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harmonic force

© A.P. Kuznetsov, Yu.V. Sedova

Kotelnikov Institute of Radioengineering and Electronics of RAS, Saratov Branch, Saratov, Russia

E-mail: sedovayv@yandex.ru

Received June 16, 2021
Revised November 22, 2021
Accepted November 29, 2021

A harmonic effect on a modified Anishchenko-Astakhov generator capable of demonstrating two-frequency quasi-
periodic oscillations in the autonomous mode is considered. The possibility of doubling the three-frequency tori
in a non-autonomous system is shown. The possibility of the effect of chaos suppression by an external signal is
demonstrated, which leads not only to periodic, but also to quasi-periodic modes when the influence amplitude

exceeds a certain threshold.
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A radiophysical generator proposed by Anishchenko and
Astakhov may be considered as one of the basic models
manifesting deterministic chaos [1]. This generator is a
three-dimensional dynamic system and has been thoroughly
examined both theoretically and experimentally (see mono-
graphs [2,3] and references therein). Its modification sup-
porting autonomous quasi-periodic oscillations in addition
to periodic and chaotic regimes has been proposed in [4].
An oscillation circuit in the feedback loop, which provides
a new additional frequency, is used for this purpose. The
end result is an autonomous four-dimensional model that
is convenient for the study of quasi-periodic oscillations.
This generator has been studied in [5], and the possibility
of doubling of a two-frequency torus upon an increase
in the excitation parameter has been demonstrated. The
problem of synchronization of a resonance limit cycle
on a torus, the emergence of resonance two- and three-
frequency tori on the surface of a four-frequency torus, the
influence of noise on a four-frequency torus, and other
problems arising in the case of two coupled generators
have been discussed [5-7]. The emergence of hyperchaos
via secondary Neimark—Sacker bifurcation has also been
examined [8,9]. At the same time, the influence of a
harmonic signal on the modified generator has remained
understudied.  This problem appears significant in the
context of formulating a sufficiently complete description
of synchronization of quasi-periodic oscillations.

The equations of the modified Anishchenko—Astakhov
generator are as follows [4]:

X =mX+Yy—xp —dx>,
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where

1, x>0,

d(x
x) 0,x <0.

L(x)x%,  1(x) = { (2)

Here, mis the generator excitation parameter, d is the non-
linear dissipation parameter, p is the attenuation parameter,
and g is the inertia parameter of a filter providing the second
independent frequency. We use the following parameter
values: d = 0.001, y = 0.2, and g = 0.5.

Let us now add an external harmonic influence:

X =mx +Yy—xp —dx> +acoswt,

y:—X,
z=0,

@ = —yp +y®(x) — 9z, (3)

where a and w are its amplitude and frequency.

When excitation parameter m increases, doubling of a
three-frequency torus (instead of a two-frequency one)
may be observed in this case. This is illustrated by
Fig. 1.  Portraits of attractors in a double Poincaré
section are shown in the insets of this figure. Let us
explain how such a section is plotted. The result of a
common Poincaré section for a system subjected to external
harmonic influence is a set of points obtained by way of a
stroboscopic section. In order to plot a double section, we
considered only those points from the mentioned set that
fall within a certain thin phase-space layer defined, e.g.,
by condition |x| < 0.005. The result of a double section
(ie., stroboscopic section and section by plane X = 0) of
the phase space of system (3) is presented in Fig. 1. In
a double section, a three-frequency torus looks like two
smooth ovals. When m increases, doubling of this torus
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Figure 1. Portraits of three-frequency tori 3T in a double Poincaré section (insets) and dependences of Lyapunov exponents A of system
(3) on excitation parameter m a = 0.03, w = 4. DT is the point of doubling of a three-frequency torus.
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Figure 2. Portrait of system (3) in a stroboscopic section (inset)
and plots of its Lyapunov exponents A;. m= 0.07, o = 6. P is the
region of periodic regimes, 2T is the region of two-frequency tori,
C is the chaos region, and NS is the Neimark—Sacker bifurcation
point.

Technical Physics Letters, 2022, Vol. 48, No. 2

occurs at point DT; as m grows further, the torus gets
destroyed.

The main part of Fig. 1 shows the dependences of
the three largest Lyapunov exponents of system (3) on
excitation parameter m Note that one exponent is always
equal to zero in flow systems. Since we calculate the
exponents in a stroboscopic section, this zero exponent is
dropped. Thus, zero values of two exponents A} = Ay =0
correspond to a three-frequency torus (a similar pattern
is seen for discrete maps [10]). The presented plots also
confirm the nature of bifurcation: exponent A3 goes to zero
at the bifurcation point and remains negative in its vicinity.
This is the sign of torus-doubling bifurcation [11,12].

Let us now consider the changes in behavior of the
system induced by the variation of input amplitude a (note
that chaos is observed at a =0). We fix the value of
parameter m = 0.07 corresponding to the destruction of a
torus. The dependences of Lyapunov exponents on input
amplitude a are shown in Fig. 2. It can be seen that,
as expected, chaotic or hyperchaotic regimes with one or
two positive Lyapunov exponents are established at low
amplitudes. Periodic regime P with all the exponents being
negative, however, emerges at large amplitudes. Thus, the
effect of suppression of chaos by an external periodic force
is observed in the system [13]. Two Lyapunov exponents
are equal in this case (A; = A,) and go to zero at point
NS This is the point of Neimark—Sacker bifurcation
that induces two-frequency quasi-periodic regime 2T with
A1 = Ay = 0. The corresponding attractor in a stroboscopic
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Figure 3. Bifurcation tree of system (3) plotted using a
stroboscopic map. m= 0.07, w = 6.

section is presented in the inset of Fig. 2. This attractor is
a closed invariant curve. Thus, owing to the suppression
of chaos, a quasi-periodic regime, which occupies an
extensive area in terms of the input amplitude, emerges
in this system in addition to a periodic regime similar
to the one reported in [13]. As the input amplitude
decreases further, the torus undergoes doubling and then
gets destroyed.

The bifurcation tree for w = 6 is presented in Fig. 3.
Neimark—Sacker bifurcation point NS and two-frequency
quasi-periodic regime 2T are seen.

Thus, new effects may be observed if a quasi-periodic
Anishchenko—Astakhov generator is subjected to the in-
fluence of a harmonic signal. At small input amplitudes,
this new effect is the doubling of a three-frequency torus.
At large amplitudes, the effect of chaos suppression, which
induces both periodic and quasi-periodic regimes, manifests
itself.
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