10,04

Неаффинные деформации и локальные упругие свойства аморфных наноструктур

© А.А. Семенов, Д.А. Конюх, Я.М. Бельтюков

Физико-технический институт им. А.Ф. Иоффе РАН

Санкт-Петербург, Россия

E-mail: aleksandr.semenov@mail.ioffe.ru

Поступила в Редакцию 12 апреля 2022 г. В окончательной редакции 12 апреля 2022 г. Принята к публикации 14 апреля 2022 г.

Изучены неаффинные деформации аморфных наноструктур в рамках модели случайных матриц. Вблизи границы между аморфными и кристаллическими твердыми телами неаффинные деформации аморфных твердых тел приводят к образованию приграничной области с измененными эффективными упругими свойствами. Показано, что толщина приграничной области имеет тот же порядок величины, что и масштаб неаффинных деформаций.

Ключевые слова: неаффинные деформации, аморфные тела, случайные матрицы.

DOI: 10.21883/FTT.2022.08.52705.343

1. Введение

В последние годы все большее значение приобретают исследования механических, колебательных и теплопроводных свойств различных наноструктурированных материалов. Среди таких материалов широко используются структуры, содержащие как кристаллические, так и аморфные компоненты. Неупорядоченное расположение атомов, присущее аморфным телам, существенно влияет как на поведение аморфных тел в нанометровых масштабах, так и на их макроскопические свойства. Макроскопические деформации аморфного тела приводят к неоднородным локальным деформациям, характерный масштаб которых оценивается десятками межатомных расстояний [1,2]. Такие неоднородные деформации называются неаффинными, поскольку они не могут быть описаны комбинацией локальных растяжений или сдвигов. Неаффинные деформации наблюдались во многих неупорядоченных твердых телах: металлических стеклах [3], полимерных гидрогелях [4], переохлажденных жидкостях [5], стеклах Леннарда-Джонса [6], кварцевых стеклах [7]. Неаффинные деформации дают важный вклад в свойства макроскопической упругости.

Для макроскопического описания упругих свойств аморфных тел можно применить классическую теорию упругости с использованием макроскопических модулей упругости. Однако этот метод неприменим для описания микроскопических деформаций наноструктур и нанокомпозитов, содержащих аморфные области, поскольку в этом случае характерный масштаб неаффинных деформаций R_{naff} может быть сравним с типичными размерами структурных элементов.

Последние исследования показывают, что в аморфных областях вблизи их границы с более жестким телом образуется приграничная область, описываемая

значительно более высокими модулями упругости по сравнению с их значениями в объеме аморфного тела. В работе [8] с помощью метода молекулярной динамики было исследовано влияние наночастиц на локальную упругость полистирола вокруг наночастиц. В работе [9] показано увеличение модуля упругости эпоксидного полимера вблизи нанослоев бемита.

В работе [8] показано, что увеличение локального модуля упругости в приграничной области может быть не связано с изменением локальной структуры вещества, а вызвано самой неупорядоченной структурой аморфного тела. Однако влияние беспорядка на локальные упругие свойства требует более детального изучения.

В настоящей работе для определения локальных упругих свойств в приграничной области и их связи с неаффинными деформациями мы применили модель случайных матриц. Такая модель хорошо зарекомендовала себя при описании упругих и колебательных свойств аморфных твердых тел исходя из самых общих предположениях о свойствах аморфного тела [10,11].

Настоящая статья имеет следующую структуру. В разделе 2 формулируется используемая модель случайных матриц. В разделе 3 определяется характерный масштаб неаффинных деформаций в зависимости от степени беспорядка в системе. В разделе 4 показывается влияние граничных условий на упругие свойства аморфного тела в приграничной области. В разделе 5 изучены упругие свойства наноструктуры, содержащей слои аморфного и кристаллического материала.

2. Модель случайных матриц

Для описания упругих свойств наноструктур с аморфной и кристаллической фазами была применена модель

случайных матриц [10]. Такая модель позволяет варьировать силу беспорядка и описывать как кристаллы, так и сильно разупорядоченные аморфные тела. При этом модель случайных матриц основана на самых общих предположениях о механической устойчивости аморфного тела и позволяет описывать универсальные колебательные и механические свойства аморфных твердых тел [10,11]. В данной работе модель случайных матриц будет применена для исследования упругих свойств при квазистатических деформациях.

Для простоты, в настоящей работе рассматривается простая кубическая решетка с единичной постоянной решетки $a_0=1$ и единичными атомными массами $m_i=1$. Мы используем скалярную модель, которая предполагает, что смещение i-го атома, u_i , является скалярной величиной. Смещением u_i можно считать смещение вдоль оси z, в направлении которой будет приложена внешняя деформация.

Для описания кристаллических областей была рассмотрена простейшая модель, в которой соседние атомы связаны единичными упругими связями, а ненулевые недиагональные элементы динамической матрицы имеют вид $M_{ij}^{(c)}=-1$ для соседних атомов i и j. Для диагональных элементов выполняется правило сумм $M_{ii}^{(c)}=-\sum_{j\neq i}M_{ji}^{(c)}$, которое связано с инвариантностью потенциальной энергии системы относительно сдвига ее как целого. В рассматриваемом случае простой кубической решетки $M_{ii}^{(c)}=6$.

Для аморфных областей элементы динамической матрицы являются в некоторой степени случайными величинами. В этом случае важную роль играет требование механической устойчивости. В самом общем виде сильно неупорядоченную устойчивую механическую систему можно описать с помощью динамической матрицы $M = AA^T \ [11]$. Предположим, что матричные элементы A_{ij} являются гауссовыми случайными числами для соседних атомов i и j. Так же как и при построении $M_{ii}^{(c)}$, на элементы матрицы A налагается правило сумм $A_{ii} = -\sum_{j\neq i} A_{ji}$.

Для описания аморфной фазы с произвольной степенью беспорядка была рассмотрена динамическая матрица в виде

$$M^{(a)} = AA^{T} + \mu M^{(c)}.$$
 (1)

Безразмерный параметр μ управляет беспорядком аморфной фазы. Случай $\mu\gg 1$ описывает кристалл с малыми флуктуациями элементов динамической матрицы. Случай $\mu\ll 1$ описывает сильно неупорядоченное аморфное твердое тело и представляет наибольший интерес для настоящей работы.

3. Неаффинные деформации

Из-за локального беспорядка в аморфной среде, которая описывается моделью случайных матриц (1), мак-

роскопическая деформация может вызывать локальные неаффинные смещения.

Рассмотрим образец $L \times L \times L$, в котором атомы имеют целочисленные координаты (x,y,z) и образуют кубическую решетку со степенью беспорядка μ . Для изучения деформации аморфной среды к каждому атому нижнего (z=0) и верхнего (z=L-1) слоев приложим единичные силы противоположного знака. Образец имеет периодические граничные условия вдоль направлений x и y, а в направлении z используются открытые граничные условия (граничные условия Неймана). Равновесные смещения атомов u_i определяются системой линейных алгебраических уравнений

$$M^{(a)}u = F, (2)$$

в которой F — столбец, описывающий силу, действующую на соответствующий атом. На рис. 1, a показаны полученные смещения для разной степени беспорядка μ . Для каждой координаты z показаны все смещения для атомов в данном слое.

Смещения u_i можно разложить на аффинную и неаффинную компоненты

$$u_i = u_i^{\text{aff}} + u_i^{\text{naff}},\tag{3}$$

где аффинная компонента является линейной функцией по z:

$$u_i^{\text{aff}} = az + b. (4)$$

Распределение неаффинной компоненты $u_i^{\rm naff}$ показано на рис. 1, b. Это распределение имеет гауссову форму с нулевым средним и стандартным отклонением $\sigma_{\rm naff}$. Для определения неаффинного масштаба длины, рассмотрим относительное смещение между двумя атомами i и j, вызванное деформацией

$$u_i - u_j = a(z_i - z_j) + (u_i^{\text{naff}} - u_j^{\text{naff}}).$$
 (5)

Для больших расстояний z_i-z_j относительное смещение определяется первым (аффинным) членом уравнения (5). Однако для малых расстояний z_i-z_j относительное смещение определяется случайной неаффинной составляющей. Это позволяет оценить неаффинный масштаб длины как расстояние, на котором аффинная и неаффинная компоненты имеют одинаковый порядок величины: $R_{\rm naff}=\sigma_{\rm naff}/a$. На рис. 1, c показана зависимость $R_{\rm naff}$ от параметра μ . Можно видеть, что неаффинный масштаб длины имеет масштабное соотношение

$$R_{\text{naff}} \propto \mu^{-1/4}$$
 (6)

для $\mu \ll 1$. Это соотношение совпадает с масштабом длины Иоффе-Регеля $l_{\rm IR}$, которая представляет собой длину свободного пробега фононов вблизи частоты Иоффе-Регеля [10].

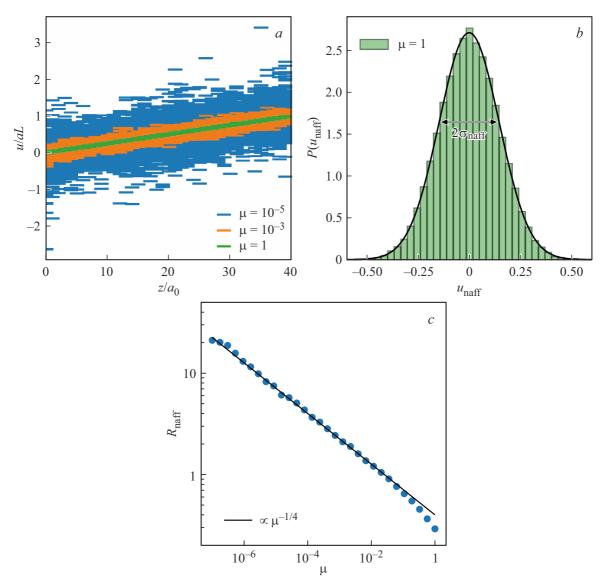


Рис. 1. a) Смещения атомов u_i в зависимости от координаты z для аморфного образца размером L=40 при различных значениях параметра μ . Смещение нормированы таким образом, чтобы среднее смещение не зависело от параметра μ . b) Распределение вероятностей неаффинного смещения для случая $\mu=1$. Сплошная линия — функция распределения Гаусса со стандартным отклонением σ_{naff} . c) Зависимость неаффинного масштаба длины от параметра μ .

4. Влияние граничных условий

Прежде чем перейти к описанию аморфной наноструктуры, стоит отметить, что картина распределения смещений по образцу меняется при изменении граничных условий. Вместо приложения сил к граничным атомам зададим их смещения на границе (граничные условия Дирихле). Будем считать, что смещения атомов в нижнем слое (z=0) равны нулю $u_i=0$, а в верхнем слое (z=L-1) заданы единичные смещения $u_i=1$. В поперечных направлениях (вдоль x и y) граничные условия по-прежнему будут периодическими.

На рис. 2, a показаны полученные равновесные смещения атомов u_i при заданном смещении атомов на верхней и нижней границах. Заметим, что, в отличие

от рисунка 1,a, разброс смещений у края образца уменьшается, что вызвано полной определенностью граничных смещений за счет граничного условия. При этом зависимость усредненных по слоям равновесных смещений $\overline{u}(z)$ становится заметно нелинейной — см. рис. 2,b.

Также заметим, что в равновесии среднее механическое напряжение σ не зависит от координаты z. Поэтому нелинейная зависимость $\overline{u}(z)$ означает неравномерное распределение упругих свойств вдоль координаты z. При этом связь среднего механического напряжения σ и средней деформации $d\overline{u}(z)/dz$ определяется эффективным модулем Юнга E(z):

$$\sigma = E(z) \frac{d\overline{u}(z)}{dz}.$$
 (7)

Соответствующая эффективная податливость системы пропорциональна $d\overline{u}/dz$:

$$S(z) = \frac{1}{E(z)} = \frac{1}{\sigma} \frac{d\overline{u}(z)}{dz}.$$
 (8)

В изучаемой скалярной модели модуль упругости E и податливость S являются скалярными величинами [10]. Полученные в данной статье результаты могут быть

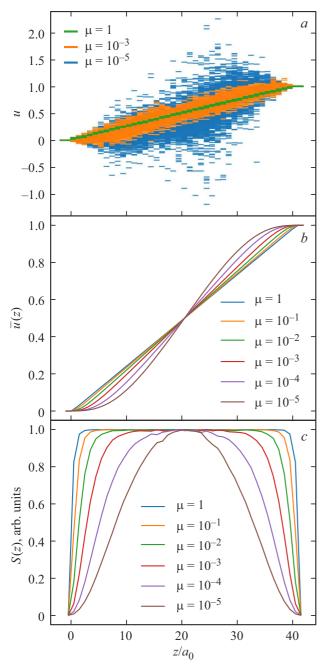


Рис. 2. a) Равновесные смещения атомов u_i при задании смещений на верхней и нижней границах аморфного тела. b) Зависимость усредненных по слоям z равновесных смещений для различных значений параметра μ . c) Зависимость эффективной податливости S(z) от координаты z для различных значений параметра μ .

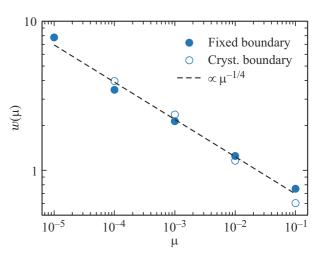


Рис. 3. Зависимость ширины приграничного слоя w от величины параметра μ . Закрашенные символы соответствуют ширине приграничного слоя для аморфного тела с фиксированными границами. Открытые символы соответствуют ширине приграничного слоя аморфного тела, находящегося в контакте с кристаллическим (см. раздел 5). Линией обозначена зависимость $w \sim \mu^{-1/4}$.

обобщены на случай векторной модели, в которой соответствующие величины будут описываться тензорами четвертого ранга.

Полученная зависимость податливости S(z) от координаты z изображена на рис. 2,c для различных значений μ . Видно, что податливость системы вблизи границы меньше, чем в объеме. При этом размер области с уменьшенным значением податливости зависит от степени беспорядка, который контролируется параметром μ . Анализ зависимостей S(z) показал их экспоненциальное поведение вдали от границ. Для определения характерного размера приграничной области w выполнялась аппроксимация зависимости податливости S(z) от координаты z по формуле

$$S(z) = S_0 + S_1 \exp\left(-\frac{z - z_0}{w}\right) + S_1 \exp\left(-\frac{z_1 - z}{w}\right),$$
(9)

где $z_0 = 0$ и $z_1 = L - 1$ — координаты верхней и нижней границ соответственно.

Зависимость ширины приграничной области w от параметра μ приведена на рис. 3. Видно, что $w \sim \mu^{-1/4}$, что совпадает с поведением радиуса неаффинности R_{naff} , показанного на рис. 1, c.

Полученная неоднородная податливость аморфного тела (9) влияет также на упругие свойства аморфного тела в целом. Средняя эффективная податливость аморфного тела вместе с приграничными областями имеет вид

$$\overline{S} = \frac{1}{z_1 - z_0} \int_{z_0}^{z_1} S(z) dz \approx S_0 - 2 \frac{w}{L_a} S_1$$
 (10)

при $L_a\gg w$, где $L_a=L$ — полная толщина аморфного тела. В результате полная податливость аморфного тела

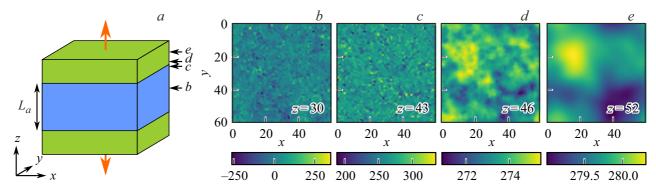


Рис. 4. a) Слоистая наноструктура с центральным аморфным слоем (синий) и внешними кристаллическими слоями (зеленый). Толщина аморфного слоя $L_a=30$. Общий размер наноструктуры составляет $L\times L\times L$ при L=60. Все размеры считаются в единицах постоянной решетки a_0 . b-e) Равновесные смещения u_i в различных сечениях с заданными координатами z, рассчитанные для $\mu=0.001$. Данные сечения обозначены стрелками с соответствующими буквами на панели (a).

уменьшается на величину, пропорциональную толщине приграничной области w.

5. Аморфная наноструктура

Результаты предыдущего раздела показали, что на границах аморфного тела образуются эффективно более жесткие области по сравнению с областями в объеме среды, если граница аморфного тела задана как недеформируемая плоскость. В реальных структурах аморфная среда может находиться в контакте с более жесткой упорядоченной средой, например, с кристаллом. При этом кристалл имеет конечную жесткость, вследствие чего могут возникнуть ненулевые деформации границы кристалла за счет неафинных деформаций аморфного тела.

Для более подробного изучения взаимодействия между неаффинными деформациями и эффектами на границе кристалл-аморфное тело, рассмотрим трехслойную наноструктуру размером $L \times L \times L$, представленную на рис. 4, a. Центральный аморфный слой толщиной L_a описывается аморфной динамической матрицей $M^{(a)}$ с заданным параметром μ . Внешние кристаллические слои описываются матрицей $M^{(c)}$. Границы раздела кристаллической и аморфной фаз имеют координаты $z_0 = (L - L_a - 1)/2$ и $z_1 = (L + L_a - 1)/2$. Для численного моделирования мы используем размер системы L = 60 и $L_a = 30$, что достаточно для изучения неаффинных деформаций (рис. 4, a).

Для изучения деформации наноструктуры приложим единичные силы противоположных знаков к нижнему (z=0) и верхнему (z=L-1) слоям. Для каждой реализации беспорядка в аморфном слое находим равновесные смещения u_i . На рис. 4, b-e цветом показаны равновесные смещения u_i в различных сечениях с заданными координатами z. Данный рисунок демонстрирует, как неаффинные деформации аморфного тела распространяются в кристаллическую область.

Для количественного анализа упругих свойств такой трехслойной системы мы рассмотрели равновесные смещения u_i в различных сечениях с заданными координатами z, показанные на рис. 5, \widehat{a} , \widehat{b} и среднее значение смещения $\overline{u}(z)$. Производная $d\overline{u}(z)/dz$ позволяет определить податливость S(z) согласно формуле (8). Полученная податливость S(z) трехслойной структуры представлена на рис. 5, c для различных значений μ . Видно, что вблизи границы с кристаллом образуется приграничная область с уменьшенной податливостью.

Для определения толщины приграничной области воспользуемся также формулой (9) для аппроксимации податливости внутри аморфного слоя. Полученная зависимость толщины приграничной области w от параметра μ приведена на рис. 3. Так же, как и для фиксированных смещений атомов на границе наблюдается зависимость $w \sim \mu^{-1/4}$.

6. Обсуждение результатов

Упругие свойства аморфных твердых тел существенно зависят от микроскопических неаффинных деформаций. Используя модель случайных матриц, было показано, что радиус неаффинных деформаций зависит от параметра μ как $R_{\rm naff} \sim \mu^{-1/4}$. На таких масштабах классическая (континуальная) теория упругости становится неприменимой, поскольку невозможно определить гладкую зависимость смещения от координаты.

При этом для структур, у которых статистические свойства зависят только от координаты z, мы можем ввести усредненное по поперечному направлению смещение $\overline{u}(z)$ как функцию координаты z. Поведение такого усредненного смещения определяется эффективным модулем Юнга E(z) и соответствующей эффективной податливостью S(z)=1/E(z). При этом зависимость податливости S(z) от координаты z существенно зависит от граничных условий. Для граничных условий Неймана (когда к граничным атомам прикладываются силы) податливость S(z) не зависит от координаты z.

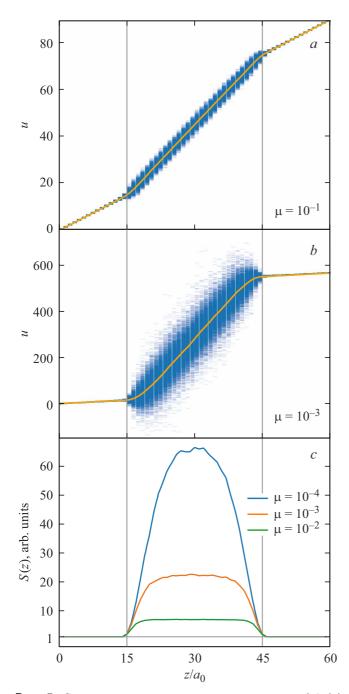


Рис. 5. Смещения u_i в каждом из слоев z при $\mu=0.1$ (a) и при $\mu=0.001$ (b). Линия показывает усреднение u_i по x и y. Вертикальными линиями показаны границы раздела z_0 и z_1 . c) Эффективная податливость для различных значений μ .

Однако для граничных условий Дирихле (когда задается смещение граничных атомов) податливость вблизи границ становится существенно меньше, чем податливость вдали от границ. Этот эффект связан с тем, что любая деформация аморфного тела сопровождается хаотическими микроскопическими неаффинными деформациями, характерный радиус которых определяется размером R_{naff} . Наличие границы с заданными смеще-

ниями атомов подавляет не только среднее смещение атомов, но и неаффинные деформации. В результате вблизи границы среда становится менее податливой, а характерный размер такой области w сопоставим с радиусом неаффинных деформаций $R_{\rm naff}$.

Данный эффект наблюдается также для аморфных наноструктур, в которых аморфный слой располагается между двумя кристаллическими слоями. В этом случае неаффинные деформации не полностью подавляются на границе, и некоторая часть неаффиных деформаций распространяется в глубину кристалла. Однако характерная ширина приграничного слоя w определяется также радиусом неаффинных деформаций R_{naff} .

Модель случайных матриц основывается на самых общих предположения о свойствах аморфных твердых тел. Данная теория позволяет также описывать такие универсальные особенности аморфных твердых тел, как бозонный пик и кроссовер Иоффе-Регеля [10,11]. Теория случайных матриц показывает, что частота бозонного пика совпадает по порядку величины с частотой кроссовера Иоффе-Регеля. Колебания ниже частоты Иоффе-Регеля имеют определенный волновой вектор и определенную длину свободного пробега, которая превосходит длину волны. На частоте Иоффе-Регеля длина свободного пробега становится сопоставимой с длиной волны, в результате чего при более высоких частотах колебания невозможно описывать определенным волновым вектором, а распространение таких колебаний имеет диффузионный характер. Таким образом, на частоте Иоффе-Регеля длина свободного пробега приобретает свое минимальное значение $l_{\rm IR}$ среди такого диапазона частот, в котором понятие длины свободного пробега применимо к колебаниям [10]. Результаты данной работы показывают, что $R_{\rm naff} \sim l_{\rm IR} \sim \mu^{-1/4}$. Таким образом, длина Иоффе-Регеля $l_{\rm IR}$, радиус неаффинности $R_{\rm naff}$ и толщина приграничной области w имеют один порядок величины и разделяют макроскопические масштабы, к которым применима классическая (континуальная) теория упругости, и микроскопические масштабы, на которых существенную роль играет неупорядоченность системы.

Результаты настоящей работы имеют большую значимость для физики нанокомпозитов, поскольку показывают, что вокруг нановключений в сильно неупорядоченной среде может образовываться эффективная более жесткая оболочка, размер которой определяется радиусом неаффинности в такой неупорядоченной среде, который зависит от степени беспорядка. Так, например, расчеты с помощью метода молекулярной динамики полистирола с наночастицей SiO_2 показывают увеличение жесткости на расстоянии порядка $1.4\,\mathrm{nm}$ вокруг наночастицы [8]. Для других аморфных веществ радиус неаффинности оценивался порядка десяти типичных межатомных или межмолекулярных расстояний [2,7].

Прямое экспериментальное наблюдение упругих свойств вещества на масштабах порядка 1 nm может

быть затруднительным. Однако результаты данной работы показывают возможный способ проверки увеличения жесткости аморфного тела в приграничной области. Многослойная структура, в которой слои аморфного материала чередуются со слоями более жесткого упорядоченного тела, будет обладать более высокой жесткостью, чем аналогичная структура, в которой аморфные слои объединены в более толстые слои. Согласно формуле (10), эффект будет пропорционален w/L_a , где L_a толщина отдельно взятого аморфного слоя.

7. Заключение

В настоящей работе были исследованы неаффинные смещения в аморфных твердых телах и аморфнокристаллических наноструктурах. Применяя модель случайных матриц, был определен характерный масштаб неаффинных деформаций $R_{\rm naff}$ в аморфных твердых телах.

Было определено влияние границ на упругие свойства аморфного твердого тела в приграничной области. По-казано, что как при фиксированном задании смещений аморфного тела на границе, так и при контакте аморфного тела с кристаллическим образуется приграничная область толщиной w, в которой эффективная жесткость выше, чем в объеме аморфного тела. Данное явление связано с тем, что при таких граничных условиях подавляются неаффинные деформации аморфного тела на границе, в результате чего на расстояниях порядка радиуса неаффинных деформаций R_{naff} уменьшается эффективная податливость вещества.

При этом толщина приграничной области w по порядку величины совпадает с радиусом неаффинности $R_{\rm naff}$, а также с длиной Иоффе—Регеля $l_{\rm IR}$, которая играет решающую роль в колебательных свойствах аморфных твердых тел. Полученные результаты играют важную роль для понимания макроскопических упругих свойств наноструктур и нанокомпозитов.

Финакнсирование работы

Выражаем благодарность за финансовую поддержку Российскому научному фонду по гранту № 17-72-20201.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] C. Maloney. Phys. Rev. Lett. 97, 035503 (2006).
- [2] F. Leonforte, R. Boissière, A. Tanguy, J. Wittmer, J.-L. Barrat. Phys. Rev. B 72, 224206 (2005).
- [3] R. Jana L. Pastewka. J. Phys. Mat. 2, 045006 (2019).
- [4] Q. Wen, A. Basu, P.A. Janmey, A.G. Yodh. Soft Matter 8, 8039 (2012).

- [5] E. Del Gado, P. Ilg, M. Kroger, H.C. Öttinger. Phys. Rev. Lett. 101, 095501 (2008).
- [6] C. Goldenberg, A. Tanguy, J.-L. Barrat. Eur. Lett. 80, 16003 (2007).
- [7] F. Leonforte, A. Tanguy, J. Wittmer, J.-L. Barrat. Phys. Rev. Lett. 97, 055501 (2006).
- [8] Y.M. Beltukov, D.A. Conyuh, I.A. Solov'yov. Phys. Rev. E 105, L012501 (2022).
- [9] J. Fankhänel, B. Arash, R. Rolfes. Composites Part B 176, 107211 (2019).
- [10] Y. Beltukov, V. Kozub, D. Parshin. Phys. Rev. B 87, 134203 (2013).
- [11] D. Conyuh Y. Beltukov. Phys. Rev. B 103, 104204 (2021).

Редактор Т.Н. Василевская