Влияние термического отжига на транспортные свойства низкобарьерных диодов Мотта Ti/AlGaN/GaN

© Н.В. Востоков, М.Н. Дроздов, С.А. Краев, О.И. Хрыкин, П.А. Юнин

Институт физики микроструктур Российской академии наук,

603950 Нижний Новгород, Россия

E-mail: vostokov@ipm.sci-nnov.ru

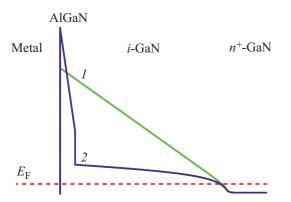
Поступила в Редакцию 2 марта 2022 г. В окончательной редакции 25 марта 2022 г. Принята к публикации 25 марта 2022 г.

Изучено влияние термического отжига на транспортные свойства низкобарьерных диодов Мотта Ti/AlGaN/GaN с приповерхностным поляризационно-индуцированным δ -легированием. Показано, что отжиг дает дополнительные возможности для управления эффективной высотой барьера диодов, улучшения и тонкой настройки их транспортных характеристик. Термический отжиг может использоваться при изготовлении низкобарьерных диодов, предназначенных для работы при высоких температурах.

Ключевые слова: низкобарьерный диод, GaN, транспортные свойства, термический отжиг.

DOI: 10.21883/FTP.2022.07.52749.04

1. Введение


Диоды с барьером Шоттки (Мотта) являются наиболее распространенными нелинейными элементами в неохлаждаемых приемниках и RF/DC конвертерах микроволнового излучения [1,2]. Диоды широко используются в смесительных и выпрямительных схемах. Несколько реже диоды Шоттки применяют как квадратичные и видеодетекторы [3]. Для обеспечения высокой чувствительности при детектировании необходимы диоды с пониженной эффективной высотой барьера Шоттки, что позволяет не использовать постоянное смещение. Это упрощает конструкцию приемника и приводит к снижению уровня шумов из-за отсутствия постоянного тока смещения. В качестве примера можно привести низкобарьерные диоды Мотта на основе GaAs с приповерхностным изотипным δ -легированием [4–6]. В смесительном режиме работы снижение эффективной высоты барьера диода позволяет уменьшить необходимый уровень мощности гетеродина [7,8], в выпрямительном режиме — увеличивает эффективность RF/DC преобразования при низкой мощности микроволнового сигнала [9,10].

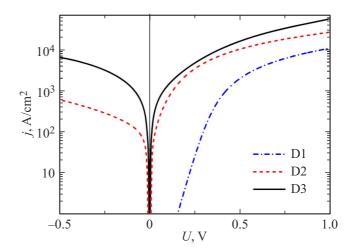
Специфика широкозонных нитридов заключается в возможности создания приборов, работающих при высоких температурах, воздействии радиации и в агрессивных средах. Термодинамически стабильной фазой полупроводниковых соединений (Ga, Al, In)N является гексагональная структура типа вюрцита. Группа симметрии вюрцита допускает существование полярного направления вдоль оси с гексагональной решетки, с которым в кристалле связана электрическая поляризация. Поляризация направлена от атома азота к атому металла и возрастает по абсолютной величине в ряду GaN, InN, AlN. В неоднородном образце и в образце конечных размеров наличие поляризации приводит к появлению

электрического поля, изгибу зон, перераспределению носителей заряда. В псевдоморфных гетероструктурах к спонтанной поляризации полупроводниковых слоев добавляется их пьезоэлектрическая поляризация, связанная с упругой деформацией кристаллической решетки псевдоморфного слоя. Поляризационные эффекты в широкозонных нитридах намного сильнее, чем в других полупроводниках, и могут быть использованы в качестве дополнительной степени свободы при разработке приборных гетероструктур на основе этих материалов [11].

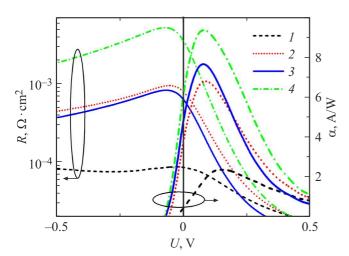
В недавней нашей работе [12] была экспериментально показана возможность снижения эффективной высоты барьера Мотта к гетероструктуре AlGaN/GaN с Ga-face полярностью за счет поляризационно-индуцированного δ-легирования гетероперехода. Положительный поляризационный заряд, возникающий в плоскости гетерограницы AlGaN/GaN из-за скачка поляризации, формирует потенциальный рельеф с туннельно-прозрачным трапециевидным барьером у границы с металлом, что уменьшает эффективную высоту барьера диода. В данном случае поляризационный заряд играет ту же роль, что и заряд ионизированных доноров δ -слоя в низкобарьерных диодах Мотта на основе GaAs [4]. Эффект демонстрируется на рис. 1, где схематично показаны координатные зависимости положения дна зоны проводимости в диодных гетероструктурах: кривая 1 — для обычного диода Мотта металл/GaN; кривая 2 — для низкобарьерного диода металл/AlGaN/GaN. С использованием данного подхода были изготовлены низкобарьерные диоды Ti/AlGaN/GaN с высокими значениями ампер-ваттной чувствительности $\alpha = -R'/(2R)$ при малой удельной величине дифференциального сопротивления R при нулевом смещении [12]. Настоящая работа посвящена изучению влияния термического отжига на транспортные свойства таких диодов.

2* 627

Рис. 1. Зонные диаграммы диодных гетероструктур: I — металл/GaN; 2 — металл/AlGaN/GaN.


2. Описание диодов и методы исследования

Гетероструктуры выращивали при пониженном давлении в оригинальной установке металлоорганической газофазной эпитаксии с вертикальным кварцевым реактором с индукционным нагревом [13]. В качестве подложек использовались двухдюймовые пластины сапфира с ориентацией плоскости с (0001) параллельно поверхности пластины. Источниками галлия, алюминия и азота служили триметилгаллий, триметилалюминий и аммиак. Моносилан, разбавленный водородом, обеспечивал донорное легирование GaN. Перед формированием рабочих слоев гетероструктуры выращивался низкотемпературный зародышевый слой GaN. Далее следовали: сильно легированный n^+ -слой GaN толщиной 2 мкм; нелегированный *i*-слой GaN толщиной 120 нм; нелегированный слой $Al_xGa_{1-x}N$ толщиной d=0-3 нм. Анализ химического состава гетероструктур проводился методом вторично-ионной масс-спектрометрии (ВИМС) на установке TOF.SIMS-5 (IONTOF). Толщины слоев $Al_xGa_{1-x}N$ в гетероструктрах сравнимы с разрешением по глубине при послойном анализе методом ВИМС. Поэтому содержание А1 в слоях и их толщина определялись по совокупности данных с использованием методики реконструкции профилей ВИМС [14] и моделирования вольтамперных характеристик (ВАХ) диодов. Более подробно эта процедура описана в [12]. Барьерные контакты диодов Ті/Аи (50 нм/100 нм) формировались на поверхности гетероструктур методом электронно-лучевого испарения. Для измерения ВАХ использовались контакты диаметром 5 мкм. Омический контакт к слою n^+ —GaN формировался вплавлением нанесенной на поверхность полупроводника капли индия. ВАХ измерялись с помощью параметрического анализатора 4200-SCS (Keithley Instruments). Термический отжиг диодов проводился на установке AccuThermo AW410 (Allwin21 Corporation) в атмосфере высокочистого аргона.


3. Результаты и обсуждение

На рис. 2 приведены BAX трех диодов: D1, D2 и D3. D1 — это обычный диод Мотта Ti/GaN. Определенные по ВАХ высота барьера диода составляет 0.52 эВ, фактор неидеальности — 1.09. Добавление в структуру на границе с металлом слоя $Al_xGa_{1-x}N$ с $x\approx 0.15$ и толщиной $d \approx 1$ нм приводит к увеличению прямого тока диода на много порядков величины — диод D2. Этот диод имеет при нулевом смещении высокое значение $\alpha = 9\,\mathrm{A/Bt}$ при малой величине $R = 4 \cdot 10^{-4} \,\mathrm{Om} \cdot \mathrm{cm}^2$. Диод D3 подобен D2, но с более толстым слоем $Al_xGa_{1-x}N$ и более высоким содержанием Al: $d \approx 2.3$ нм, $x \approx 0.3$. В отличие от диода D2, BAX диода D3 близка к симметричной вблизи нулевого смещения (величина α близка к нулю). Это связано с тем, что напряжение смещения в основном приложено между металлом и вырожденным двумерным электронным газом (2DEG), сформировавшимся вблизи гетерограницы AlGaN/GaN [12]. Как оказалось, диод D3 можно сделать выпрямляющим с помощью термического отжига. Рассмотрим на примере этого диода влияние отжига на транспортные характеристики.

На рис. 3 показаны зависимости R и α диода D3 от напряжения до и после последовательно проводившихся процессов отжига. Отжиг в течение 5 мин при температуре 300°C привел к росту сопротивления и выпрямляющей BAX диода ($\alpha = 4\,\text{A/Bt}$ при нулевом смещении) из-за роста высоты барьера Ti/AlGaN и, как следствие, исчезновению 2DEG. Такое увеличение высоты барьера Шоттки в результате отжига структур с контактами Ti/(Al)GaN при температурах < 400°C описано в литературе и связано с химическим взаимодействием межфазного оксидного слоя с титаном, что приводит к образованию более тесного контакта [15,16]. Последующий отжиг диода в течение 5 мин при температуре 500° С привел к дальнейшему росту α , но к уменьшению R ($R = 6 \cdot 10^{-4} \, \text{Om} \cdot \text{cm}^2$, $\alpha = 5 \, \text{A/BT}$ при нулевом смещении) из-за диффузии азота в металл, образования

Рис. 2. ВАХ диодов D1, D2 и D3.

Рис. 3. Зависимости удельного дифференциального сопротивления и ампер-ваттной чувствительности диода D3 от напряжения до и после последовательно проводившихся процессов отжига. Кривые I — до отжига; кривые 2, 3 и 4 — после отжига при температурах 300, 500 и 700°C соответственно.

сильно легированного вакансиями азота приконтактного слоя полупроводника и снижения эффективной высоты барьера диода [16,17]. После отжига в течение 1 мин при температуре 700°С сопротивление диода снова выросло, что может быть связано с деградацией поляризационных свойств слоя AlGaN из-за химического взаимодействия с титаном.

4. Заключение

Проведенные исследования показывают, что термический отжиг может оказывать сильное влияние на дифференциальное сопротивление и нелинейные свойства низкобарьерных диодов Мотта Ti/AlGaN/GaN с приповерхностным поляризационно-индуцированным δ -легированием. Это дает дополнительные возможности для управления транспортными характеристиками диодов и их тонкой настройки. Отжиг может использоваться для "закалки" низкобарьерных диодов, предназначенных для работы при высоких температурах.

Финансирование работы

Работа выполнена в рамках государственного задания Института физики микроструктур Российской академии наук (тема № 0030-2021-0023). Использовалось оборудование центра коллективного пользования "Физика и технология микро- и наноструктур" на базе Института физики микроструктур Российской академии наук.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] F. Sizov. Semicond. Sci. Technol., 33 (12), 123001 (2018).
- [2] L.-G. Tran, H.-K. Cha, W.-T. Park. Micro and Nano Syst. Lett., 5, 14 (2017).
- [3] E.R. Brown. Solid-State Electron., 48 (10-11), 2051 (2004).
- [4] В.И. Шашкин, А.В. Мурель, В.М. Данильцев, О.И. Хрыкин. ФТП, **36** (5), 537 (2002).
- [5] V.I. Shashkin, Y.A. Drjagin, V.R. Zakamov, S.V. Krivov, L.M. Kukin, A.V. Murel, Y.I. Chechenin. Int. J. Infr. Millim. Waves, 8 (11), 945 (2007).
- [6] П.В. Волков, Н.В. Востоков, А.В. Горюнов, Л.М. Кукин, В.В. Паршин, Е.А. Серов, В.И. Шашкин. Письма в ЖТФ, **45** (5), 56 (2019).
- [7] В.Р. Закамов, В.И. Шашкин. Радиотехника и электроника, **56** (8), 1009 (2011).
- [8] S.A. Korolyov, A.P. Shikov, A.V. Goryunov, V.I. Shashkin. IEEE Sens. Lett., 4 (5), 3500404 (2020).
- [9] C.H.P. Lorenz, S. Hemour, K. Wu. EEE Trans. Microw. Theory Techn., 64 (7), 2146 (2016).
- [10] B. Kapilevich, V. Shashkin, B. Litvak, G. Yemini, A. Etinger, D. Hardon, Y. Pinhasi. IEEE Microw. Wirel. Compon. Lett., 26 (8), 637 (2016).
- [11] Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications, ed. by C. Wood and D. Jena (N.Y., Springer, 2008).
- [12] N.V. Vostokov, M.N. Drozdov, O.I. Khrykin, P.A. Yunin, V.I. Shashkin. Appl. Phys. Lett., 116 (1), 013505 (2020).
- [13] О.И. Хрыкин, А.В. Бутин, Д.М. Гапонова, В.М. Данильцев, М.Н. Дроздов, Ю.Н. Дроздов, А.В. Мурель, В.И. Шашкин. ФТП, 39 (1), 21 (2005).
- [14] P.A. Yunin, Yu.N. Drozdov, M.N. Drozdov, O.I. Khrykin, V.I. Shashkin Surf. Interface Anal., 49 (2), 117 (2017).
- [15] M.T. Hirsch, K.J. Duxstad, E.E. Haller. Electron. Lett., 33 (1), 95 (1997).
- [16] S. Arulkumaran, T. Egawa, H. Ishikawa, M. Umeno, T. Jimbo. IEEE Trans. Electron Dev., 48 (3), 573 (2001).
- [17] Q.Z. Liu, S.S. Lau. Solid-State Electron., 42 (5), 677 (1998).

Редактор Г.А. Оганесян

Effect of thermal annealing on the transport properties of Ti/AlGaN/GaN low-barrier Mott diodes

N.V. Vostokov, M.N. Drozdov, S.A. Kraev, O.I. Khrykin, P.A. Yunin

Institute for Physics of Microstructure, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia

Abstract The influence of thermal annealing on the transport properties of Ti/AlGaN/GaN low-barrier Mott diodes with near-surface polarization-induced δ -doping has been studied. It is shown that annealing provides additional possibilities for controlling the effective barrier height of diodes, improving and fine-tuning their transport characteristics. Thermal annealing can be used to fabricate low-barrier diodes designed to operate at high temperatures.