Межзонное поглощение света в полупроводниковых наноструктурах

© *С.И.* Покутний [¶]

Ильичевский учебно-научный центр Одесского национального университета им. И.И. Мечникова, 68001 Ильичевск, Украина

(Получена 18 ноября 2002 г. Принята к печати 25 ноября 2002 г.)

В рамках дипольного приближения теоретически изучено межзонное поглощение света в малом полупроводником микрокристалле. Получено выражение для коэффициента поглощения света в условиях, когда поляризационное взаимодействие электрона и дырки с поверхностью микрокристалла играет доминирующую роль. Показано, что учет поляризационного взаимодействия электрона и дырки с поверхностью микрокристалла вызывает сдвиг порога поглощения в микрокристалле в коротковолновую сторону. Установлено, что край поглощения малых микрокристаллов формируется двумя сравнимыми по интенсивности переходами с разных уровней размерного квантования дырки на нижний уровень размерного квантования электрона.

1. Введение

Квазинульмерные структуры, представляющие собой полупроводниковые микрокристаллы (ПМ) сферической формы с размерами $a \approx 1 - 10^2$ нм, выращенные в прозрачных диэлектрических матрицах [1-5], привлекают внимание в связи с их нелинейными оптическими свойствами и возможными приложениями в оптоэлектронике (в частности, как новые материалы, перспективные для создания элементов, управляющих оптическими сигналами [2]). Поскольку энергетическая щель полупроводника существенно меньше, чем в диэлектрических матрицах, движение носителей заряда в ПМ ("квантовой точке") ограничено его объемом. При этом величины а сравнимы с характерными размерами квазичастиц в полупроводниках. В этих условиях влияние поверхности раздела ПМ-диэлектрическая матрица может вызвать размерное квантование энергетического спектра электрона и дырки в ПМ, связанное как с чисто пространственным ограничением области квантования [3], так и с поляризационным взаимодействием носителей заряда с поверхностью ПМ [6-10].

В экспериментальных работах [1,2] было обнаружено, что структура спектра межзонного поглощения света малого ПМ определялась размерным квантованием энергетического спектра его квазичастиц.

К настоящему времени межзонное поглощение света малыми ПМ является слабо изученным. Развитая в [3] теория межзонного поглощения света в ПМ, не учитывала вклад поляризационного взаимодействия носителей заряда с поверхностью ПМ в спектр электрона и дырки в ПМ. В работах [4,5] теоретически изучалось поглощение и люминесценция света несферическими нанокристаллами селенида кадмия. При этом в [4,5], так же как и в [3], не учитывалось влияние поляризационного взаимодействия электрона и дырки с поверхностью малого ПМ на процессы поглощения и люминесценцию света такими ПМ.

Чтобы заполнить такой пробел в теории, в настоящем сообщении учитывается влияние поляризационного

взаимодействия электрона и дырки с поверхностью малого ПМ на межзонное поглощение света в ПМ. Получено выражение для коэффициента поглощения света как функции радиуса ПМ а и параметров задачи в условиях, когда поляризационное взаимодействие электрона и дырки с поверхностью ПМ играет существенную роль. Показано, что учет поляризационного взаимодействия электрона и дырки с поверхностью ПМ приводит к тому, что порог поглощения в малом ПМ претерпевает сдвиг в коротковолновую сторону. Установлено, что край поглощения малых ПМ формируется двумя сравнимыми по интенсивности переходами с разных уровней размерного квантования дырки на нижний уровень размерного квантования электрона.

2. Спектр электронно-дырочной пары в малом микрокристалле

В [6-10] изучалась простая модель квазинульмерной структуры: нейтральный сферический ПМ радиуса a с диэлектрической проницаемостью (ДП) ε_2 , окруженный средой с ДП ε_1 . В объеме такого ПМ движутся электрон e и дырка h с эффективными массами m_e и m_h (r_e и r_h — расстояния электрона и дырки от центра ПМ), причем ДП микрокристалла и диэлектрической матрицы сильно отличаются ($\varepsilon_1 \ll \varepsilon_2$). Предполагается также, что зоны электронов и дырок в ПМ имеют параболическую форму.

Будем также считать, что выполняется условие

$$m_{\rho} \ll m_{h}.$$
 (1)

Справедливость неравенства (1) дает возможность рассматривать движение тяжелой дырки в электронном потенциале, усредненном по движению электрона (адиабатическое приближение). При этом волновая функция электронно-дырочной пары в малом ПМ в адиабатическом приближении имеет вид [11]

$$\Psi(\mathbf{r}_e, \mathbf{r}_h) = \Psi_{n_e, l_e, m_e}(r_e, \Theta, \varphi) \chi_{n_e, l_e m_e}^{n_e, l_e m_e}(r_h, \Theta, \varphi), \qquad (2)$$

где $\Psi_{n_e,l_e,m_e}(r_e,\Theta,\varphi)$ и $\chi_{n_h,l_hm_h}^{n_e,l_em_e}(r_h,\Theta,\varphi)$ — волновые функции электрона и дырки $(n_e,\ l_e,\ m_e$ и $n_h,\ l_h,\ m_h$ —

[¶] E-mail: univer@ivt.ilyichevsk.odessa.ua

744 С.И. Покутний

радиальное, орбитальное и азимутальное квантовые числа электрона и дырки; Θ и ϕ — их азимутальные и полярные углы).

В изучаемой модели в рамках вышеизложенных приближений, а также в адиабатическом приближении (1) и в приближении эффективной массы при использовании только 1-го порядка теории возмущений на электронных волновых функциях $\Psi_{n_e,l_e,m_e}(r_e,\Theta,\varphi)$ (2) сферической потенциальной ямы бесконечной глубины был получен спектр электронно-дырочной пары [6-9]:

$$\begin{split} E_{n_e,l_e=m_e=0}^{n_h,l_h,m_h}(S) &= E_g + \frac{\pi^2 n_e^2}{S^2} \frac{m_h}{m_e} + \frac{1}{S} \left(Z_{n_e,0} + P_{n_e,0} + \frac{\varepsilon_2}{\varepsilon_1} \right) \\ &+ \omega_0(S,n_e) \left(t_h + \frac{3}{2} \right), \end{split} \tag{3} \\ Z_{n_e,0} &= 2 \int_0^1 dx \sin^2(\pi n_e x) / (1-x^2), \\ P_{n_e,0} &= 2 \operatorname{Ci} \left(2\pi n_e \right) - 2 \ln(2\pi n_e) - 2\gamma + (\varepsilon_2/\varepsilon_1) - 1, \\ \omega_0(S,n_e) &= 2 \left(1 + (2/3)\pi^2 n_e^2 \right)^{1/2} S^{-3/2}. \tag{4} \end{split}$$

В выражении для частоты колебаний дырки $\omega_0(S,n_e)$ (4) первый член в круглой скобке обусловлен энергией поляризационного взаимодействия, тогда как второй член в круглой скобке определяется энергией кулоновского взаимодействия электрона и дырки в ПМ, которое, как показано в [3], дает частоту колебаний дырки

$$\tilde{\omega}_0(S, n_e) = 2\Big((2/3)\pi^2 n_e^2\Big)^{1/2} S^{-3/2}. \tag{4a}$$

Радиус ПМ определяется неравенством

$$(a_0/a_h) \ll 1 < S < (a_a/a_h) \approx (a_{ax}/a_h)$$
 (5)

в состоянии $(n_e, l_e = m_e = 0; n_h, l_h, m_h)$, где $t_h = 2n_h + l_h$ — главное квантовое число дырки, $S = a/a_h$ — безразмерный радиус ПМ, $a_e = \varepsilon_2 \hbar^2/m_e e^2$, $a_h = \varepsilon_2 \hbar^2/m_h e^2$, $a_{ex} = \varepsilon_2 \hbar^2/\mu e^2$ — боровские радиусы электрона, дырки и экситона в полупроводнике с ДП ε_2 , $\mu = m_e m_h/(m_e + m_h)$ — приведенная масса экситона, a_0 — характерный размер порядка межатомного [12]. Здесь и далее энергия измеряется в единицах $Ry_h = \hbar^2/2m_h a_h^2$, E_g — ширина запрещенной зоны в полупроводнике с ДП ε_2 , Ci(y) — интегральный косинус, y = 0.577 — постоянная Эйлера.

Выполнение условия (5) приводит к тому, что вклад поляризационного взаимодействия электрона и дырки с поверхностью ПМ ($\sim e^2/\varepsilon_2 a$) (два последних члена в (3)) в спектр электронно-дырочной пары (3) будет сравним по порядку величины с энергией связи экситона ($E_b = \hbar^2/2\mu a_{ex}^2$) в ПМ.

Последний член в спектре электронно-дырочной пары (3) представлял собой спектр тяжелой дырки, совершающей осцилляторные колебания с частотой $\omega_0(S,n_e)$ (4) в адиабатическом электронном потенциале в ПМ [7,8]. При этом волновая функция дырки

 $\chi_{t_h}^{n_e,l_e,m_e}(\mathbf{r}_h)$ (2) выражается через нечетные полиномы Эрмита [11].

Следует отметить, что спектр электронно-дырочной пары (3) применим только для нижайших состояний электронно-дырочной пары $(n_e,\,0,\,0;\,t_h)$, для которых выполняется неравенство

$$E_{n_s,0,0}^{t_h}(S) - E_g \ll \Delta V(S),$$
 (6)

где $\Delta V(S)$ — глубина потенциальной ямы для электронов в ПМ, например в ПМ сульфида кадмия в области размеров, определяемых условием (5), величина $\Delta V = (2.3 - 2.5)$ эВ [13].

Следует отметить, что выражение для частоты осцилляторных колебаний дырки $\omega_0(S,n_e)$ (4) получено в [7,8] в предположении, что существует сильный скачок $(\varepsilon_2/\varepsilon_1\gg 1)$ между ДП ПМ ε_2 и окружающей его матрицы ε_1 , при котором энергия поляризационного взаимодействия вносит существенный вклад $(1/(2/3)\pi^2n_e^2)$ в частоту колебаний дырки $\omega_0(S,n_e)$ (4). Причем с ростом главного квантового числа дырки n_e величина такого вклада уменьшается как n_e^2 (при $n_e=1$ величина вклада достигает заметного значения $(1/(2/3)\pi^2\simeq 0.15)$, а при $n_e=2$ величина вклада $(1/(2/3)4\pi^2\simeq 0.04)$ пренебрежимо мала).

Последнее обстоятельство приводит к тому, что учет поляризационного взаимодействия вызывает увеличение частоты колебаний дырки $\omega_0(S,n_e)$ (4) по сравнению с частотой колебаний дырки $\tilde{\omega}_0(S,n_e)$ (4a) [3], обусловленной только кулоновским взаимодействием электрона с дыркой в ПМ. Другими словами, скачок ($\varepsilon_2/\varepsilon_1\gg 1$) между ДП ПМ и окружающей его матрицей приводит к увеличению расстояния между эквидистантными уровнями дырки $\omega_0(S,n_e)$ (4), по сравнению с таковыми расстояниями $\tilde{\omega}_0(S,n_e)$ (4a) [3], что в свою очередь вызывает эффект усиления локализации дырки в электронном адиабатическом потенциале в ПМ.

3. Межзонное поглощение света в малом микрокристалле

В рамках вышеизложенных приближений, используя простую модель квазинульмерной структуры [6–9], изучим межзонное поглощение света в ПМ, радиус которого S удовлетворяет условию (5). При этом используем дипольное приближение, в котором длина поглощения велика по сравнению с размером ПМ S. Относительная интенсивность оптических межзонных переходов в ПМ с дипольно разрешенными переходами определяется квадратом интеграла перекрытия электронных $\Psi_{n_e,l_e,m_e}(\mathbf{r}_e)$ (2) и дырочных $\chi_{n_e,l_e,m_e}^{n_e,l_e,m_e}(\mathbf{r}_h)$ (2)

волновых функций [3,14]:

$$K(S,\omega) = A \sum_{n_e n_h l_e l_h m_e m_h} \left| \int \Psi_{n_e, l_e, m_e}(\mathbf{r}_e) \chi_{n_h, l_h, m_h}^{n_e, l_e, m_e}(\mathbf{r}_h) \right| \times \delta(\mathbf{r}_e - \mathbf{r}_h) dr_e dr_h \right|^2 \delta\left(\Delta - E_{n_h, l_h, m_h}^{n_e, l_e, m_e}(S)\right), \quad (7)$$

где $\Delta=\hbar\omega-E_g$, ω — частота падающего света, а A является величиной, пропорциональной квадрату модуля матричного элемента дипольного момента, взятого на блоховских функциях.

При этом величина $K(S,\omega)$ (7) связывает энергию, поглощаемую ПМ в единицу времени, и средний по времени квадрат электрического поля падающей волны. Кроме того, величина $K(S,\omega)$ (7), умноженная на число ПМ в единице объема диэлектрической матрицы, представляет собой электропроводность изучаемой квазинульмерной системы на частоте поля, связанную обычным образом с коэффициентом поглощения света.

Ортогональность волновых функций электрона $\Psi_{n_e,l_e,m_e}(\mathbf{r}_e)$ (2) и дырки $\chi_{n_h,l_h,m_h}^{n_e,l_e,m_e}(\mathbf{r}_h)$ (2) приводит к тому, что при переходах сохраняются орбитальные $(l_e=l_h)$ квантовые числа электрона и дырки, а азимутальное число $(m_e=-m_h)$ меняет знак. При этом радиальные квантовые числа n_e и n_h могут быть произвольными.

Следует отметить, что учет кулоновского и поляризационного взаимодействия электрона и дырки в малом ПМ приводит к изменению правил отбора для дипольных переходов по сравнению с таковыми правилами, полученными в приближении, в котором не учитывалось кулоновское и поляризационное взаимодействие. В таком приближении сохраняются радиальные и орбитальные квантовые числа электрона и дырки $(n_e = n_h \ \ \, l_e = l_h)$, а азимутальные квантовые числа меняют свой знак $(m_e = -m_h)$ [3].

Определим величину $K(S,\omega)$ (7), связанную с оптическими переходами дырки с уровней $(t_h=2n_h,$ при этом $l_h=m_h=0)$ на самый нижний электронный уровень $(n_e=1,\ l_e=m_e=0)$. Для этого случая квадрат интеграла перекрытия электронных $\Psi_{1,0,0}(\mathbf{r}_e)$ (2) и дырочных $\chi_{l_h}^{1,0,0}(\mathbf{r}_h)$ (2) волновых функций был подсчитан в работе [3]:

$$L_{n_h}(S) = \left| \int_0^a \Psi_{1,0,0}(r) \chi_{t_h}^{1,0,0}(r) r^2 dr \right|^2$$

$$= 2\pi^{5/2} \left[\frac{\hbar^2}{m_h \omega_0(S, n_e = 1)a^2} \right]^{3/2} \frac{(n_h + 1)}{2^{2n_h} (n_h!)}. \quad (8)$$

Величина $L_{n_h}(S)$ (8) с учетом $\omega_0(S,n_e=1)$ (4) принимает вид

$$L_{n_h}(S) = \frac{2\pi^{5/2}}{\left(1 + (2/3)\pi^2\right)^{3/4}} \frac{(n_h + 1)}{2^{2n_h}(n_h!)} S^{-3/4}. \tag{9}$$

Подставляя в формулу (7) выражения (8), (9) и (3), получим величину $K(S, \omega)$ в таком виде:

$$\begin{split} \frac{K(S,\omega)}{A} &= \sum_{n_h} L_{n_h}(S) \delta \left[\Delta - \frac{\pi^2}{S^2} \frac{m_h}{m_e} - \frac{1}{S} \right] \\ &\times \left(Z_{1,0} + P_{1,0} + \frac{\varepsilon_2}{\varepsilon_1} \right) - \omega_0(S, n_e = 1) \left(2n_h + \frac{3}{2} \right). \end{split} \tag{10}$$

Из формулы (10) следует, что благодаря учету кулоновского и поляризационного взаимодействия электрона и дырки в малом Π М, радиус которого S удовлетворяет условию (5), в спектре межзонного оптического поглощения такого ПМ каждая линия, соответствующая заданным значениям радиального n_e и орбитального l_e квантовых чисел электрона, превращается в серию близко расположенных эквидистантных линий, отвечающих различным значениям главного квантового числа дырки t_h . Причем расстояние между эквидистантной серией линий, согласно формуле $\omega_0(S, n_e)$ (4), зависит как от значения квантового числа n_e , так и от радиуса ПМ S. С увеличением значения радиального квантового числа электрона n_{ρ} расстояние между эквидистантной серией линий $\omega_0(S, n_e)$ (4) растет ($\omega_0 \sim n_e$), а с увеличением радиуса ПМ S такое расстояние уменьшается ($\omega_0 \sim S^{-3/2}$).

При межзонном поглощении света малым ПМ, как следует из формулы (10), порогом поглощения является частота света $\bar{\omega}(S)$, которая определяется выражением

$$\bar{\omega}(S) = E_g + \frac{\pi^2}{S^2} \frac{m_h}{m_e} + \frac{1}{S} \left(Z_{1,0} + P_{1,0} + \frac{\varepsilon_2}{\varepsilon_1} \right) + \frac{3}{2} \omega_0(S, n_e = 1).$$
(11)

Из анализа формулы $\bar{\omega}(S)$ (11) и аналогичной формулы $\bar{\omega}(S)$ в [3], которая описывает порог поглощения света в ПМ с учетом только кулоновского взаимодействия электрона и дырки, следует, что учет поляризационного взаимодействия электрона и дырки с поверхностью ПМ вместе с учетом кулоновского взаимодействия электрона с дыркой приводит к большему сдвигу порога поглощения света в ПМ в коротковолновую сторону, чем сдвиг, обусловленный учетом только лишь кулоновского взаимодействия [3]. Величина такого относительного сдвига определяется формулой

$$\Delta\omega_0(S) = \bar{\omega}(S) - \bar{\tilde{\omega}}(S) = \frac{1}{S} \left(Z_{1,0} + P_{1,0} + \frac{\varepsilon_2}{\varepsilon_1} + 2\beta_{n_e=1} \right) + \frac{3}{2} \left(\omega_0(S, n_e = 1) - \tilde{\omega}(S, n_e = 1) \right), \tag{12}$$

где

$$\beta_{n_e=1}=2\int\limits_0^\pi\frac{\sin^2y}{y}\,dy.$$

Выражение (11) представляет собой закон, по которому эффективная ширина запрещенной зоны ПМ

746 С.И. Покутний

увеличивается с уменьшением радиуса ПМ S. При этом поляризационное взаимодействие [член $S^{-1}(Z_{1,0}+P_{1,0}+(\varepsilon_2/\varepsilon_1))]$ в (11) вносит положительный вклад в (11) в отличие от отрицательного вклада (член $2\beta_{n_e=1}S^{-1})$ в [3], который обусловлен учетом только лишь кулоновского взаимодействия.

Таким образом, учет поляризационного взаимодействия электрона и дырки с поверхностью ПМ вызывает эффективное увеличение ширины запрещенной зоны ПМ, которое описывается выражением (11). Другими словами, учет поляризационного взаимодействия носителей заряда с поверхностю ПМ приводит к тому, что порог поглощения света $\bar{\omega}(S)$ (11) претерпевает бо́льший сдвиг (по сравнению с аналогичной величиной $\bar{\omega}(S)$, полученной в [3] без учета поляризационного взаимодействия) в коротковолновую сторону. При этом относительный сдвиг порога поглощения света $\Delta\omega_0(S)$ (12) в ПМ будет положительной величиной.

4. Сравнение теории с экспериментом

В экспериментальной работе [15,16] исследовались низкотемпературные $(T\sim 4.2\,\mathrm{K})$ спектры межзонного поглощения диспергированных в прозрачной диэлектрической матрице силикатного стекла (с ДП $\varepsilon_1=1.5$) ПМ сульфида кадмия (ДП $\varepsilon_2=9.3$) размером $a\leq a_{ex}$. В области переходов на нижний уровень $(n_e=1,\,l_e=0)$ размерного квантования электрона была обнаружена структура, состоящая из эквидистантной серии уровней, расстояние между которыми (т.е. величина расщепления) $\Delta E(a) \propto a^{-3/2}$. Указанная структура обусловлена квантованием энергетического спектра тяжелой дырки в адиабатическом потенциале электрона. Эффективные массы электрона и дырки в CdS равнялись $m_e=0.205m_0$ и $m_h=5m_0$ (т.е. $m_e/m_h\ll 1$, m_0 — значение массы электрона в вакууме).

Действительно, движение тяжелой дырки в электронном потенциале, в области размеров ПМ (5), которая также включает в себя интервал радиусов ПМ, изученных в [15,16], приводит к появлению в энергетическом спектре дырки эквидистантной серии уровней, расстояние между которыми определялось выражением $\omega_0(S, n_e = 1)$ (4) [7,8]. При этом для ПМ с радиусами $a \le a_{ex}$ значения расщепления $\omega_0(S, n_e = 1)$ (4) находятся в хорошем согласии с экспериментальными данными $\Delta E(a)$ [15,16], отличаясь от последних лишь незначительно ($\le 6\%$) [7,8].

Для тех же условий, в которых были выполнены эксперименты [15,16] с помощью формулы (9), получим значения квадратов интеграла перекрытия $(K(S,\omega)/A)$ (10) для переходов дырки с эквидистантной серии уровней $(n_h=0;\ l_h=m_h=0),\ (n_h=1;\ l_h=m_h=0),\ (n_h=2;\ l_h=m_h=0)$ и $(n_h=3;\ l_h=m_h=0),\ идущих на нижний уровень размерного$

квантования электрона $(n_e = 1; l_e = m_e = 0)$:

$$K(S, \omega)/A = \sum_{n_h=0}^{3} L_{n_h}(S) = 7.659S^{-3/4}$$

$$\times \left(1 + 0.5 + 9.4 \cdot 10^{-2} + 1.0 \cdot 10^{-2}\right). \quad (13)$$

Из (13) следует, что

$$L_0 = 7.659S^{-3/4},$$
 $L_1 = 0.5,$ $L_2 = 9.4 \cdot 10^{-2} L_0,$ $L_3 = 10^{-2} L_0.$ (14)

Из результатов, вытекающих из формул (13) и (14), следует, что основной вклад в коэффициент поглощения света $(K(S,\omega)/A)$ (10) малыми ПМ CdS с размерами S (5) вносят спектральные линии дырки с квантовыми числами $(n_h=0; l_h=m_h=0)$ и $(n_h=1; l_h=m_h=0)$, обладающие максимальными силами осцилляторов переходов [17,18]. При этом величины вклада высоковозбужденных линий дырки $(n_h \geq 2; l_h=m_h=0)$ относительно вклада линии $(n_h=0; l_h=m_h=0)$ являются пренебрежимо малыми $(\leq 9\cdot 10^{-2})$. Следует отметить, что при этом для уровней электронно-дырочной пары $E_{1,0,0}^{t_h}(S)$ (3) (где $t_h=2n_h=0$, 2, 4, 6) неравенство (6) хорошо выполняется.

Приведем оценки относительного сдвига $\Delta\omega_0(a)$ (12) порога поглощения света в ПМ с радиусами $a\leq a_{ex}$ для тех же условий, в которых были выполнены эксперименты [14,15]. Величины относительного сдвига $\Delta\omega_0(a)$ (12) достигают существенных значений по отношению к глубине потенциальной ямы $\Delta V(S)$ (6) для электронов в ПМ. С ростом радиуса a ПМ от a=3 нм до a=5 нм значения относительного сдвига $\Delta\omega_0(a)$ (12) порога поглощения света в ПМ уменьшаются от 232.9 до 141.3 мэВ.

Таким образом, в рамках данной модели квазинульмерной системы, в области размеров ПМ $a_h \leq a \simeq a_{ex}$, когда поляризационное взаимодействие электрона и дырки с поверхностью ПМ играет доминирующую роль, показано, что край поглощения ПМ формируется двумя сравнимыми по интенсивности переходами с разных уровней размерного квантования дырки на нижний уровень размерного квантования электрона. Установлено, что порог поглощения света в ПМ, претерпевает больший сдвиг в коротковолновую сторону ($\simeq 200\,\mathrm{мэВ}$) по сравнению с аналогичным сдвигом, полученным в [3] без учета поляризационного взаимодействия.

Список литературы

- [1] А.И. Екимов, А.А. Онущенко. Письма ЖЭТФ, **40** (8), 337 (1984).
- [2] Ю.В. Вандышев, В.С. Днепровский, В.И. Климов. ЖЭТФ, 101 (1), 270 (1992).
- [3] Ал.Л. Эфрос, А.Л. Эфрос. ФТП, 16 (7), 1209 (1982).
- [4] A.L. Efros, A.V. Rodina. Phys. Rev. B 47 (10), 10 005 (1993).

- [5] M. Nirmal, D. Norris, A.L. Efros. Phys. Rev. Lett., 75 (10), 3728 (1995).
- [6] Н.А. Ефремов, С.И. Покутний. ФТТ, 27 (1), 48 (1985);ФТТ, 32 (6), 1632 (1990).
- [7] С.И. Покутний. ФТП, **25** (4), 628 (1991); ФТП, **30** (11), 1952 (1996).
- [8] S.I. Pokutnyi. Phys. Lett. A, 168 (5,6), 433 (1992).
- [9] С.И. Покутний. ФТТ, 38 (9), 2667 (1996).
- [10] Н.В. Ткач, В.А. Головацкий. ФТТ, 32 (8), 2512 (1990).
- [11] Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика (М., Наука, 1974).
- [12] В.М. Агранович. Теория экситонов (М., Наука, 1968).
- [13] В.Я. Грабовскис, Я.Я. Дзенис, А.И. Екимов. ФТТ, 31 (1), 272 (1989).
- [14] Г.Б. Григорян, Э.М. Казарян, Ал.Л. Эфрос. ФТТ, **32** (12), 1772 (1990).
- [15] А.И. Екимов, А.А. Онущенко, Ал.Л. Эфрос. Письма ЖЭТФ, **43** (6), 292 (1986).
- [16] D. Chepic, A.Efros, A. Ekimov. J. Luminesc., 47 (3), 113 (1990).
- [17] С.И. Покутний. ФТТ, 39 (4), 606 (1997).
- [18] С.И. Покутний. ФТТ, 39 (4), 720 (1997).

Редактор Л.В. Беляков

Inter-band absorption of light in semiconductor nanostructures

S.I. Pokutnii

Ilyichevsk Educational Research Centre, I.I. Mechnikov Odessa National University 68001 Ilyichevsk, the Ukraine

Abstract Absorption of light in a small semiconductor microcrystal is theoretically studied in the framework of a dipole approximation. The expression for the coefficient of light absorption is obtained under conditions when the polarization interaction of an electron and a hole with the surface of the microcrystal plays an important role.