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1. Introduction

Two-dimensional Janus compounds are structures with

top and bottom surfaces built from different atoms or

molecules [1–3]. The research of electron spectrum of these

structures started in 2009 from graphone−graphene, where

every second carbon atom is bonded to a hydrogen atom

with the hydrogen atoms laying on one side of the graphene

sheet (the same structure can be considered as graphan

where hydrogen is deleted from one of its surfaces) [4].
Virtually at the same time an interest has arisen to the

structures where the place of hydrogen atoms is occupied

by halogen atoms, and graphene is replaced by graphene-

like compounds (GLC), such as hexagonal boron nitride

(h-BN), silicene, germanene, etc. [5,6]. A great attention

is paid to the Janus structures based on dichalcogenides

of transition metals [7,8]. A special place is held by the

research of magnetic states in Janus structures [4,9,10].
To the author’s knowledge, all theoretical works in this

field are performed within the framework of DFT (density
functional theory). In this paper we suggest a simple model

of graphene-like Janus compounds (J-GLC), that makes it

possible to get analytical expressions for band characteristics

(including effective masses of carriers) and estimate the

impact of external mechanical deformation on values of

these characteristics. Also, we discuss the issue of J-GLC

magnetization.

2. Electron spectrum: general
relationships

Structural model of hexagonal fragment of J-GLC is

shown in the figure below. In the following we use the

results of [11], where a symmetrical graphene-like structure

was considered, which is different from the J-GLC structure

in that the same C atoms are located on both sides of the

GLC-sheet.

As in [11], let us start from a set of two different dimers

composed of A,C and B,D atoms related to tac and tbd

transition integrals, respectively. Let us build a hexagonal

two-dimensional lattice from these dimers by introducing

tab interaction between the closest atoms A and B . We

denote this structure as C−AB−D. Generalizing the

results of [11], we get Green functions for J-GLC in the

following form:

GAA(BB)(ω, k) =
GA(B)(ω)

1− t2abGA(ω)GB (ω) f 2(k)
,

GA(B)(ω) =
gA(B)(ω)

1− t2a(b)c(d)g
A(B)(ω)gC(D)(ω)

, (1)

f (k)=

√

3+2 cos(kx a
√
3)+4 cos(kx a

√
3/2) cos(3ky a/2).

Here ω — energy variable, g I(ω) = (ω − εi + i0+)−1 —

atomic Green function, where εi — atom level energy

i = a, b, c, d; k = (kx , ky , 0) — wave vector for electron

motion in the (x , y, 0) plane, a — distance between

the closest atoms A and B . The electron spectrum of

the system can be obtained from the following equation:

ReD(ω, k) = 0, where

D(ω, k) =
[

1− t2acgA(ω)gC(ω)
][

1− t2bdgB(ω)gD(ω)
]

− t2abgA(ω)gB(ω) f 2(k), (2)
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Hexagonal fragment of structure of a graphene-like Janus com-

pound (J-GLC).

from which we get the following equation

(�a�c − t2ac)(�b�d − t2bd) −�c�d t2ab f 2(k) = 0, (3)

where �i = ω−εi . With tac = tbd = 0 we get two

local atom levels ωc,d = εc(d) and two GLC-bands

ω±
ab(k) = εab ±

√

12
ab + t2ab f 2(k), where ε̄ab = (εa + εb)/2

and 1ab = |εa−εb|/2. With tab = 0 we have four local levels

of dimers A−C and B−D with energies ω̄±
ac = εac ± Rac

and ω̄±
bd = εbd ± Rbd , where Ri j =

√

12
i j + t2i j ,

ε̄i j = (εi + ε j)/2 and 1i j = |εi−ε j |/21i j . In the general

case, the solution to equation (3) is too cumbersome

and thus it yields little information. However, it’s easy

to show that with εa = −εb, εc = −εd and tac = tbd

equation (3) becomes a biquadratic equation. Therefore, in

the following, we consider special cases and show specific

J-GLCs that can be associated with these cases.

3. Special cases
and J-GLCs corresponding to them

3.1. C−AA−D compounds

Suppose εa = εb = 0, εc = −εd = e > 0, tac = tbd = t⊥,
tab = t (variant 1). Then we get solution to equation (3) in

the following form:

E±
1±(k) = ±

√

[

B1(k) ± R1(k)
]

/2,

R1(k) =

√

[

e2 − t2 f 2(k)
]2

+ 4t2⊥
[

e2 + t2 f 2(k)
]

, (4)

where B1(k) = e2 + 2t2⊥ + t2 f 2(k), upper signs of bands

E±
1±(k) correspond to signs before the external root sign,

while lower signs correspond to signs before the internal

root sign R1(k). In the following, we focus on low-energy

bands E+
1−(k) = EC1(k) and E−

1−(k) = EV1(k), where C
and V subscripts are related to conduction band and valence

band.

Taking into account that f (Ŵ) = 3, f (M) = 1 and

f (K) = 0, where Ŵ,M and K are points of the Brillouin

zone in a two-dimensional hexagonal lattice, we get:

B1Ŵ = e2 + 2t2⊥ + 9t2, B1M = e2 + 2t2⊥ + t2,

B1K = e2 + 2t2⊥, R1Ŵ =
√

(e2 − 9t2)2 + 4t2⊥(e2 + 9t2),

R1M =
√

(e2 − t2)2 + 4t2⊥(e2 + t2), R1K = e
√

e2 + 4t2⊥.

Gaps between extreme values of low-energy bands in points

of Ŵ(M,K) are equal to

11Ŵ(M,K) =
√

2(B1Ŵ(M,K) − R1Ŵ(M,K)).

Now we demonstrate, that within variant 1 it is

possible to approximately describe, for example, the

Cl−graphene (Gr)−Br compound. In principle, it is possi-

ble to choose appropriate C and D decorating atom pairs

and for other two-dimensional hexagonal single-element

structures, such as silicene, germanene, etc. known as

Xenens [12.13]. Here we restrict the discussion to the case

of asymmetrically decorated graphene.

Assuming that σ -bond of carbon atoms (A and B)
is implemented by |s p2〉-orbitals and taking the energy

εs p2(Gr) = (εs + 2εp)/3 = −11.82 eV relative to vacuum

(we used Herman−Skillman atomic term tables [14])
as the reference point, we get energies of p-levels of

chlorine and bromine atoms equal to −0.49 and 0.62 eV,

respectively. To determine transition integrals t and t⊥
we use the bond orbital method of Harrison [15]. Then

t = Vs p2 = 3.2(~2/m0a2), where ~ — reduced Plank con-

stant, m0 — free-electron mass. In the following we

set all lengths of bonds equal to the sum of radii ra of

atoms [16,17], forming these bonds. Then for Gr we get the

length of bond a = 1.54 Å, which is almost coincides with

the value of 1.53 Å, obtained from the numeric calculation

for graphone Gr−C [18]. Then we get t ≈ 10.5 eV. We

assume the bonds of carbon atoms with halogen atoms as

σ -bonds of two |p〉-orbitals, so t⊥ = Vppσ = 2.22(~2/m0d2),
where d is length of the bond. For carbon atom

ra = 0.77 Å [16], values of ra for Cl and Br atoms

(according to Pauling) are equal to 0.99 and 1.14 Å,

respectively [17]. It gives us t⊥ = 5.46 and 4.64 eV for

C−Cl and C−Br bonds, respectively. For further numeric

estimates we assume e = 0.5 eV, t = 10 eV, t⊥ = 5 eV.

Results of the calculation are summarized in the table,

which also contains estimates of widths of allowed state

bands WC = WV = W = (1K − 1Ŵ)/2 and gaps between

high-energy and low-energy bands 1KK = E+
+ (K)−E+

−(K).
Since 11Ŵ < 11K, the energy band gap is Eg1 = 11Ŵ.

In the vicinity of point Ŵ dispersions of the conduction band

EC(k) = E+
−(k) and the valence band EV (k) = E−

− (k) can

be represented in the following form

EC(V )(k) = ±Eg1

2
+

~
2k2

2m1e(h)
. (5)
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Parameters of the model and estimates of band characteristics of J-GLC (All values of energy characteristics are given in eV, strain

characteristics are normalized to relative strains of interatomic bonds ξ and ζ , responses of band characteristics to variation of energy e
are normalized to ψ. Subscripts 1 for Cl−Gr−Br and 2 for other compounds are omitted.)

J-GLC Cl−Gr−Br B−BN−N Al−AlP−P Ga−GaAs−As In−InSb−Sb

t 10 10 5 4.4 3.3

t⊥ 5.0 10 5 4.4 3.3

e 0.5 3.0 2.2 1.3 1.5

1Ŵ = Eg 1.89 7.71 4.63 3.26 3.07

δ2D1Ŵ/ξ 1.30 4.65 0.35 1.17 0.20

δz1Ŵ/ζ −2.70 −51 −21 −24 −14

δe1Ŵ/ψ 0.25 1.48 0.80 0.66 0.93

1M 4.22 11.3 5.21 4.98 3.19

δ2D1M/ξ 2.82 3.22 0.52 1.45 0.12

δz1M/ζ −6.90 −34 −18 −15 −13

δe1M/ψ 0.09 −0.92 −0.75 −0.39 −0.50

1K 9.51 17.8 8.68 7.83 5.73

δ2D1K/ξ 0 0 0 0 0

δz1K/ζ −10 −19 −9 −8 −6

δe1K/ψ −0.24 −0.67 −0.07 −0.30 −0.08

1KK 0.50 2.90 1.84 1.26 0.96

δ2D1KK/ξ 0 0 0 0 0

δz1KK/ζ −4 −0.38 −0.56 −0.16 −0.63

δe1KK/ψ 2 10.8 7.1 4.71 4.76

m∗

e 5 3 8 3 11

δ2D m∗

e /m∗

e ξ −4.9 −4.0 −4.5 −4.2 −4.5

δz m∗

e /m∗

e ζ 7 30 175 60 208

δem∗

e /m∗

e ψ 0.13 0.83 7.27 4.90 1.13

W 3.81 2.90 2.03 2.20 1.31

where effective masses of electrons (e) and holes (h) are

m1e = −m1h =
~
2Eg1

9t2a2C1Ŵ

, (6)

C1Ŵ = r1Ŵ/R1Ŵ − 1, r1Ŵ = 9t2 + 2t2⊥ − e2. Value of the

dimensionless effective mass m∗
1e = m1e/m0 is given in the

table. With e2 ≪ t2⊥ ≪ t2 we get C1Ŵ ≈ 2t4⊥/81t4 ≪ 1, and

the precise value is C1Ŵ = 1.36 · 10−3.

Now let us consider the H−Gr−Cl compound us-

ing Fischer atomic term tables (see [14], v. 2, Ap-

pendix 1). Then for carbon atoms ( A and B atoms)
we have εa = εb = (εs + 2εp)/3 = −13.84 eV relative to

vacuum. For hydrogen atom ( C atom) we have

εc = εs = −I = −13.60 eV, where I is ionization energy.

For chlorine we have εd = −13.78 eV. Assume for the

sake of simplicity that εa = εb = εc = εd = −13.7 eV and

take this energy as a reference point. Then, as it is

shown before, for the C−Cl bond we have tbd = 5.46 eV.

Assuming the length of C−Cl bond equal to 1.30 Å, where

atomic radius of hydrogen is taken equal to Bohr radius, we

get tac = Vs pσ = 1.42(~2/m0d2) = 6.40 eV. Let us assume

t⊥ = 6 eV and, as above, tab = t = 10 eV. Now, instead of

equation (3), we have

ω4 −
(

2t2⊥ + t2 f 2(k)
)

+ t4⊥ = 0,

from which we get the following:

E±
± (k)′ = ±

√

[

B ′(k) ± R′(k)
]

/2,

where

B1(k) = e2 = 2t2⊥ f 2(k)

and

R′(k) = t f (k)
√

4t2⊥ + t2 f 2(k).

Thus, bands E±
±(k)′ coincide with bands E±

1±(k) (4) for the

Cl−Gr−Br compound, where in all expressions for B ′
Ŵ,M,K

and R′
Ŵ,M,K we should assume e = 0. Since e ≪ t⊥, t for

Cl−Gr−Br (see the table), and value of t⊥ = 5 eV is close

to t⊥ = 6 eV for H−Gr−Cl, band characteristics of these

two compounds are close to each other as well. Thus, for

example, we get E ′
g1 = 1′

1Ŵ = 2.31 eV and m′∗
1e = 3.

DFT-calculations for H−Gr−D compounds

(D = F, Cl, Br) were performed in [19,20]. However,

these works considered small surface concentrations
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of hydrogen and halogen atoms that form three-atom

islands around hexagons on both sides of the graphone

sheet. Depending on configuration of these islands on the

graphene surface locations of energy gaps (points Ŵ and K)
and their width (from 0.06 to 1.57 eV) are both changed.

Thus, for example, for the H−Gr−Cl compound a value of

Eg = 1.57 eV was obtained for the energy gap in point Ŵ.

Unfortunately, there is no information on effective masses

in [19,20].

3.2. A−AB−B compounds

Now suppose εa = εc = e, εb = εd = −e, tac = tbd = t⊥,
tab = t (variant 2). Then, from (3) we get the follow-

ing spectrum:

E±
2± = ±

√

[B2(k) ± R2(k)]/2,

R2(k) =
√

4t2⊥[4e2 + t2 f 2(k)] + t4 f 4(k), (7)

where

B2(k) = 2(e2 + t2⊥) = t2 f 2(k).

Characteristic band parameters are equal to:

B2Ŵ = 2(e2 + t2⊥) + 9t2, B2M = 2(e2 + t2⊥) + t2,

B2K = 2(e2 + t2⊥), R2Ŵ =
√

4t2⊥(4e2 + 9t2) + 81t4.

R2M =
√

4t2⊥(4e2 + t2) + t4, R2K = 2et⊥,

12Ŵ,M=2
√

(B2Ŵ,M−R2Ŵ,M)/2 and 12K=2

√

e2+t2⊥−et⊥.

It is easy to show that 1Ŵ < 1K, or 2et⊥ < R2Ŵ, so

the energy gap is formed in the Ŵ point. Width of

the conduction band and valence band W = (1K − 1Ŵ)/2,
and the gap is

12KK =
√

e2 + t2⊥ + et⊥ −
√

e2 + t2⊥ − et.

Effective masses of carriers can be expressed as follows:

m∗
2e = −m∗

2h =
~
2Eg2

9t2a2C2Ŵ

, (8)

where Eg2 = 12Ŵ, C2Ŵ = r2Ŵ/R2Ŵ − 1, r2Ŵ = 9t2 + 2t2⊥ .
Variant 2 can be applied to J-GLC of the A−AB−B

type, where AB represent two-dimensional hexagonal com-

pounds III−V, such as, for example, BN, AlP, GaAs

and InSb [11,21,22]. As the mean bond length of A−A
and B−B within our scheme is equal to the length

of A−B bond, i. e. d = a , then t⊥ = t . We assume that

all atoms form σ -bonds of |sp3〉-orbitals with energies of

εsp3 = (εs + 3εp)/4. Then t = Vsp3 = 3.22(~2/m0a2) [15].
Taking ε̄ab = (εa + εb)/2 as a reference point of energy,

let us assume εa = −εb = e. Results of the calculation are

summarized in the table. Here, for comparison, we give the

value of Eg = 2.55 eV, obtained for F−BN−H compound

in [9] — the only work devoted to C−AB−D compounds

known to us.

Based on the results presented in the table, the following

conclusions can be made: 1) Cl−Gr−Br and In−InSb−Sb

compounds are wide-band semiconductors, B−BN−N,

Al−AlP−P and Ga−GaAs−As compounds are isolators;

2) EC(k) and EV (k) bands are narrow, the 1KK gap sepa-

rating these bands from E±
+ (k) high-energy bands is narrow

as well; 3) in the considered J-GLCs effective masses of

carriers are heavy. By virtue of assumed simplifications, all

the presented estimates of band characteristics should be

considered as semiquantitative. The estimates of effective

masses are just order estimates, which is caused by the small

value of C ∼ 10−3 parameter, that can result in significant

errors in the estimates. The smallness of C emerges due the

fact that when expanding the expression EC(k) = −EV (k) in
(ka)2, contributions from B(k) and R(k) nearly compensate

each other, which results in a little dispersion (causing the

narrowness of bands as well) and high effective mass.

It’s worth to note that estimates of band parameters for

graphane H−Gr−H [23] and fluorographene F−Gr−F [24]
(obtained within nearly the same model as that used in

this work) are close to the results of this work. Thus,

for example, Eg ≈ 5.6 and 3 eV, m∗
e = −m∗

h ≈ 2 and 3 for

graphane and fluorographane, respectively. On the other

hand, according to results of [11], C−BN−C, Si−AlP−Si,

Ge−GaAs−Ge and Sn−InSb−Sn symmetric structures are

narrow-band semiconductors (Eg ≈ 0.7 eV for C−BN−C

and ∼ 0.3 eV for other compounds), widths of bands

WC = WV and gap 1KK are narrow as well.

4. Strain impact on the electron
spectrum

Suppose a hexagonal lattice formed by AB atoms is

subjected to omniradial stretching or compression (plane
strain). We denote ξ = δa/a the corresponding relative

strain of bond length between the closest neighbors.

With such a strain f (k) function remains unchanged,

however energy characteristics of bands change. Now

suppose, that under a pair of opposite forces along z
axis the A−C and B−D bonds are either stretched or

compressed. At the same time the strains δdac and

δdbd of bond lengths must meet the kacδdac = kbdδdbd

equation, where kac and kbd are force constants of

the bonds. According to [14,15,25], the central force

constant is k = 4αc(1− 2αp)V2/d2, where V2 = tac , tbd ,

αc = V2/

√

V 2
2 + V 2

3 and αp = V3/

√

V 2
2 + V 2

3 — covalence

and polarity of bond, V3 = |εa(b)−εc(d)|/2. For the spe-

cial cases under consideration (dac = dbd, tac = tbd = t⊥
and V2 = e/2) we get ζac = ζbd = ζ .

4.1. C−AA−D compounds

We now proceed with estimates for specific structures

and start with C−AA−D compounds. By introducing

9 Physics of the Solid State, 2022, Vol. 64, No. 2
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parameter δ2DL ≡ (∂L/∂a)ξ for the plane strain, where L is

the band characteristic, and taking into account that

tab ∝ a−2 and tac(bd) ∝ d−2
ac(bd), we get:

δ2DB1Ŵ = −36t2ξ, δ2DB1M = −4t2ξ, δ2DB1K = 0,

δ2DR1Ŵ = δ2DB1Ŵ(r1Ŵ/R1Ŵ), r1Ŵ = 9t2 + 2t2⊥ − e2,

δ2DR1M = δ2DB1M(r1M/R1M), r1M = t2 + 2t2⊥ − e2,

δ2DR1K = 0. (9)

The change in 11Ŵ,M,K parameters is:

δ2D11Ŵ,M,K = −δ2DB1Ŵ,M,KC1Ŵ,M,K/211Ŵ,M,K, (10)

where C1Ŵ,M,K = r1Ŵ,M,K/R1Ŵ,M,K−1. The impact of plane

strain on the effective masses of carriers is defined by the

following expression:

δ2Dm1e(h)/m1e(h) = 2ξ + δ2D11Ŵ/11Ŵ +
δ2DB1Ŵ

R1Ŵ

(

1 +
r1Ŵ
R1Ŵ

)

,

(11)

from which we get δ2Dm1e(h)/m1e(h) ≈ −5.6ξ . Results of the

calculation for Cl−Gr−Br compounds are given in the table.

The same order of values we get for H−Gr−Cl compound

as well.. Thus, the plane strain has relatively low impact on

the band parameters and effective masses of carriers.

We now proceed with uniaxial strain, for which pur-

pose we define the parameterδz L ≡ (∂L/∂d)ζ , where

ζ = ζac(1 + kac/kbd). Then we get

δz B1Ŵ,M,K = −8t2⊥ζ ,

δz R1Ŵ = δz B1Ŵ(ρ1Ŵ/R1Ŵ), ρ1Ŵ = e2 + 9t2,

δz R1M = δz B1M(ρ1M/R1M), ρ1M = e2 + t2,

δz R1K = δz B1K(ρ1K/R1K), ρ1K = e2. (12)

Instead of (10) we have

δz11Ŵ,M,K = δz B1Ŵ,M,K(1− ρ1Ŵ,M,K/R1Ŵ,M,K)/211Ŵ,M,K.

(13)

from which, taking into account the e2 ≪ t2⊥ ≪ t2 inequa-

tion, we get

δz11Ŵ ≈ −8t4⊥ζ /9t211Ŵ, δz11M ≈ −8t4⊥ζ /t211M,

δz11K ≈ −4t4⊥ζ /11K, δz11KK = 0.

Thus, |δz11Ŵ,M,K| ≫ |δ2D11Ŵ,M,K|. For effective masses we

get

δz m1e(h)/m1e(h) = δz11Ŵ/11Ŵ −
δ2DB1Ŵ

C1ŴR1Ŵ

(

1− r1Ŵρ1Ŵ
R2
1Ŵ

)

.

(14)
Results of numeric estimates for the Cl−Gr−Br com-

pound are given in the table. Estimates of the same

order correspond to the H−Gr−Cl compound. Note

that, first, the strains δ2D1Ŵ,M > 0 (C1Ŵ,M,K > 0) and

they grow when transiting from Ŵ to M, δ2D1K = 0; the

strains δz11Ŵ,M,K < 0 (ρ1Ŵ,M,K/R1Ŵ,M,K < 1) and they grow

as well by modulus when transiting from Ŵ to K. As

for the order of magnitude, all strain characteristics are

within the range from 0 to 10ξ(ζ ) eV. The strain value

is δ2Dm1e(h)/m1e(h) = −4.9ξ , because the third term of

sum in formula (11) prevails; δz m1e(h)/m1e(h) = 7ζ , since

r1Ŵρ1Ŵ/R1Ŵ < 1. It must be emphasized that the uniaxial

strain makes stronger changes in characteristics of the

electron spectrum as compared with the plane strain.

4.2. A−AB−B compounds

In the case of plane strain, it is easy to show that

δ2DB1Ŵ,M,K = δ2DB1Ŵ,M,K, and values of δ2DR2Ŵ,M,K are

defined by formulae (9) with corresponding replacement of

subscript 1 by 2, where r2Ŵ = 9t2 + 2t2⊥, r2M = t2 + 2t2⊥
(r1Ŵ,M become r2Ŵ,M at e = 0). Formula (10) holds

for for δ2Dm2e(h) with substitution of subscripts 1 by

subscripts 2. In the case of uniaxial strain we have

δz B2Ŵ,M,K = −8t2⊥e2, δz R2Ŵ,M = δz B2Ŵ,M(ρ2Ŵ,M/R2Ŵ,M),
ρ2Ŵ,M = e2, δz R2K = −4t⊥e. Expressions for δz12Ŵ,M,K

and δz m2e(h) are derived from expressions (13) and (14)
through substitution of subscripts 1 by subscripts 2.

Results of numeric estimates for two-dimensional

hexagonal compounds III−V are summarized in the table.

It follows by the table that, first, the response of

band parameters to the plane strain is nearly the same

as that of Cl−Gr−Br and H−Gr−Cl compounds.

As for the response of A−AB−B structures to the

uniaxial strain, for the characteristics considered in this

work and corresponding to Ŵ and M points of the

Brillouin zone, this response is considerably higher

(by several times and several tens times), than that for

Cl−Gr−Br and H−Gr−Cl compounds. The reason of this

inconsistency is that for A−AB−B the following ratio holds:

ρ2Ŵ,M/R2Ŵ,M ≪ 1 and (1− r2Ŵ,Mρ2Ŵ,M/R2
2Ŵ,M) ∼ 1, while

for Cl−Gr−Br and H−Gr−Cl we have ρ2Ŵ,M/R2Ŵ,M ∼ 1

and (1− r2Ŵ,Mρ2Ŵ,M/R2
2Ŵ,M) ≪ 1. At the same time, for all

structures: C1Ŵ ∼ C2Ŵ ≪ 1.

So, in this section we have considered the response of

electron spectrum of J-GLC to the strain of bond lengths

a and d . However, the obtained results also can be

interpreted as immunity of the model to the choice of a
and d parameters. In the Appendix we have considered the

system response to e energy variation. It should be noted,

that lengths and energies of bonds are the only parameters

of the bond orbital method of Harrison [14,15] used by us

in this work.

5. About magnetic states in J-GLC

The issue of J-GLC magnetization came up in theoretical

works [4.10,26], that considered the Gr−H graphone. It

was shown that a carbon atom free from H has a large spin

moment (∼ 1µB, where µB — Bohr magneton). Similar
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results were obtained in [9] for the H−BN and F−BN

compounds: free atoms of nitrogen have a magnetic

moment of ∼ 0.75 and 1µB, respectively.

To describe spin states in the Hartree−Fock approxi-

mation within our model of J-GLC, it is necessary, first,

to assign a spin index σ =↑, ↓ to all Green functions in

expression (1) and instead of energy εi (i = a, b, c, d)

introduce energy εiσ = εi + Ui ni−σ , where Ui — Coulomb

repulsion of electrons with opposite spins in the atom of

I = A, B,C, D, niσ — occupation number for the level

of εiσ [27,28]. Second, by leaving only atoms of C atoms as

decorating atoms, it is necessary to replace in expression (1)

the Green function GB
σ (ω) of dimer B−D by the Green

function gB
σ (ω) of atom B . Then, instead of (3) we get a

system of two equations (for σ =↑, ↓) as follows:

�aσ�bσ�cσ −�bσ t2ac −�cσ t2ab f 2(k) = 0, (15)

where �iσ = ω−εiσ . The same equation can be obtained

from (3) by assuming tbd = 0 and rejecting the solution

�d = 0. In a generic form a self-consistent solution to the

system of equations (15) is quite a labor-intensive problem.

For example, let as consider graphone. Taking into

account the fact, that lengths of C−C and C−H bonds

are equal to 1.50 and 1.16 Å, respectively [9,18], we have

tab = t ≈ 11 eV and tab = Vspσ ≡ t ≈ 8 eV [15]. For atoms

of carbon εa = εb = (εs + 2εp)/3 = −13.84 eV relative to

vacuum, where we used Mann atomic term tables [29], also

containing value of Ua = Ub = 11.76 eV (note, that values

of energies εs and εp from Mann tables are almost the

same as values from Fischer tables). For atoms of hydrogen

εc = εs = −I = −13.60 eV, Uc = I−A = 12.85 eV, where I
and A — ionization energy and electron affinity energy [16].
We assume εa = εb = εc = −13.7 eV, Ua = Ub = Uc ≡ U
= 12.3 eV. By introducing spin moments mi = ni↑−ni↓

localized on I atom and assuming εa + U/2 = εb + U/2
= εc + U/2 = 0, we get εi↑ = −U(Zi + mi)/2 and

εi↓ = −U(Zi−mi)/2, where Zi = 1−ni — charge of the

i-the atom. We take into account two additional circum-

stances: 1) because of charge conservation law we have
∑

i
Zi = 0; 2) since there is only one uncompensated spin

in the system per one unit cell, which is localized mainly

on unpaired |pz 〉-orbital of carbon atom, we get
∑

i
mi = 1.

It follows that
∑

i
εi = U .

Without taking into account the Coulomb interaction

(U = 0) from equation (3) we get symmetrical bands of the

following form E0
0 (k) = 0 and E0

±(k) = ±
√

t2⊥ + 4t2 f 2(k).

At U 6= 0 the symmetry is disturbed due to interatomic

transition of electrons and presence of spin moments. It is

easy to see that even with our considerable simplifications

the self-consistent system of equations (15) does not have

an analytical solution, thus computerized calculation is

required.

6. Conclusion

So, in this work we suggested a model of Janus structure

and considered a number of cases for which this model gives

simple analytical solution. It should be noted that this model

is convenient for express estimates of band parameters (gaps
in the spectrum, effective masses), response to external

disturbance (mechanical deformation in our case) and, if

sufficiently representative set of compounds under exami-

nation is considered, for identifying behavior of changes

in some physical characteristic. At the same time we did

not use any adjustable parameters to determine energies

of states using atomic term tables [14,29], interatomic

distances — using sum of atomic radii [16,17] and transition

integrals — using Harrison scheme [14,15]. In principle we

should have a little difficulty in considering here capacitive

characteristics of Janus structures, as well as the issue

of defects in these structures using the approaches of

works devoted to graphane [23], fluorographene [24] and

C−h−AB−C graphene-like compounds [11]. We, however,

have postponed these research activities until emergence

of corresponding experimental data or at least ab initio

calculations.

Conflict of interest

The author declares that he has no conflict of interest.

APPENDIX

Let us consider the response of electron spectrum to e
energy variations by determining the response of band char-

acteristic L to relative change ψ = δe/e as δeL = (∂L/∂e)ψ.

C−AA−Dcompounds.

In accordance with expressions for B1Ŵ,M,K and R1ŴM,K

we get

δeB1Ŵ,M,K = 2e2ψ, δeR1Ŵ = −2e2(9t2 − 4t2⊥ − e2)ψ/R1Ŵ,

δeR1M = −2e2(t2 − 4t2⊥ − e2)ψ/R1M,

δeR1K = R1K(1 + e4/R2
1Ŵ)ψ.

For the response of gaps 11Ŵ,M,K, 11KK and effective masses

of carriers m1e = −m1h to the relative change in e energy

we get:

δe11Ŵ,M,K = (δeB1Ŵ,M,K − δeR1Ŵ,M,K)/211Ŵ,M,K, (A1)

δe11KK = (δeB1K + δeR1K)/
√

(B1K + R1K)/2

− (δeB1K − δeR1K)/
√

(B1K − R1K)/2. (A2)

δem1e = −δem1h = m1e(δe11Ŵ/11Ŵ − δeC1Ŵ/C1Ŵ),

δeC1Ŵ = −2e2ψ
R1Ŵ

(

1− r1Ŵ(9t2 − 4t2⊥ − e2)

R2
1Ŵ

)

. (A3)
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Results of numeric estimates for the Cl−Gr−Br com-

pound are given in the table. For the H−Gr−Cl

compound, for which e = 0, and, as a consequence,

δeB1Ŵ,M,K = δeR1Ŵ,M,K = 0, we get δe11,M,K = δe1KK

= δem1e(h) = 0.

A−AB−Bcompounds.

In accordance with expressions for B2Ŵ,M,K and R2Ŵ,M,K

we get

δeB2Ŵ,M,K = 4e2ψ,

δeR2Ŵ,M = 16e2t2⊥ψ/R2Ŵ,M, δeR2K = R2Kψ.

The responses of gaps 12Ŵ,M,K, 12KK are defined by

formulae (A1) and (A2) with substitution of subscripts 1

by subscripts 2. For effective masses we get

δem2e = −δem2h = m1e(δe12Ŵ/11Ŵ − δeC2Ŵ/C2Ŵ),

δeC2Ŵ = −r2ŴδeR2Ŵ/R2
2Ŵ. (A4)

Numeric results are presented in the table, from which it

follows that changes in almost all considered characteristics

in modulus are not greater than ψ. Exceptions are values

of δe12Ŵ for B−BN−N and δeme/me for Al−AlP−P,

Ga−GaAs−As and In−InSb−Sb. It is logically reasonable

to estimate the order of magnitude of ψ through the

difference of atom level energies εs and εp given in Mann

tables (M) [15] and Herman−Skillman tables (HS) [14].
Estimates of ψs ,p = 2[εs ,p(M) − εs ,p(HS)] show that maxi-

mum value of (ψz )max = 0.17 takes place for chlorine atoms

and maximum value of (ψp)max = 0.24 takes place for

bromine atoms. Mean values for all atoms composing the

considered J-GLCs are equal to ψ̄s = 0.07 and ψ̄p = 0.14.
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