. Наблюдаемый в литературе [4–5] повышенный интерес к исследованию твердых растворов на основе $A^3B^3C_2^6$ связан с перспективами применения этих материалов.

Интерес к исследованиям этих кристаллов обусловлен также в связи с обнаружением в них ионной проводимости при температурах, близких к комнатной [6–9]. В работах [6–9] были проведены исследования ионной проводимости в кристаллах TlGaTe₂ и TlInTe₂ в широком интервале температур 80—700 К. Было показано, что в кристаллах TlGaTe₂ и TlInTe₂ при температурах ниже 300 К преобладает электронная составляющая проводи-

мости, с дальнейшим ростом температуры (выше $300\,\mathrm{K}$) наблюдается скачкообразный рост проводимости, связанной с ростом ионной составляющей и обусловленной разупорядочением катионной подрешетки Tl^+ .

Структуру кристаллов TIInTe₂ можно представить как две подсистемы: отрицательно заряженную индиевую подсистему $(In^{3+}Te_2^{\hat{2}-})$, расположенную параллельно кристаллографической оси с и образующую цепочки, и расположенную между цепочками неустойчивую таллиевую подсистему. Причиной неустойчивости таллиевой подрешетки является слабая связь Tl-Te, которая по данным [10] примерно в два раза слабее, чем связь In-Te. Ионы Tl^+ в кристаллах $TlGaTe_2$ и TIInTe₂ расположены внутри томсоновских кубов, связи Tl⁺-Те носят ионно-ковалентный характер и имеют низкие значения энергии связи. Ионы таллия в структуре TlGaTe₂ и TlInTe₂ расположены таким образом, что между ними в структуре имеются октаэдрические пустоты. В работе [11] комплексными методами физико-химического анализа исследованы сплавы системы TlGaTe₂-Те и TlInTe₂-Те, в которых обнаружена область растворимости теллура, доходящая до 5.0 at.%. На монокристаллических образцах изучены температурные зависимости параметров решетки и электропроводности $\sigma(T)$ TlInTe₂ и TlInTe_{2.04}. Показано, что кристаллы TlInTe_{2.04} осуществляют фазовый переход в

¹ Институт физики НАН Азербайджана АZ 1143,

² Институт радиационных проблем НАН Азербайджана АZ 1143,

[¶] E-mail: xelilova_kemale79@mail.ru

суперионную фазу при температуре 498 К. Предположено, что сверхстехиометрические количества атомов теллура в кристаллах $TIInTe_{2.04}$, внедряясь в решетку, образуют твердые растворы внедрения и создают дополнительные препятствия на пути движения ионов TI^+ в кристаллографическом направлении [001], повышая по сравнению с исходными кристаллами температуру перехода в суперионное состояние.

Наши исследования показали, что созданием заранее запланированных точечных дефектов в структуре $TIInTe_2$ можно изменить ряд физических свойств, таких как тип проводимости, значения удельной проводимости и диэлектрической проницаемости и т.д.

Размещением определенных атомов в октаэдрических пустотах между атомами таллия в элементарной ячейке $TIInTe_2$ в виде твердых растворов внедрения можно управлять также температурой фазового перехода крикристалла в ионно-проводящую фазу (T_i) , смещая T_i в том или ином направлении.

Выбор вида атомов внедрения в структуру необходимо осуществлять исходя из их химической активности, значения ионного радиуса, координационного числа. Химическая активность выбранного атома не должна превышать химическую активность материнских атомов, в противном случае, может происходить восстановление собственных атомов. При этом, значение ионного радиуса и координационного числа внедряемого иона должны позволять, не деформируя решетку, размещаться ему в выбранном полиэдре.

В электрохимическом ряду активности металлов Ві находится за водородом и уступает таллию и индию, в трехвалентном состоянии его ионный радиус имеет значение 1.2 Å. Ионы висмута могут занимать позиции с координационным числом 5, 6 и 8 [12]. Таким образом, по предварительной оценке, атомы висмута могут размещаться в пустых октаэдрах между атомами таллия.

В настоящей работе для определения растворимости висмута в кристаллах $TIInTe_2$ методами физикохимического анализа была исследована фазовая диаграмма $TIInTe_2$ —Ві в концентрационной области 0-10 at.% Ві и проведены исследования электрофизических и диэлектрических свойств твердых растворов ($TIInTe_2$)_{1-x} Bi_x .

2. Методика экспериментов

Сплавы системы $TIInTe_2$ —Ві были синтезированы с интервалом концентрации 1.0 at.% в вакуумированных кварцевых сосудах Степанова с использованием метода прямого однотемпературного синтеза. В качестве исходных компонентов использовались поликристаллический $TIInTe_2$ и висмут. Температуру в печи поднимали до $T=1150\,\mathrm{K}$ со скоростью $\sim 150\,\mathrm{K/h}$, выдерживали при этой температуре в течение $2\,\mathrm{h}$, после чего охлаждали печь до комнатной температуры со скоростью $\sim 100\,\mathrm{K/h}$. Для снижения вероятности образования пор

кристаллизация сплавов осуществлялась с применением вибрации частотой 50 Hz. Затем для гомогенизации сплавы отжигали при $T=470\pm5\,\mathrm{K}$ в течение двух недель до наступления равновесного состояния, устанавливаемого рентгенофазовым анализом. Чистота элементов, использованных в экспериментах, составляла 99. 999% основного вещества.

Сплавы были исследованы методами дифференциально-термического (ДТА), рентгенофазового (РФА) и микроструктурного (МСА) анализов, измерениями микротвердости и плотности.

ДТА был проведен на низкочастотном термографическом регистраторе HTP-75 в интервале температур $293-1080\,\mathrm{K}$, снимались кривые нагрева и охлаждения. Погрешность измерения температуры не превышала $\pm 1\,\mathrm{K}$. Для регистрации тепловых эффектов с малыми значениями величин был использован прибор "Perkin Elmer STA 6000", имеющий калориметрическую точность $\pm 2\%$. Эксперименты проводились в интервале температур $293-600\,\mathrm{K}$ в атмосфере аргона.

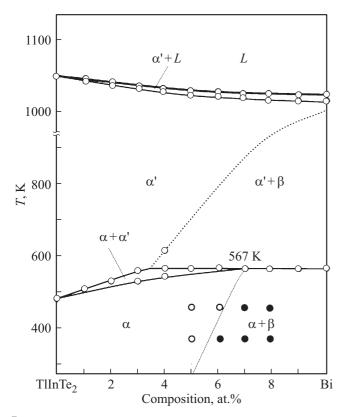
Рентгенофазовый анализ сплавов системы был проведен на тщательно растертых порошках сплавов после вакуумного гомогенизирующего отжига. Дифрактограммы исследуемых сплавов исследовались на установке "XRD D8 ADVANCE" с использованием $\text{Cu}K_{\alpha}$ излучения в интервале углов $4 < \theta < 35^{\circ}$ при постоянном режиме съемки (ток 40 mA, напряжение на трубке 40 kV). Погрешность при определении параметров составляла $\pm 0.001\,\text{Å}$.

МСА осуществлялся с помощью металлографического микроскопа ММР-4 при увеличениях $150-300^{\times}$. В качестве травителя использовался разбавленный водный раствор $K_2Cr_2O_7 + H_2SO_4$, время травления составляло 1-2 min.

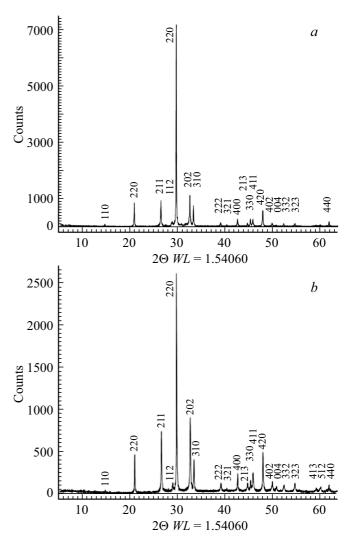
Измерения микротвердости проводились на приборе ПМТ-3 [13] на шлифованных и полированных образцах при нагрузке $20\,\mathrm{g}$. Время погружения нагрузки составляло $10-12\,\mathrm{s}$.

Удельный вес исследуемых образцов измерялся пикнометрическим методом [14]. Для этого использовались пикнометры с объемами 5 cm 3 . В качестве наполнителя использовался толуол марки "чда". ВАХ образцов измерялась по стандартной методике, описанной в [15]. Значение удельного сопротивления вычислялись из зависимостей ВАХ при комнатной температуре. Образцы кристаллов $TIInTe_2$ и $(TIInTe_2)_{1-x}Bi_x$ обладали светочувствительностью в фоторезистивном режиме, поэтому зависимости ВАХ снимались в темноте.

Температурную зависимость электропроводности и диэлектрической проницаемости образцов монокристаллов исследовали на частоте 100 kHz в интервале температур 300—600 К. Исследования проводились цифровым измерителем иммитанса марки Е7-25М в двух кристаллографических направлениях [001] и [110]. В качестве электрических контактов использовалась серебряная паста. Напряженность приложенного к кристаллам элек-


трического поля соответствовала омической области вольт-амперной характеристики и не превышала 1 V.

3. Результаты и их обсуждение


Построенный на основе результатов ДТА, РФА и МСА фрагмент фазовой диаграммы системы $TIInTe_2-Bi$ со стороны тройного соединения $TIInTe_2$, приведен на рис. 1. Как видно из рис. 1, на основе тройного соединения $TIInTe_2$ существует область растворимости висмута в количестве 5.0 at.%. Согласно результатам МСА сплавы системы $TIInTe_2-Bi$ с концентрацией 1.0-5.0 at.% Ві являются однофазными, имеют полосчатую микроструктуру и представляют собой α -твердые растворы $(TIInTe_2)_{1-x}Bi_x$. Несмотря на применение вибрации при кристаллизации сплавов, они были пористыми. Следы второй фазы были обнаружены в сплавах с концентрацией Ві выше 6.0 at.%.

Для определения линии сольвуса в системе сплавы с концентрациями 5.0—9.0 at.% Те были отожжены при температурах 375 и 450 К в течение двух недель, затем были закалены. Линии сольвуса в диаграммах были построены по результатам МСА закаленных сплавов.

На кривых нагрева в термограммах сплавов с концентрацией 3.0-10.0 at.% Ві был обнаружен наблюдаемый в

Рис. 1. Фрагмент фазовой диаграммы $TIInTe_2$ —Ві в области концентраций 0-10.0 at.% Ві. На участке концентраций 5.0-8.0 at.% Ві однофазные состояния сплавов отмечены белыми кружками, двухфазные — черными.

Рис. 2. Дифрактограммы порошков кристаллов: a — TlInTe₂, b — (TlInTe₂)_{0.95}Bi_{0.05}.

твердой фазе эндотермический эффект при температуре $576\pm1\,\mathrm{K}$. Причем, для сплавов системы $TIInTe_2-Bi$ с концентрацией 3.0-10.0 at.% Bi этот эффект имел практически одинаковую температуру. На кривых охлаждения этот эффект наблюдался в виде экзотермического эффекта, смещенного вниз по температурной шкале на 3-5 градусов.

Процесс, протекающий в сплавах системы $TIInTe_2-Bi$ при температуре 567 K, может быть интерпретирован как перитектоидное превращение α -твердого раствора: $\alpha \leftrightarrow \alpha' + \beta$.

РФА сплавов системы проведен на растертых порошках с концентрациями 3.0, 4.0 и 5.0 at.% Ві после вакуумного гомогенизирующего отжига при температуре $770 \pm 5 \, \mathrm{K}$ в течение двух недель.

Результаты РФА показали, что с повышением концентрации Ві в составе α -твердых растворов значения параметров элементарной ячейки меняются незначительно (рис. 2). Для сплава твердого раствора с содержанием

Состав образца	Кристаллографическое направление измерений	Значение удельного сопротивления $ ho,~\Omega\cdot {\rm cm}$	Энергия активации E_a , eV	Величина электрической анизотропии $ ho_\perp/ ho_\parallel$	Тип проводимости
TlInTe ₂	[001] ()	795	0.6	97.3	p
TlInTe ₂	[110] (⊥)	$77.35 \cdot 10^3$	0.4		
$(TIInTe_2)_{1-x}Bi_x$, где $x=0.05$	[001] ()	0.83	_	$7.668 \cdot 10^{5}$	n
$(TIInTe_2)_{1-x}Bi_x$, где $x=0.05$	[110] (⊥)	$636.4 \cdot 10^3$	0.5		

Значения удельного сопротивления, типа проводимости, энергий активации и величин электрической анизотропии образцов кристаллов $TIInTe_2$ и $(TIInTe_2)_{1-x}Bi_x$, где x=0.05

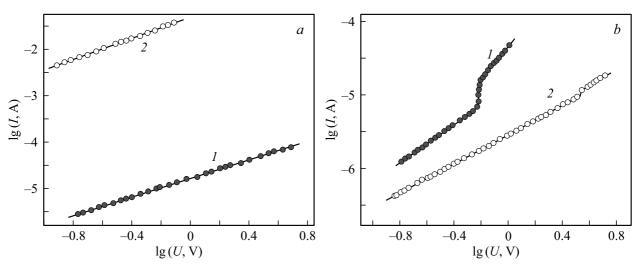
5.0 at.% Ві параметры элементарной ячейки, рассчитанные по рефлексам с индексами 004,006 и 400,600 составляют: a=8.481 Å, c=7.192 Å. Как видно, значение параметра элементарной ячейки a уменьшилась на 0.013 Å, а параметр c наоборот увеличился на 0.011 Å.

Измерения пикнометрической плотности образцов показали незначительное увеличение значения удельного веса (0.1%) для сплава $(TIInTe_2)_{0.95}Bi_{0.05}$.

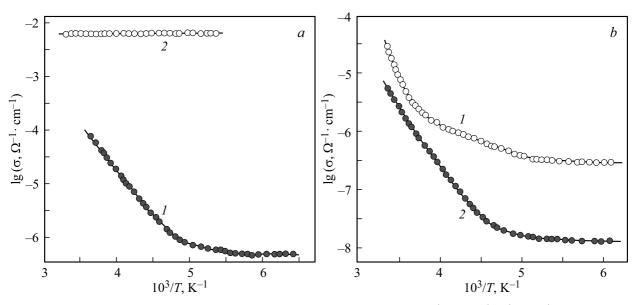
Значения микротвердости сплавов определены на сплавах с концентрациями висмута 0, 1.0, 3.0 и 5.0 at.% Ві. Наблюдается повышение значения микротвердости на сплавах с $100 \, \mathrm{kgf/mm^2}$ для $\mathrm{TIInTe_2}$ до $114 \, \mathrm{kgf/mm^2}$ для ($\mathrm{TIInTe_2})_{1-x} \mathrm{Bi}_x$, где x=0.05.

Для исследования влияния висмута на электрофизические и диэлектрические свойства твердых растворов ($TIInTe_2$)_{1-x} Bi_x сплав с концентрацией 5.0 at.% Ві был выращен в виде монокристалла методом направленной кристаллизации и отожжен при температуре 670 К в течение 2-х недель.

Затем полученный монокристалл был сколот по оси c на призмы высотой 5-7 mm для измерений электрофизических свойств, и на кристаллографические поверхности (001) и (110) были нанесены контакты серебряной пастой. На образцах кристаллов были определены значение удельного сопротивления (ρ) , определен тип проводимости, исследованы вольт-амперные характеристики (BAX) и температурные зависимости проводимости $\sigma(T)$ в диапазоне $100-370\,\mathrm{K}$, определены значение энергии активации (E_a) .


В таблице показаны результаты исследований удельного сопротивления, типа проводимости, значение энергии активации и величина электрической анизотропии образцов кристаллов $(TIInTe_2)_{1-x}Bi_x$, где x=0.05. Для сравнения там же показаны одноименные физические характеристики образцов монокристаллического $TIInTe_2$. Как видно из таблицы, электрофизические свойства и показатели образцов монокристалла $(TIInTe_2)_{0.95}Bi_{0.05}$ сильно отличаются от одноименных показателей монокристалла $TIInTe_2$. В отличие от образцов $TIInTe_2$, кристаллы $(TIInTe_2)_{1-x}Bi_x$ обладают n-типом проводимости. Сильное отличие наблюдается также в значениях удельной проводимости сравниваемых кристаллов. Например, в кристаллографическом направлении [001] значение ρ

образцов (TlInTe₂)_{0.95}Bi_{0.05} \sim в 10^3 раза отличается от значения ρ TlInTe₂. Таким образом легирование висмутом сильно понизило значение ρ в направлении цепочек. А в направлении [110], наоборот, значение удельного сопротивления образцов ($TIInTe_2$)_{1-x} Bi_x повысилось ~ в 8 раз. В результате легирования сильно изменилась анизотропия электропроводности кристаллов, как правило, для монокристаллов TlInTe2 она не превышает значения 10^2 , тогда как для (TlInTe₂)_{1-x}Bi_x, где x = 0.05, она составляет $\sim 7.7 \cdot 10^5$. Для исследования перераспределения висмута по длине выращенного монокристалла значения удельного сопротивления были измерены в трех образцах, выбранных по длине слитка. Результаты показали, что по длине слитка имеются флуктуации значений удельного сопротивления, не превышающие \sim 5%. Поэтому в таблице показаны усредненные значения удельного сопротивления кристаллов $(TIInTe_2)_{1-x}Bi_x$, где x = 0.05, определенные в направле-

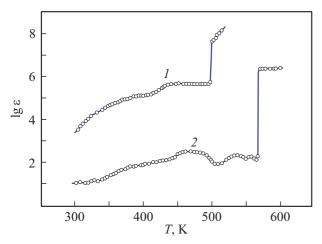

На рис. 3, a, b представлены вольтамперные характеристики (BAX) образцов $TIInTe_2$ и $(TIInTe_2)_{1-x}Bi_x$, где x=0.05 в двух геометриях эксперимента, снятые при температуре $300\,\mathrm{K}$.

На ВАХ ТІІпТе2 (рис. 3,a, кривая I), снятой в направлении [001], выявляется омический участок ($J\sim U$), а в направлении [110] (рис. 3,b, кривая I) область более резкого роста напряжения ($J\sim U^n,\,n>1$) при напряженности поля $12.0\,\mathrm{V/cm}$. Линейный участок наблюдается в области полей $1.0-11.5\,\mathrm{V/cm}$, квадратичная область наблюдается в интервале полей $11.5-13.0\,\mathrm{V/cm}$. На ВАХ кристаллов (TIInTe_2) $_{1-x}\mathrm{Bi}_x$ (рис. 3,a, кривая 2) в направлении [001] выявляются омический участок ($J\sim U$) до значений напряженности поля $0-0.68\,\mathrm{V/cm}$, а в направлении [110] (рис. 3,b, кривая 3) область более резкого роста напряжения ($J\sim U^n,\,n>1$) при напряженности поля в интервале $0-32.5\,\mathrm{V/cm}$. К сожалению, из-за нагрева образца измерить ВАХ при более высоких напряженностях электрического поля не удалось.

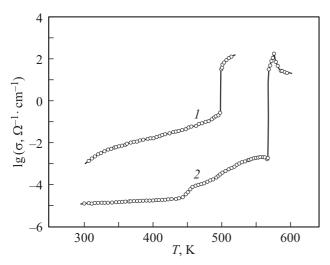
На рис. 4, a и b в кристаллографических направлениях [001] и [110] соответственно, показаны кривые температурной зависимости удельной проводимости $\sigma(T)$ образцов TlInTe₂ и (TlInTe₂)_{1-x}Bi_x, где x=0.05.

Рис. 3. Вольт-амперные характеристики образцов кристаллов. a: I — $TIInTe_2$ (00I), 2 — ($TIInTe_2$)_{0.95} $Bi_{0.05}$ (00I); b: I — $TIInTe_2$ (110), 2 — ($TIInTe_2$)_{0.95} $Bi_{0.05}$ (110).

Рис. 4. Кривые температурной зависимости удельной проводимости образцов $TIInTe_2$ (кривые I) и $(TIInTe_2)_{1-x}Bi_x$, где x=0.05: (кривые 2) в разных кристаллографических направлениях: a — [001] и b — [110].


Из кривых $\sigma(T)$ кристаллов TllnTe2 определены энергии активации E_a , которые имеют значение в кристаллографическом направлении (001) 0.6 eV, а в направлении (110) — 0.4 eV. На кривой I (рис. 4, b) в области температур $180-270\,\mathrm{K}$ наблюдается область примесной проводимости, возможно обусловленной дефектами структуры.

Для (TIInTe₂)_{1-x}Bi_x, где x=0.05, в кристаллографическом направлении [001] зависимость $\sigma(T)$ в интервале температур 165—307 К имеет линейный характер (рис. 4, a, кривая 2) и не зависить от температуры. Возможно это связано со множеством близколежащих по энергии уровнями дефектов, образованных в результате легирования кристалла висмутом.


В этих образцах в направлении [110], по-видимому, в результате легирования значение удельной проводимости кристалла уменьшилось почти на порядок и значение E_a составило 0.5 eV. Снижение значения удельной проводимости кристалла вероятно обусловлено компенсацией акцепторных и образованием донорных уровней, при этом кристалл меняет тип проводимости.

Для определения влияния примесей висмута на диэлектрические свойства кристаллов $TIInTe_2$ были также исследованы температурные зависимости диэлектрической проницаемости $\varepsilon(T)$ в интервале температур $300-650\,\mathrm{K}$ в кристаллографическом направлении (001).

На рис. 5 показаны температурные зависимости диэлектрической проницаемости $\varepsilon(T)$ кристаллов $TIInTe_2$

Рис. 5. Температурная зависимость диэлектрической проницаемости кристаллов $TIInTe_2$ (*I*) и $(TIInTe_2)_{1-x}Bi_x$ (*2*), где x=0.05 в кристаллографическом направлении [001] при частоте $100\,\mathrm{kHz}$.

Рис. 6. Температурная зависимость удельной проводимости кристаллов $TIInTe_2$ (1) и ($TIInTe_2$)_{1-x} Bi_x (2) где x=0.05 в кристаллографическом направлении [001] при частоте 100 kHz.

(кривая I) и (TIInTe₂)_{1-x}Bi_x (кривая 2), где x=0.05. Как видно из рис. 5 (кривая I), в кристалле TIInTe₂ выше температуры $300\,\mathrm{K}$ наблюдается рост значений диэлектрической проницаемости, а при температуре $498\,\mathrm{K}$ происходит скачок значений ε на два порядка, и кристалл переходит в ионно-проводящее состояние. На рис. 5 на кривой 2 показана зависимость $\varepsilon(T)$ образца (TIInTe₂)_{1-x}Bi_x, где x=0.05. В сравнении с кривой I выше $300\,\mathrm{K}$ наблюдаются меньшие почти на порядок значения ε . На кривой $\varepsilon(T)$ имеется два максимума, плавный максимум в интервале $450-500\,\mathrm{K}$, где наблюдается повышение значений ε почти на порядок и резкий скачок значений ε на четыре порядка при температуре $567\,\mathrm{K}$. Очевидно, что легирование TIInTe₂ висмутом

влияет на температуру фазового перехода кристалла в ионно-проводящую фазу (T_i) повышая ее на $69 \, \mathrm{K}$.

На кривых температурной зависимости проводимости исследуемых образцов (рис. 6) при соответствующих температурах наблюдаются аномалии проводимости: для $TIInTe_2$ скачкообразный рост более чем на два порядка (рис. 6, кривая I), и более чем на четыре порядка для $(TIInTe_2)_{1-x}Bi_x$, где x=0.05 (рис. 6, кривая 2).

Отметим, что аномалии на кривых $\varepsilon(T)$ и $\sigma(T)$ наблюдаются и в кристаллографическом направлении (I10) в образцах обоих составов. Для кристаллов $\mathrm{TIInTe_2}$ она происходит при $485\,\mathrm{K}$, а для ($\mathrm{TIInTe_2})_{1-x}\mathrm{Bi}_x$, где x=0.05, при $572\,\mathrm{K}$. Сравнивая значения T_i в направлениях [001] и [110], можно обнаружить, что легирование висмутом сильно влияет на диэлектрические свойства в обоих исследуемых кристаллографических направлениях, повышая T_i в направлении [001] на $69\,\mathrm{K}$, а в направлении [110] — на $87\,\mathrm{K}$.

4. Заключение

Таким образом, физико-химическими исследованиями сплавов системы $TIInTe_2$ —Ві в интервале концентраций 0-10 at.% Ві установлена растворимость висмута в $TIInTe_2$ в количестве 5.0 at.% при комнатной температуре.

Установлено, что в твердых растворах (TlInTe₂)_{1-x}Ві $_x$ наблюдается незначительное увеличение значений плотности и микротвердости — с $100\,\mathrm{kgf/mm^2}$ для TlInTe₂ до $114\,\mathrm{kgf/mm^2}$ для (TlInTe₂)_{1-x}Ві $_x$, где $_x=0.05$.

Результаты РФА показали, что с повышением концентрации Ві в составе α -твердых растворов значения параметров элементарной ячейки меняются незначительно.

На примере состава (TIInTe₂)_{1-x}Bi_x, где x=0.05 показано, что примеси висмута повышают значение проводимости в направлении [001], приводят к изменению типа проводимости кристалла TIInTe₂ с дырочной на электронную, сильно повышают значение электрической анизотропии кристалла TIInTe₂ $\rho_{\perp}/\rho_{\parallel}$ более чем в 10^3 раз (см. таблицу).

Наблюдается также влияние примесей висмута на диэлектрические свойства кристаллов $TIInTe_2$, при этом, образуя барьеры на пути движения ионов таллия, примеси висмута повышают температуру фазового перехода в ионно-проводящую фазу (T_i) : в кристаллографическом направлении [001], на $69\,\mathrm{K}$, а в направлении [110] — на $87\,\mathrm{K}$.

Установлено, что атомы висмута, внедряясь в решетку $TIInTe_2$, образуют твердые растворы внедрения, занимая октаэдрические пустоты между атомами таллия в кристаллографическом направлении [001] (z=0.5).

Полученные результаты имеют практическое значение и могут быть использованы для разработки ионных проводников с управляемыми свойствами и сильно анизотропных материалов.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов

Список литературы

- D. Muller, G. Eulenberger, H. Hahn, Z. Anorg. Allg. Chem. 398, 207 (1973).
- [2] Э.Ю. Салаев, К.Р. Аллахвердиев, Ш.Г. Гасымов, Т.Г. Мамедов. Авт. св-во СССР № 1182291 (1984).
- [3] И.Г. Исмаилзаде, О.А. Самедов, Н.А. Эюбова, И.М. Алиев, М.С. Гаджиев, О.А. Амиров. Патент № 4045089, 31 (1986).
- [4] G. Ding, J. He, Z. Cheng, X. Wang, S. Li. J. Mater. Chem. 6, 13269 (2018).
- [5] I. Yucel, S. Çakmak. Süleyman Demirel University Faculty of Arts and Science. J. Sci., 12, 30 (2017).
- [6] Р.М. Сардарлы, О.А. Самедов, А.П. Абдуллаев, Э.К. Гусейнов, Ф.Т. Салманов, Н.А. Алиева, Р.Ш. Агаева. ФТП 47, 696 (2013).
- [7] O.Z. Alekperov, A.I. Najafov, E. Nakhmedov, O.A. Samedov, N.A. Aliyeva, G. Jafarova. J. Appl. Phys. 123, 135701-9 (2018).
- [8] O.Z. Alekperov, E. Nakhmedov, A. Najafov, O. Samedov, Kh. Nadirova, V. Gasymov, G.R. Mahmudova. J. Phys. D 53, 035103 (2020).
- [9] Р.М. Сардарлы, О.А. Самедов, А.П. Абдуллаев, Ф.Т. Салманов, О.З. Алекперов, Э.К. Гусейнов, Н.А. Алиева. ФТП **11**, 1441 (2011).
- [10] Н.Х. Абрикосов, В.Ф. Банкина, Л.В. Порецкая, Е.В. Скуднова, С.Н. Чижевская. Наука, М. (1975) 219 с.
- [11] А.И. Наджафов, Н.А. Алиева, К.Г. Халилова. ФТТ 9, 1656 (2018).
- [12] М.П. Шаскольская. Кристаллография. Высш. шк., М. (1984). 376 с.
- [13] Н.С. Герасимова, Ю.Г. Головачева, Л.А. Московских. Определение микротвердости. КФ МГТУ им. Н.Э. Баумана, Калуга (2017) 27 с.
- [14] Г.А. Ильинский. Определение плотности минералов. Недра, Л. (1975). 119 с.
- [15] В.Ф. Лысов. Практикум по физике полупроводников. Просвещение, М. (1976). 207 с.

Редактор Ю.Э. Китаев