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1. Introduction

Two-dimensional Janus compounds are structures with
top and bottom surfaces built from different atoms or
molecules [1-3]. The research of electron spectrum of these
structures started in 2009 from graphone—graphene, where
every second carbon atom is bonded to a hydrogen atom
with the hydrogen atoms laying on one side of the graphene
sheet (the same structure can be considered as graphan
where hydrogen is deleted from one of its surfaces) [4].
Virtually at the same time an interest has arisen to the
structures where the place of hydrogen atoms is occupied
by halogen atoms, and graphene is replaced by graphene-
like compounds (GLC), such as hexagonal boron nitride
(h-BN), silicene, germanene, etc. [5,6]. A great attention
is paid to the Janus structures based on dichalcogenides
of transition metals [7,8]. A special place is held by the
research of magnetic states in Janus structures [4,9,10].

To the author’s knowledge, all theoretical works in this
field are performed within the framework of DFT (density
functional theory). In this paper we suggest a simple model
of graphene-like Janus compounds (J-GLC), that makes it
possible to get analytical expressions for band characteristics
(including effective masses of carriers) and estimate the
impact of external mechanical deformation on values of
these characteristics. Also, we discuss the issue of J-GLC
magnetization.

2. Electron spectrum: general
relationships

Structural model of hexagonal fragment of J-GLC is
shown in the figure below. In the following we use the
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results of [11], where a symmetrical graphene-like structure
was considered, which is different from the J-GLC structure
in that the same C atoms are located on both sides of the
GLC-sheet.

As in [11], let us start from a set of two different dimers
composed of A,C and B, D atoms related to tac and tpg
transition integrals, respectively. Let us build a hexagonal
two-dimensional lattice from these dimers by introducing
tap interaction between the closest atoms A and B. We
denote this structure as C—AB—D. Generalizing the
results of [11], we get Green functions for J-GLC in the
following form:

- GA(B>(Q))
GAA(BB)(Q), k) = = tgbGA(w)GB (w)f2(k)’
GA®) () g*®) () (1)

1= té(b)c(d)gA(B)(a’)qu)(w)’

f (k)= /342 cos(kxav/3) +4 cos(kxa/3/2) cos(3kya/2).

Here w — energy variable, g'(w) = (0 — & +i07)7! —

atomic Green function, where ¢ — atom level energy
i=a,b,c,d; k= (ks ky,0) — wave vector for electron
motion in the (X,y,0) plane, a — distance between

the closest atoms A and B. The electron spectrum of
the system can be obtained from the following equation:
Re D(w, k) = 0, where

D(w, k) = [1 — t3.9(0)g% ()] [1 — t5409° (0)g° (»)]

— 3,9"(@)g® (@) T2 (k). (2)
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Hexagonal fragment of structure of a graphene-like Janus com-
pound (J-GLC).
from which we get the following equation

(a9 — 130) (24 — th) — Qa3 f2(K) =0, (3)

where Qi = w—¢j.
local atom levels

With tze =thg =0 we get two
wed = &(d) and two GLC-bands

w3 (K) = eap £+ /A2, + 2, F2(K), where &ap = (£ + €5)/2

and Aap = |ea—&p|/2. With tap = 0 we have four local levels
of dimers A—C and B—D with energies w3, = €ac & Rac

Rij= ”Aizj +ti2j’
&j = (& +¢€;)/2 and Ajj = |gi—¢j|/2Aij. In the general
case, the solution to equation (3) is too cumbersome
and thus it yields little information. However, it’s easy
to show that with e = —&p, & = —&g and tyc = tyg
equation (3) becomes a biquadratic equation. Therefore, in
the following, we consider special cases and show specific

J-GLCs that can be associated with these cases.

and (x_)bid = &pd & Rud, where

3. Special cases
and J-GLCs corresponding to them

3.1. C—AA—D compounds

Suppose €3 =ep =0, &c = —eg=€> 0, tae =tpg =1,
tap =t (variant 1). Then we get solution to equation (3) in
the following form:

E () = +/[Bi1(K) £ Ri(K)]/2,

Ri(k) = /[ — 212(k))> + 48 [ + 212(K)],  (4)

where Bj(k) = €+ 2t3 +t2f2(k), upper signs of bands
E{", (k) correspond to signs before the external root sign,
while lower signs correspond to signs before the internal
root sign R;(k). In the following, we focus on low-energy
bands E; (k) = Eci(k) and E; (k) = Ey;(k), where C
and V subscripts are related to conduction band and valence
band.
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Taking into account that f(I')=3, f(M)=1 and
f(K) =0, where I', M and K are points of the Brillouin
zone in a two-dimensional hexagonal lattice, we get:

Bir = e’ + 2t2L + 9t2, Bim = e’ + 2t2L + tz,

Bik =€ +27, Rir= /(€2 — 922 1+ 4t2 (& + 92),

Riv = \/(e2 —2)2+4t3 (€ +17), Rix =e\/e?+4t7.

Gaps between extreme values of low-energy bands in points
of (M, K) are equal to

Arrw,x) = \/Z(BII‘(M,K) - Rirmx))-

Now we demonstrate, that within variant 1 it is
possible to approximately describe, for example, the
Cl—graphene (Gr)—Br compound. In principle, it is possi-
ble to choose appropriate C and D decorating atom pairs
and for other two-dimensional hexagonal single-element
structures, such as silicene, germanene, etc. known as
Xenens [12.13]. Here we restrict the discussion to the case
of asymmetrically decorated graphene.

Assuming that o-bond of carbon atoms (A and B)
is implemented by |sp?)-orbitals and taking the energy
esp2(Gr) = (es + 2ep)/3 = —11.82eV relative to vacuum
(we used Herman—Skillman atomic term tables [14])
as the reference point, we get energies of p-levels of
chlorine and bromine atoms equal to —0.49 and 0.62¢V,
respectively. To determine transition integrals t and t
we use the bond orbital method of Harrison [15]. Then
t = Vsp = 3.2(h*/mya?), where h — reduced Plank con-
stant, my — free-electron mass. In the following we
set all lengths of bonds equal to the sum of radii ry of
atoms [16,17], forming these bonds. Then for Gr we get the
length of bond a = 1.54 A, which is almost coincides with
the value of 1.53 A, obtained from the numeric calculation
for graphone Gr—C [18]. Then we get t ~ 10.5¢V. We
assume the bonds of carbon atoms with halogen atoms as
o-bonds of two |p)-orbitals, so t| = Vpp, = 2.22(h%/myd?),
where d is length of the bond. For carbon atom
ra=0.77A [16], values of ry for Cl and Br atoms
(according to Pauling) are equal to 099 and 1.14A,
respectively [17]. It gives us t; = 5.46 and 4.64eV for
C—Cl and C—Br bonds, respectively. For further numeric
estimates we assume e =0.5¢V, t=10eV, t; =5eV.
Results of the calculation are summarized in the table,
which also contains estimates of widths of allowed state
bands We =W, =W = (Ax — Ar)/2 and gaps between
high-energy and low-energy bands Axkx = E (K)—EZX (K).

Since Air < Ak, the energy band gap is Egi = Ajr.
In the vicinity of point I' dispersions of the conduction band
Ec(k) = Ef (k) and the valence band By (k) = E” (k) can
be represented in the following form

E h2k2
ol 4

Ec (k) = + .
) (k) 2 2Mygn)

(5)
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Parameters of the model and estimates of band characteristics of J-GLC (All values of energy characteristics are given in eV, strain
characteristics are normalized to relative strains of interatomic bonds £ and £, responses of band characteristics to variation of energy e
are normalized to 1. Subscripts 1 for CI—-Gr—Br and 2 for other compounds are omitted.)

J-GLC Cl-Gr—Br B—BN—N Al-AIP-P Ga—GaAs—As In—InSb—Sb
t 10 10 5 44 33
to 5.0 10 5 44 33
e 0.5 3.0 22 13 1.5
Ar = Ey 1.89 7.71 4.63 3.26 3.07
O Ar/é 1.30 4.65 0.35 1.17 0.20
8:Ar/E —2.70 —51 21 —24 —14
deAr/Y 0.25 1.48 0.80 0.66 093
Am 422 113 521 498 3.19
S Am/E 2.82 322 0.52 145 0.12
6:8Mm/¢ —6.90 —-34 —18 —15 —-13
SeAm/Y 0.09 —0.92 —0.75 —0.39 —0.50
Ak 9.51 17.8 8.68 7.83 573
S Ak /& 0 0 0 0 0
00k /¢ —10 -19 -9 —8 —6
SelAx /1 —0.24 —0.67 —-0.07 —0.30 —0.08
Akk 0.50 290 1.84 1.26 0.96
60 Axk /€ 0 0 0 0 0
NS —4 —0.38 —0.56 —-0.16 —0.63
SelAxx /1P 2 10.8 7.1 471 476
ms 5 3 8 3 11
Sopms/maé —4.9 —4.0 —4.5 —4.2 —4.5
S;me/mal 7 30 175 60 208
SeMms /MGy 0.13 0.83 727 490 1.13
W 3.81 290 2.03 220 131

where effective masses of electrons (e) and holes (h) are

2
Mie = —Myp = 9£LTI§2311F’ (6)
Cr=rir/Rir—1, ripr= ot2 + 2'[3_ — €’ Value of the
dimensionless effective mass mj, = Mje/My is given in the
table. With € < t3 < t? we get Cyp ~ 2t4 /81t* <« 1, and
the precise value is C;p = 1.36 - 1073,

Now let us consider the H—Gr—Cl compound us-
ing Fischer atomic term tables (see [14], v.2, Ap-
pendix 1). Then for carbon atoms ( A and B atoms)
we have €3 = ep = (&5 + 2¢p)/3 = —13.84¢eV relative to

vacuum.  For hydrogen atom ( C atom) we have
& =& = —| = —13.60¢eV, where | is ionization energy.
For chlorine we have &g = —13.78 eV. Assume for the

sake of simplicity that €3 = &p = &c = &g = —13.7¢eV and
take this energy as a reference point. Then, as it is
shown before, for the C—Cl bond we have t,q = 5.46¢V.
Assuming the length of C—CI bond equal to 1.30 A, where
atomic radius of hydrogen is taken equal to Bohr radius, we
get tac = Veps = 1.42(h2/myd?) = 6.40€V. Let us assume
t; = 6¢eV and, as above, tap =t = 10eV. Now, instead of

equation (3), we have
o' — (2t +t*f3(k)) +t] =0,

from which we get the following:

Ef (k) = +/[B/(K) £ R (K)] /2.

where
Bi(k) = e* = 2t% (k)

and
R(k) =tf (k)y/4t2 +t2f2(k).

Thus, bands ET (k)’ coincide with bands EljtjE (k) (4) for the
Cl—-Gr—Br compound, where in all expressions for By, \;
and Rf ;g we should assume € = 0. Since e <ty,t for
Cl—Gr—Br (see the table), and value of t; = 5eV is close
to t; =6eV for H-Gr—Cl, band characteristics of these
two compounds are close to each other as well. Thus, for
example, we get E/; = Al =2.31eV and m[} = 3.

91 =
DFT-calculations for H-Gr-D compounds
(D =FCLBr) were performed in [19,20].  However,

these works considered small surface concentrations
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of hydrogen and halogen atoms that form three-atom
islands around hexagons on both sides of the graphone
sheet. Depending on configuration of these islands on the
graphene surface locations of energy gaps (points I' and K)
and their width (from 0.06 to 1.57eV) are both changed.
Thus, for example, for the H—Gr—Cl compound a value of
Ey = 1.57eV was obtained for the energy gap in point I.
Unfortunately, there is no information on effective masses
in [19,20].

3.2. A—AB-—B compounds

Now suppose €3 = &c = €, &y = &g = —€, tac = thg =1,
tap =t (variant 2). Then, from (3) we get the follow-
ing spectrum:

Es, = +v/[B2(k) = Ry(K)]/2,

Ro(k) = /42 [e2 + 212K +t414(k).  (7)

where
Ba(k) = 2(e? +t7) = t*f2(k).

Characteristic band parameters are equal to:

Bor = 2(92 + ti) + 9t2, Bom = 2(92 + ti) + tz,

Bk =2(e* +t1), Ror= \/4ti(4e2 + 9t2) + 81t4.

Row = (/482 (4€> + ) 414, Ry = 2et,.

Azr,Mzz\/(Bzr,M—Rzp,M)/z and A2K22\/ e2+ti—etl.

It is easy to show that Ar < Akx, or 2et; < Ryr, so
the energy gap is formed in the I' point. Width of
the conduction band and valence band W = (Ax — Ar)/2,
and the gap is

Aokk = \/e2+ti +et; — \/e2+ti — et.
Effective masses of carriers can be expressed as follows:

W = — W = — 8
”be rTbh 9t2a2C2F ( )

where Eg = A, Cor=ryr/Ror—1,rpr = o2 + 2t2L'
Variant 2 can be applied to J-GLC of the A—AB—B
type, where AB represent two-dimensional hexagonal com-
pounds III-V, such as, for example, BN, AIP, GaAs
and InSb [11,21,22]. As the mean bond length of A—A
and B—B within our scheme is equal to the length
of A—B bond, i.e. d=a, then t; =t. We assume that
all atoms form o-bonds of |sp?)-orbitals with energies of
esp3 = (&s + 3€p)/4. Then t = Vg3 = 3.22(h?/mpa?) [15].
Taking eap = (€a + €b)/2 as a reference point of energy,
let us assume €5, = —&p = €. Results of the calculation are
summarized in the table. Here, for comparison, we give the
value of Eg = 2.55¢eV, obtained for F-BN—H compound
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in [9] — the only work devoted to C—AB—D compounds
known to us.

Based on the results presented in the table, the following
conclusions can be made: 1) CI-Gr—Br and In—InSb—Sb
compounds are wide-band semiconductors, B—BN—-N,
Al—-AIP—P and Ga—GaAs—As compounds are isolators;
2) Ec(k) and Ey (k) bands are narrow, the Agx gap sepa-
rating these bands from Ef (k) high-energy bands is narrow
as well; 3) in the considered J-GLCs effective masses of
carriers are heavy. By virtue of assumed simplifications, all
the presented estimates of band characteristics should be
considered as semiquantitative. The estimates of effective
masses are just order estimates, which is caused by the small
value of C ~ 1073 parameter, that can result in significant
errors in the estimates. The smallness of C emerges due the
fact that when expanding the expression Ec (k) = —Ey (k) in
(ka)?, contributions from B(k) and R(k) nearly compensate
each other, which results in a little dispersion (causing the
narrowness of bands as well) and high effective mass.

It’s worth to note that estimates of band parameters for
graphane H—Gr—H [23] and fluorographene F—Gr—F [24]
(obtained within nearly the same model as that used in
this work) are close to the results of this work. Thus,
for example, Eg ~ 5.6 and 3 eV, mg = —m}; =~ 2 and 3 for
graphane and fluorographane, respectively. On the other
hand, according to results of [11], C—BN—C, Si—AIP—Si,
Ge—GaAs—Ge and Sn—InSb—Sn symmetric structures are
narrow-band semiconductors (Eg ~ 0.7¢V for C-BN-C
and ~ 0.3eV for other compounds), widths of bands
We =W and gap Akk are narrow as well.

4. Strain impact on the electron
spectrum

Suppose a hexagonal lattice formed by AB atoms is
subjected to omniradial stretching or compression (plane
strain). We denote £ = da/a the corresponding relative
strain of bond length between the closest neighbors.
With such a strain f (k) function remains unchanged,
however energy characteristics of bands change. Now
suppose, that under a pair of opposite forces along z
axis the A—C and B—D bonds are either stretched or
compressed. At the same time the strains §dac and
6dpg of bond lengths must meet the Kacddac = KpddObd
equation, where K, and Kkpq are force constants of
the bonds. According to [14,15,25], the central force
constant is K = 4ac(1 — 2ap)Va/ d?, where Vs = tac, tha,
ac =Va/y/V7 + V2 and ap =V3/(/V# + V2 — covalence
and polarity of bond, V3 = |eap)—&c(q)|/2. For the spe-
cial cases under consideration (dac = Obg, tac =toa =to
and V, = e/2) we get fac = Sod = £

4.1. C—AA—D compounds

We now proceed with estimates for specific structures
and start with C—AA—D compounds. By introducing
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parameter S,pL = (dL/0a)é for the plane strain, where L is
the band characteristic, and taking into account that
tap o @72 and tag(pa) o da_cibd), we get:

S0Bir = —36t%, 8pBim = —4t%, 8Bk =0,
8pRir = 8pBir(rir/Rir), rir =9 +2t7 — €,
8pRim = 8pBim(rim/Rim), v =t2 +2t5 — €7,

dpRik = 0. 9)
The change in Ajr vk parameters is:
6pAirmk = —620B1ir MxCirmk/2Ar, MK, (10)

where CIF,M,K = rlp,M,K/er,M,K—l. The impact of plane
strain on the effective masses of carriers is defined by the
following expression:

Rir Rir
(11)
from which we get 62pMyen)/Mieny = —5.6£. Results of the
calculation for CI-Gr—Br compounds are given in the table.
The same order of values we get for H-—Gr—Cl compound
as well.. Thus, the plane strain has relatively low impact on
the band parameters and effective masses of carriers.
We now proceed with uniaxial strain, for which pur-
pose we define the parameters,L = (dL/9d){, where
¢ = Gac(1 + Kac/Kpa). Then we get

8:Birmx = -8t ¢,

6pB r
020 Mie(h)/Mie(h) = 24 + SpAir/Air + SELaLl (1 + IF),

8;Rir = 8;Bir(pir/Rir),  pir = € + 92,
5:Rim = 8:Bim(oim/Rim),  pim = € + 7,
&Rk = &Bix(pik/Rix), pik = €. (12)

Instead of (10) we have
S8 Mk = 6zBirm k(1 — pirmk/Rinm,x)/2A1m,m k-
(13)
from which, taking into account the €* < t3 < t? inequa-

tion, we get

S A1 = —8t1 £/ Ar, S, Am ~ —8t1 £/ A,

S A1k ~ — 41 £ /A, 8,Akk = 0.

Thus, |6,A1r,m k| > |[620A1r,m.x|- For effective masses we
get

8,08 "

/M =6/ = G (1 gt ).
1r

(14)

Results of numeric estimates for the Cl—Gr—Br com-
pound are given in the table. Estimates of the same
order correspond to the H—Gr—Cl compound. Note
that, first, the strains &pArm >0 (Cirmk > 0) and

they grow when transiting from I' to M, d,pAk = 0; the
strains SZAIF,M,K <0 (plF,M,K/RIF,M,K < 1) and they grow
as well by modulus when transiting from I' to K. As
for the order of magnitude, all strain characteristics are
within the range from 0 to 10£(S)eV. The strain value
s &pMig(hy/ Mgy = —4.94, because the third term of
sum in formula (11) prevails; 8;Mgm)/Miem) = 74, since
riroir/Rir < 1. It must be emphasized that the uniaxial
strain makes stronger changes in characteristics of the
electron spectrum as compared with the plane strain.

4.2. A—AB-—B compounds

In the case of plane strain, it is easy to show that
6pBirmx = 02pBirmk, and values of dpRormk are
defined by formulae (9) with corresponding replacement of
subscript 1 by 2, where ror = ot2 + Zti, Fom = t2 + Zti
(rirm become roryv at €=0). Formula (10) holds
for for &pMpeny with substitution of subscripts 1 by
subscripts 2.  In the case of uniaxial strain we have
8:Barmk = —8t2 €%, §;Rorm = 8:Borm(parm/Rorm)s
P2ar M = 62, 6,Rox = —4t e EXpI'eSSiOIlS for SZAZF,M,K
and 6;Mper) are derived from expressions (13) and (14)
through substitution of subscripts 1 by subscripts 2.
Results of numeric estimates for two-dimensional
hexagonal compounds III-V are summarized in the table.
It follows by the table that, first, the response of
band parameters to the plane strain is nearly the same
as that of Cl-Gr—Br and H—-Gr—Cl compounds.
As for the response of A—AB—B structures to the
uniaxial strain, for the characteristics considered in this
work and corresponding to I' and M points of the
Brillouin zone, this response is considerably higher
(by several times and several tens times), than that for
Cl—-Gr—Br and H-Gr—Cl compounds. The reason of this
inconsistency is that for A—AB—B the following ratio holds:
pZF,M/RZF,M <1 and (1 — rzp,Mpzr,M/R%F,M) ~ 1, while
for C1-Gr—Br and H-Gr—Cl we have porm/Rorm ~ 1
and (1 — raop.mp2r.m/ R%F’M) < 1. At the same time, for all
structures: Cir ~ Cyr < 1.

So, in this section we have considered the response of
electron spectrum of J-GLC to the strain of bond lengths
a and d. However, the obtained results also can be
interpreted as immunity of the model to the choice of a
and d parameters. In the Appendix we have considered the
system response to € energy variation. It should be noted,
that lengths and energies of bonds are the only parameters
of the bond orbital method of Harrison [14,15] used by us
in this work.

5. About magnetic states in J-GLC

The issue of J-GLC magnetization came up in theoretical
works [4.10,26], that considered the Gr—H graphone. It
was shown that a carbon atom free from H has a large spin
moment (~ 1up, where ugp — Bohr magneton). Similar

Physics of the Solid State, 2022, Vol. 64, No. 2
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results were obtained in [9] for the H-BN and F—BN
compounds: free atoms of nitrogen have a magnetic
moment of ~ 0.75 and 1 ug, respectively.

To describe spin states in the Hartree—Fock approxi-
mation within our model of J-GLC, it is necessary, first,
to assign a spin index ¢ =T, | to all Green functions in
expression (1) and instead of energy & (i =a,b,c,d)

introduce energy ¢ir, = & + Uini_,, where U; — Coulomb
repulsion of electrons with opposite spins in the atom of
| =A,B,C,D, ni, — occupation number for the level

of €is [27,28]. Second, by leaving only atoms of C atoms as
decorating atoms, it is necessary to replace in expression (1)
the Green function G2(w) of dimer B—D by the Green
function gB(w) of atom B. Then, instead of (3) we get a
system of two equations (for o =T, |) as follows:

Qao Lo QLo — Qbatgc - Qco't.glbf 2(k) =0, (15)

where Qj, = w—¢j,. The same equation can be obtained
from (3) by assuming tpg = 0 and rejecting the solution
Qq = 0. In a generic form a self-consistent solution to the
system of equations (15) is quite a labor-intensive problem.

For example, let as consider graphone. Taking into
account the fact, that lengths of C—C and C—H bonds
are equal to 1.50 and 1.16 A, respectively [9,18], we have
tab =t~ 11eV and tap = Vp, =t ~ 8¢V [15]. For atoms
of carbon &5 = & = (&5 + 2ep)/3 = —13.84 ¢V relative to
vacuum, where we used Mann atomic term tables [29], also
containing value of Uy = Uy = 11.76 eV (note, that values
of energies &5 and &p from Mann tables are almost the
same as values from Fischer tables). For atoms of hydrogen
=6 =—1=-13.60eV,U. = -A=12.85¢eV, where |
and A — jonization energy and electron affinity energy [16].
We assume &5 = &, = & = —13.7¢V, Uy =Upy =U. =U
=12.3eV. By introducing spin moments M = nNj;—n;|
localized on | atom and assuming &3 +U/2 =&, +U/2
=e+U/2=0, we get &3 =-U(Z+m)/2 and
& = —-U(Z—m)/2, where Z = 1-n; — charge of the
i-the atom. We take into account two additional circum-
stances: 1) because of charge conservation law we have
>>Z; = 0; 2) since there is only one uncompensated spin
I

in the system per one unit cell, which is localized mainly
on unpaired |p;)-orbital of carbon atom, we get > m = 1.
i

It follows that & = U.
i

Without taking into account the Coulomb interaction
(U = 0) from equation (3) we get symmetrical bands of the

following form EJ(k) = 0 and E9 (k) = £, /t2 + 4t2f2(k).

At U # 0 the symmetry is disturbed due to interatomic
transition of electrons and presence of spin moments. It is
easy to see that even with our considerable simplifications
the self-consistent system of equations (15) does not have
an analytical solution, thus computerized calculation is
required.
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6. Conclusion

So, in this work we suggested a model of Janus structure
and considered a number of cases for which this model gives
simple analytical solution. It should be noted that this model
is convenient for express estimates of band parameters (gaps
in the spectrum, effective masses), response to external
disturbance (mechanical deformation in our case) and, if
sufficiently representative set of compounds under exami-
nation is considered, for identifying behavior of changes
in some physical characteristic. At the same time we did
not use any adjustable parameters to determine energies
of states using atomic term tables [14,29], interatomic
distances — using sum of atomic radii [16,17] and transition
integrals — using Harrison scheme [14,15]. In principle we
should have a little difficulty in considering here capacitive
characteristics of Janus structures, as well as the issue
of defects in these structures using the approaches of
works devoted to graphane [23], fluorographene [24] and
C—h—AB—C graphene-like compounds [11]. We, however,
have postponed these research activities until emergence
of corresponding experimental data or at least ab initio
calculations.
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APPENDIX

Let us consider the response of electron spectrum to e
energy variations by determining the response of band char-
acteristic L to relative change 1 = §e/e as §eL = (dL/de)y.

C—AA—D compounds.

In accordance with expressions for Birm x and Rirm k
we get

SeBirmk = 2€%Y, SeRir = —2€*(9t° — 42 — ®)y/Ryr,
SeRim = —2€(t2 — 4t2 — e*)y/Ruw,
eRik = Rik (1 + &*/Rip)y.

For the response of gaps Ar m,k, Aikk and effective masses
of carriers mie = —Myp to the relative change in e energy
we get:

SeAirmk = (8eBirm,x — 8eRirm,x)/2Ar Mk, (Al)
SeAikk = (8eBix + 6eRik)/v/(Bik + Rix)/2
— (8eBik — 8eRix)/v/ (Bixk — Rik)/2.  (A2)
SeMie = —deMih = Mie(SeAir/Air — 8¢Cir/Cir),

2e*) <1 B rir(9t? — 43 — e2)>.
Rir R%r

8Cir = — (A3)
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Results of numeric estimates for the Cl-Gr—Br com-
pound are given in the table.  For the H—-Gr—Cl
compound, for which e=0, and, as a consequence,
0eBirmk = 8Rirmx =0, we get JeAimk = deAkk
= 5em1e<h) =0.

A—AB— B compounds.

In accordance with expressions for Bor vk and Rorm k
we get
2
deBor vk = 4€7Y,

SeRorm = 16€°2 /Rorm,  8eRox = Roxt.

The responses of gaps Axrmk, Axxk are defined by
formulae (Al) and (A2) with substitution of subscripts 1
by subscripts 2. For effective masses we get

SemZe = _Semzh = mle(5eA2F/A1F - 5eC2l"/C2F),

8¢Cor = —Tar8eRor/Rop. (A4)

Numeric results are presented in the table, from which it
follows that changes in almost all considered characteristics
in modulus are not greater than 1. Exceptions are values
of SeAyr for B—BN—N and deme/me for Al—AIP—P,
Ga—GaAs—As and In—InSb—Sb. It is logically reasonable
to estimate the order of magnitude of 3 through the
difference of atom level energies &s and &p given in Mann
tables (M) [15] and Herman—Skillman tables (HS) [14].
Estimates of 1s p = 2[es p(M) — &5 p(HS)] show that maxi-
mum value of (1; )max = 0.17 takes place for chlorine atoms
and maximum value of (Yp)max = 0.24 takes place for
bromine atoms. Mean values for all atoms composing the
considered J-GLCs are equal to s = 0.07 and 1p = 0.14.
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