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The current paper demonstrates theoretical analysis of two types of spectral curves for several configurations of

system of two-level light emitters, considering the influence of local field and close environment inside a transparent

medium. Probe field absorption spectra and resonant fluorescence spectra are calculated under excitation of a strong

monochromatic cw laser. The sensitivity of absorption and emission optical spectroscopy method is compared for

revealing the effects of the medium on individual emitters and their ensembles. Spectral curves were calculated

for model emitters considering local field influence of a transparent dielectric medium and local electron-phonon

interactions, which determined the response of the emitters to an external laser field and effective relaxation

mechanisms. The calculation formalism is based on a semiclassical approach, while the relaxation processes

associated with the phonon contribution are introduced phenomenologically with references to other studies.
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1. Introduction

In modern studies and applications light can serve as

a source of information about the object emitting it and,

conversely, be a tool for desired or selective action on

the object. In both cases it is necessary to consider

light-dependent processes developing in the macro-, micro-

, and nanoscales. The light absorption by individual

particles and their ensembles, followed by the emission of

secondary radiation (photoluminescence), combines these

issues within the framework of one problem. In this

case, emitters-impurities are of particular interest. The

introduction of photoactive particles into a transparent

material ensures a stable spatial distribution of quantum

emitters and, as a consequence, a certain nature of the

photoluminescence produced by them. It is known that

the characteristics of the secondary radiation are determined

by a combination of the properties of the carrier and the

particles themselves. Some types of emitters-impurities

can exhibit the phenomenon of resonant fluorescence, that

is a situation where photoluminescence is provided by

only two states of the quantum emitter. Atoms in the

field of a laser wave close in frequency to an individual

atomic transition can certainly act as two-level emitters.

The resonant fluorescence of independent single particles

should demonstrate rich distinctive properties, which, first

of all, include photon antibunching effects and a three-

peak emission spectrum [1,2]. Specifically these features

were repeatedly observed for some organic molecules [3],

semiconductor quantum dots [4,5] and color centers in

diamonds [6]. Thus, resonant fluorescence is inherent in

many types of quantum emitters under a number of specific

conditions. It is important to note that all of these quantum

particles alternative to natural atoms can interact with light

in the mode of a two-level emitter exactly under conditions

when the emitter is inside the carrier. Modern technologies

make it possible to fix particles in solid matrices or on

surfaces of solids. However, the location of individual

particles within the medium makes them unequal in one

or more parameters due to the inhomogeneities of the

carrier and the presence of local conditions. Therefore,

the specific location of the emitter determines what kind

of light it emits. On the one hand, this makes ensembles of

emitters inhomogeneous, and on the other hand, it makes

it possible to use such emitters as sensors that detect

various phenomena and states of the medium at different

scales. The last problem can be solved by analyzing data

obtained by optical spectroscopy. At the same time, optical

spectroscopy makes it possible to study the properties of

quantum systems, and for some material structures it may

be the only available type of measurement. In this paper

we present a computational-theoretical analysis of resonant

fluorescence spectra and absorption spectra of a probe field

for various two-level emitters with different channels of

interaction between themselves and with the medium. In

this study we consider the spectra for independent set of

single two-level emitters, a collective ensemble of interacting

two-level emitters, an independent set of single model
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quantum dots considering the electron-phonon interaction,

and also an ensemble of such model quantum dots.

The phenomenon of resonant fluorescence has general-

izations to more complex cases, i.e. it can be relevant

for emitters with a system of many levels and presence

of more than one resonant transition [7,9]. At the same

time, the resonant fluorescence spectrum is always specific,

which is used to determine the presence of the phenomenon

itself. In the limit of a
”
strong field“, i.e. under conditions

of the transitions saturation or close to it, the observer

will fix the presence of additional maxima with respect to

the absorption spectrum or the natural emission contour.

This phenomenon is also known as the dynamic Stark

effect [10] and the formation of
”
dressed atomic states“ [11].

Thus, the inelastic component of the resonant fluorescence

of two-level emitter has a three-peak structure, known as

Apanasevich−Mollow triplet [12,13]. The triplet contains a

central peak at the frequency of the exciting laser (Rayleigh
scattering component) and two satellites tuned in the region

of lower and higher frequencies. The frequency distances

between the peaks, the ratio of their heights and widths

are determined by the effective values of the transition

parameters of the emitter that excites light, the processes

of dephasing and energy exchange with the carrier matrix.

Specific resonant fluorescence spectra were first observed in

an experiment with a collimated beam of sodium atoms [1].
This observation was followed by numerous experiments

with atomic gases, which fully confirmed the earlier the-

oretical descriptions and confirmed that atoms can behave

as
”
ideal“ two-level emitters, including the manifestation of

the photon antibunching effect [2]. It took several decades

to make it possible to observe resonant fluorescence with

other types of emitters. At present, resonant fluorescence in

the visible range has been successfully observed on single

molecules [3] and semiconductor quantum dots [4,5,14].
Organic molecules can also be considered as two-level

systems when interacting with each other. This is observed

in experiments on the photoluminescence registration from

a pair of closely spaced molecules with dipole-dipole inter-

action [15]. In this case, the entangled cooperative system

will have four energy states and a complex fluorescence

spectrum [3]. In this case, the photoluminescence excitation

spectrum will reflect the fact of excitation of three collective

states and form a cooperative triplet. Similarly to the

analysis of the Mollow triplet, the state of emitters and

their environment can be restored from the characteristics

of three maxima in the spectral dependence. In this case,

note that the triplet of photoluminescence of two-level

particle and the photoluminescence excitation triplet of a

cooperative pair of two-level particles are united by the

spectral equidistance of the maxima and the presence of

regularities that determine the ratios of their heights and

widths.

In addition to recording the photoluminescence emission

and excitation spectra or determining the statistics of

photons from two-level emitters, it may also be useful to

study the effective two-level medium under the influence

of two tunable lasers. In this case, one of the lasers will

provide pumping of emitters with a controlled power and

a set resonance detuning. The second beam represents

a scanning probe signal from a low power tunable laser

system. The pump laser creates a
”
dressed“ system of light

and two-level system for a specific power and detuning.

Then, the absorption or amplification of the probe signal is

measured depending on its frequency (wavelength). This

function will provide information about the structure of

dressed states [11,16] produced by the pump laser. At

frequencies corresponding to the position of the satellites of

the Mollow triplet, the probe signal will either be absorbed

or amplified in maximum extent depending on the sign of

the pump detuning from the
”
atomic“ transition. The probe

field amplification occurs due to the energy of the pump

laser [16]. The position of the absorption and amplification

bands, in turn, can be controlled by varying the pump

power. Combinations of these spectroscopic techniques are

proposed in this article as tools for determining the two-

level behavior of real emitters and studying the influence

of relaxation processes, cooperative effects, and interactions

with the phonon reservoir on their absorption and emission

properties. The probe field absorption spectroscopy method

will be implemented theoretically to calculate the absorption

spectra of a weak probe signal and resonance fluorescence

spectra. This method of calculating the spectral charac-

teristics of radiation belongs to completely semiclassical

approaches in the presence of a known master equation

for the density matrix of the emitter.

2. Master equation for emitter and
equations for spectral characteristics

To calculate the characteristics of the emitted light, it

is necessary to determine the nature of the work of the

material system, which is a source of light and an absorber

of external radiation. As a basis, let us consider an

ensemble of two-level emitters distributed in a material

that weakly absorbs incident external light. The carrier

material will be described as a continuous medium that fills

the space between the emitters and is characterized by a

complex function of the dielectric permeability. In the first

approximation, when constructing the model, assume that

the ensemble represents a set of identical particles uniformly

distributed in the volume of the sample. For an individual

particle in such an ensemble, the master equation for its

density matrix ρ was obtained in [17–19]. The derivation

of this constitutive equation did not require the use of

phenomenological procedures and was carried out in the

framework of the multiparticle quantum-kinetic formalism

based on Bogolyubov chains of reduced density matrices

and correlation operators. In the present analysis this master

equation is used to introduce and analyze components that

describe the effect of the medium on the emitter. According

to [19], in general in the interaction representation for the
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density matrix ρI , one can write

i
d
dt

ρI = −
l(ǫ)
~

[

d̂I

(

E +

t
∫

0

dt′
∑

a′ 6=a

←→
G aa′pa′

)

, ρI

]

−
l(ǫ)
~

[

d̂I ,

t
∫

0

dt′
(

←→
G +

aa d̂IρI +
←→
G −

aaρI d̂I

)]

.

(1)

Here, d̂I = f(t)σ̂+ + f∗(t)σ̂− is operator of dipole mo-

ment of transition, where f(t) = uµ exp(iω0t), σ̂+, and

σ̂− are atomic raising and lowering operators. The

function f(t) consists of a unit vector in the direction

of the dipole u, matrix element for the electric dipole

transition µ, and a time dependence with the transition

frequency ω0 = (E2 − E1)/~, where E1 and E2 are the

energies of the ground and excited states of the emitter,

respectively. The first part of the field E = E(ra , t) is

the solution for a plane monochromatic wave in a

medium with dielectric permeability ǫ at the point ra

corresponding to the emitter position. The notation
←→
G aa′ =

←→
G (ra − ra′, t − t′) corresponds to Green tensor

for field in this medium with top indexes ± corresponding

to advanced and retarded component of tensor, respectively,

and
←→
G ±

aa =
←→
G ±

aa(ra − ra , t − t′) =
←→
G ±(0, t − t′). The

non-operator values pa′ = 〈d̂〉a′ are the induced dipole

moments of the remaining emitters in the ensemble, where

〈 〉 designates the quantum mechanical average. The

function l(ǫ) is the correction factor for the local field

created by the carrier matrix, which is equal to l(ǫ) = 1

for ǫ = 1. This function takes one of the explicit forms

depending on the model chosen for estimating the local

field introduced by the carrier matrix [17]. The remaining

notations are standard and refer to time, the imaginary unit,

Planck constant, and the commutator of operators. In this

paper equation (1) will be the base for derivation of all

subsequent equations for the systems under consideration.

Comments on its components will be given below as

needed. In general, upon permitting the integration over

time and summation over ensemble particles in the rotating

wave approximation equation (1) will provide description

of the emitter density matrix taking into account local fields

introduced by the ensemble and the continuous medium

and effective radiative relaxation rates. Thus, all known

parameters of constitutive equations, such as shifts of natural

frequencies, pumping and relaxation rates, will depend on

the parameters of the carrier. For the purposes of this

work, the possibility of such changes without discussing the

specifics of exact experimental situations is of interest.

The spectra calculation method within the framework

of the semiclassical description can be explained by the

example of the simplest case of the Lindblad master

equation or the Bloch optical equations. Calculating the

emission and absorption of systems with a more complex

master equation would require similar, computationally

intensive steps. Let us show that equation (1) in the

absence of medium and other emitters leads exactly to

the basic equations for two-level atom with continuous

pumping. For the case of a single emitter in the ensemble

located at the point ra , the component with the sum in

the first commutator disappears. By applying the Markov

approximation to the density matrix in the integrand in the

second commutator, one can easily perform integration by

time. In the rotating wave approximation this component

gives the radiative relaxation and the radiative shift of the

transition frequency. Two contributions to the equation are

defined respectively by the imaginary and real parts of the

expression. Since the frequency shift is usually assumed to

be small then it is sufficient to leave the imaginary part

only. Then, it is necessary to pass to the Schrëdinger

picture for the density matrix ρ using the energy operator

of free emitter Ĥ0 = ~ω0σz , which is determined by the

population inversion operator σz = 1/2[σ+, σ−]. Operator

of dipole transition now will be d̂ = uµ(σ+ + σ−). Besides,
as already noted, it makes sense to temporarily simplify the

problem by considering medium with ǫ = 1. Here and in

next models, field of incident radiation at the frequency ω al-

ways will be described as Ed = eEd(t) = eERe{exp(iωt)}
with amplitude E and single polarization vector e. After

completing these steps, we will receive the well-known

equation:

i
d
dt

ρ=
1

2
ω0[σ

+σ−−σ−σ+, ρ]−
1

~
u · eµE(t)[σ++σ−, ρ]

+
i

~2
µ2(u · Im

←→
G ω0

aa · u)
(

[σ−, ρσ+]− [σ+, σ−ρ]
)

,

(2)

where
←→
G ω0

aa =
←→
G (ra − ra , ω0) =

←→
G (0, ω0). Equation (2)

can be rewritten in a more compact and recognizable

form by making a few transformations and introduc-

ing traditional notation. The first component on the

right side is defined by the free atom energy opera-

tor Ĥ0. In the second component for induced dipoles we

get (u · e) = 1 and can write down interaction operator

V̂ = −~�(eiωt + e−iωt)(σ+ + σ−), where � = µE/2~ is

Rabi frequency. The last component is the radia-

tive decay with the rate γ = 2µ2/~u · Im
←→
G (0, ω0) · u =

= 4µ2ω3
0/3~c3, where c is the light speed in vac-

uum. Operator part after expansion of commu-

tators forms exactly well-known Lindblad operator

L̂Ô(ρ) = 2ÔρÔ† − Ô†Ôρ − ρÔ†Ô, where in given case

the arbitrary operator Ô is replaced by operator σ− .

Equations (1) and (2) describe only natural radiative

decay/relaxation, since (1) was obtained for stationary

particles. However, any impurity emitter is character-

ized by the process of dephasing. To consider this

circumstance, (2) to be supplemented by known operator

D̂(ρ) = 2σzρσz − σzσzρ − ρσzσz , where γ⊥ is the rate of

transverse relaxation. Determining the process rate γ⊥,

one can formally consider the influence of all dephasing

processes that occur in ensembles and carriers. If we collect
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all relaxation processes in one operator

R̂(ρ) =
γ

2
L̂σ−(ρ) + γ⊥D̂(ρ),

then the master equation is transformed to the form well-

known in the literature:

i
d
dt

ρ =
1

~
[Ĥ0 + V̂ , ρ] + iR̂(ρ). (3)

Such a record of the equation will be convenient for describ-

ing the method of probe field spectroscopy. Formally, it will

be necessary to consider the case when the external field in

equations (1), (2) contains both strong and weak monochro-

matic components. It is convenient to present the weak

component as Ep = epEp(t) = epEpIm{exp(iωpt)}, for

which Ep ≪ E. Then in final equation (3) additional com-

mutator with operator V̂p = i~λp(eiωpt − e−iωpt)(σ+ + σ−)
shall arise. The density matrix defined by the new equation

with two fields will be denoted as ̺. Further, we will

assume that the frequency ωp is tuned close to the transition

frequency ω0. The coupling coefficient λp = (µEp)/2~ is

determined by the amplitude of the weak field component

Ep and is always very small as compared to the Rabi

frequency determined by the strong field. Since this

approach is a method for calculating the spectrum and not

a problem of interaction with a non-monochromatic field,

it is assumed that the issues of phase and polarization are

left behind the scope. In this configuration, we can find

solution for the density matrix ̺ in the form ̺ = ρ + p,
where p is a small correction to the matrix, which comply

with equation (3) for the case of single strong field. Then,

the equation for ρ + p takes the form

i
d
dt

(ρ + p) =
1

~
[Ĥ0 + V̂ , ρ + p]

+
1

~
[V̂p, ρ + p] + iR̂(ρ) + iR̂(p).

(4)

Subtracting equation (3) from equation (4) and neglecting

the component of the second order of smallness, i.e. [V̂p, p],
we obtain the equation for the correction matrix p:

i
d
dt

p =
1

~
[Ĥ0 + V̂ , p] + iR̂(p) +

1

~
[V̂p, ρ]. (5)

The system of linked equations (3) and (5) will be

the basis for further analysis. Before obtaining from

them a system of kinetic equations for the components of

the matrices ρkl(t) (k, l = 1, 2) and pmn(t) (m, n = 1, 2),
they must be reduced to equations with time-independent

parameters. This can be done using next substitutions

ρ21 = r21e−iωt , ρ12 = r12eiωt which lead (3) to system

rotating with frequency of laser, and p21 = φ21e−iωpt ,

p11 = φ11eiνt , p22 = φ22eiνt , p12 = φ12ei(2ω−ωp)t , where

ν = ω − ωp . After making these substitutions, the rapidly

oscillating terms can be neglected, which will lead to the

final system of equations:

i
d
dt

r =
1

~
[Ĥ ′

0 + V̂ ′, r ] + iR̂(r), (6)

i
d
dt

φ = νφ +
1

~
[Ĥ ′

0 + V̂ ′, φ] + iR̂(φ)− iλp[σ
+, r ], (7)

where r and φ are new matrices, and Ĥ ′
0 = 1σz and

V̂ ′ = −(βσ− + β∗σ+) are components of Hamiltonian writ-

ten in compliance with approach of the rotating wave. The

part corresponding to the free particle is now proportional

to 1 = ω0 − ω, which describes the detuning between the

transition frequency and the strong field. As for the inter-

action operator, it now contains a multiplier, which in the

simple case under consideration is equal to β = β∗ = � and

will take a more complex form under other circumstances.

It is important to note that both matrices ̺ and ρ

retain their fundamental properties, i.e. tr(̺) = tr(ρ) = 1.

Therefore, the correction matrix must satisfy the condition

tr(p) = 0. As is easy to see that the same applies to the

matrices r and φ. Averages of operators are calculated ac-

cording to 〈Ô〉 = tr(Ôρ + Ôp) = 〈Ô〉strong + 〈Ô〉weak . So,

contribution of the probing signal in general response

of particles to the external field action shall be eval-

uated using component of the induced polarization

Pp = N〈d̂〉weak = epN2µRe(p21).
From Maxwell equations it follows that volumetric spe-

cific power of field, which creates electrical polarization

of medium, is equal to 〈E · ∂P/∂t〉t , where 〈 〉t denote

averaging by time. Since we need to find a stationary

solution, we need to set dr/dt = dφ/dt = 0, while the

fraction of the probe signal can be calculated as

Wweak =

〈

Ep ·
∂Pp

∂t

〉

t

= −NµEpωp Re(φ21). (8)

On the other hand, this value can also be defined as

the change in signal intensity per unit length along the

propagation axis, i.e. we can write

Nµ Epωp Re(φ21) =
dI p

dz
= −αI p,

where I p is the intensity of the probe field, which can be

expressed as follows I p = (cE2
p)/8π. Finally, the absorption

coefficient of the probe field at a certain frequency is equal

to

α = −
4π

~
Nµ2 ωp

c
Re

(

φ21

λp

)

. (9)

Next, to find φ21, it is necessary to solve equations (6)
and (7) for the stationary case. For this, it can be

convenient to pass to new real functions from combinations

of components of the matrix r . For this rewrite r into basis

of Bloch vector r = 1/2(I + B · σ ), where I is unit ma-

trix, BT = {r21 + r12, r11 − r22, i(r12 − r21)} = {u, w, v}
is Bloch vector, and σ T = {σ1, σ2, σ3} is vector composed

from Pauli matrices. The equations that follow from

equation (6) lead to known stationary solutions. For

simplicity, we limit the problem to the case when, in

the absence of perturbations, the system passes to its

ground state, while there are no true restrictions on the

introduction of equilibrium thermal populations. Thus, set

BT
eq = {0, weq, 0}, where weq = 1.
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It is convenient to write solutions for components φ(ν) in
stationary case in form of vector ϕ

T (ν) = {φ21, φ11, φ12}.
Also, remember that φ22 = −φ11 is true due to the property

described above. Thus, the solution φ is found from the

equation:

M(ν)ϕ − s = 0, (10)

where

M(ν) =





ν + 1− iγ2 −2β∗ 0

−β ν − iγ β∗

0 2β ν − 1− iγ2



 (11)

and the vector s is determined by the inhomogeneity

iλp[σ
+, r ]. The decay rate γ2 can describe both the

dephasing γ2 = γ⊥ and γ2 = γ/2 in the case of pure

radiative decay. The vector s is written in terms of the

Bloch vector components as follows:

s =
i
2





2w

u + iv
0



 . (12)

Now the absorption coefficient of the probe signal (10) is

found from

α(ν) = −
4π

~
Nµ2 ωp

c
Re
(

M−1(ν)s
)

1
. (13)

To obtain the emission (fluorescence) power spectrum, one

needs to transform the inhomogeneous term in equation (7).
Thus, here, when determining the radiation power, we will

follow the concept developed and described in [16]. Indeed,
the operation of the probe signal should be considered

in relation to transitions in a controlled quantum system

described by r matrix. If
”
manually“ exclude the role of the

ground state from the last component in equation (7) and

introduce a new solution into equation (8), then the latter,

taken with the opposite sign, should describe the specific

power transferred to the field from the emitters. Since

the transmitted power contains both an elastic component,

i.e. pure Rayleigh scattering of the external field, and an

inelastic component, it will be interesting for us to exclude

the elastic part in advance. These
”
artificial“ procedures

look as follows:

iλp[σ
+, r ]→ −iλp(rσ

+ − r〈σ+〉). (14)

This means that only a part of the commutator in the

inhomogeneous term of equation (7) is taken into consider-

ation, but at that the raising operator is also replaced by its

difference with its average value. In [20] the legitimacy of

such a subtraction was proved rigorously and in detail within

the framework of a fully quantum-mechanical description.

Finally, putting together (7), (8), (10), (11) and (14), we
receive a new vector:

s f = −
i
2
λ2p

([

1− w

u + iv
0

]

+ (u + iv)

[ u− iv
1 + w

u + iv

])

, (15)

which must be used to calculate the contribution of one

emitter to the power transferred to the field:

W f (ν) = 2~ωp Re
(

M−1(ν)s f
)

1
. (16)

Equations (13) and (16) are the final formulas for calculat-

ing the functions that describe the absorption and emission

characteristics in this study. The results of calculations

of the spectral dependences for single emitter without

environment are shown in Figs. 1, a and 2, a, respectively.

All dependences α(ν) and W f (ν) are presented in relative

units (dimensional coefficients), while all parameters are

expressed in units of the radiative decay rate γ . Figure 1, a

shows the absorption spectra for three combinations of

detuning of the strong exciting field from the transition

frequency of the emitter and the value of the control Rabi

frequency. For similar conditions, the Mollow triplets in

Fig. 2, a were calculated. It follows from the comparison

of the Figures that both spectroscopic techniques can be

effective and informative for analyzing the photolumines-

cence of two-level emitters. If the experimental observation

of the Mollow triplet requires the availability of spectral

devices and high-resolution techniques, then for probe field

spectroscopy it is necessary to determine the absorption and

amplification bands by tuning the frequency of the probe

laser. The contributions of various additional processes

affecting the emitter can be determined from spectral

positions, relative magnitudes, and spectral peak widths.

3. Modifications of spectra of two-level
emitters

Let us consider how some types of interactions of the

emitter with its local environment in the carrier matrix

can modify the contours of the spectral dependences. The

influence of local fields and local vibrational modes stands

out the strongest influences on the optical properties of

particles. At that, the local fields are due to the dipole-

dipole interaction of the emitter with other emitters and

components of the medium. Also, a continuous medium

imposes conditions on the field structure, which leads to

the Parcel effect occurrence [17,21]. At that, these effects

can provide a feedback between effective pumping, decay,

and the state of the emitter.

Let us now return to equation (1) and reproduce all

transformations for system of N emitters per unit volume

located at distances smaller than the excitation/emission

wavelength. In a dense homogeneous ensemble excited by

laser light, each atom is actually under the action of effective

(Lorentz) local field EL, which consists of an external field E

and macroscopic polarization P. This field can be written in

terms of the elements of the density matrix [20,21]

EL = E +
4π

3
P = E +

4π

3
Nuµ (ρ12 + ρ21) ,

where N is concentration of emitters. Taking into account

the effective value of E, we obtain equation (6), where the

10 Optics and Spectroscopy, 2022, Vol. 130, No. 1
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value β in the matrix M takes the effective value:

β = � +

(

ε +
iγc

2

)

(u− iv). (17)

Here, ε = 4πNµ2/3~ is the so-called Lorentz red shift and

γc = Nγ/2 is the collective decomposition rate [20]. It

follows from this that the local field consideration leads

to a change in the matrix M(ν). Dynamic components

appear inside it, depending on the state of the emitter.

In other words, the values of the elements of the emitter

density matrix now determine not only the matrices (12)
and (15), but also the main matrix (11). It follows from

the structure of the latter that dynamic changes β will lead

to shifts in the absorption/amplification zones of the probe

signal and shifts in the satellites of the resonant fluorescence

spectrum. However, unlike single free emitters (Fig. 1, a
and 2, a) their distance from the center will no longer be

proportional to the Rabi frequency β = �. This effect is

shown in Figs. 1, b and 2, b. It can be seen that, as a

result of the action of collective local fields, the pumping

increasing (doubling �) leads only to insignificant shift of

the spectral lines (compare with Figs. 1, a and 2, a). At

the same time, for the same pumping, the Lorentz red shift

increasing significantly changes the position of the shifted

spectral components. It can be seen that the widths of the

lines and the ratio of their heights also change. However,

it can be assumed that the effect of width change will not

be so noticeable as compared to the widenings introduced

by dephasing and interaction with phonon modes. For the

types of emitters under consideration this is an important

circumstance and should be specified or considered when

modeling.

To construct spectra (13) and (16) for two-level emitters

with strong dephasing and considering the phonon contribu-

tion, we use the master equation obtained in the paper [4].
This paper presents theoretical and experimental studies of

the resonant fluorescence of semiconductor quantum dots,

which were prepared for operation in the dressed state

mode of a two-level system. The master equation in this

case took the following form:

i
d
dt

ρ =
1

~
[Ĥ + V̂ , ρ] + iR̂(ρ) + iγ+ ˆLσ+ (ρ)

+ iγ− ˆLσ−(ρ)− iγcd(σ
+ρσ+ + σ−ρσ−),

(18)

where γcd is the cross dephasing rate that affects the off-

diagonal elements of the density matrix, the component

with γ− corresponds to enhanced radiative decomposition,

while the component containing γ+ is incoherent excitation

process. The parameters γ±, γcd have a slow dependence

on the detuning with the laser frequency and can be

considered as constants within the limits of the used

pump frequencies. Thus, this equation describes a two-

level system that interacts with a light source and a

phonon reservoir, and also considers the processes of cross-

relaxation of the diagonal elements of the density matrix.
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Figure 1. Spectrum of absorption of weak probe signal for

various parameters: a) single two-level emitter; b) ensemble

of two-level emitters (here, 1 = 10γ , γc = 0.9γ); c) model QD

(here, 1 = 10γ), where
”
γ phon = high“ denotes set of parameters

γ+ = 0.9γ , γ− = 0.8γ , γcd = 0.6γ and
”
γ phon = low“ denotes

γ+ = 0.45γ , γ− = 0.4γ , γcd = 0.3γ ; d) ensemble of QD (here,
� = 10γ , 1 = 10γ , γc = 0.9γ).

Note that equation (18) coincides with equation (3) in

the first two components. New components change the

matrix M, they are represented by introducing a new

matrix Mpn, which is the sum of the matrix defined in (11),
and an additional matrix:

Mpn(ν) = M(ν)+

+





−i(γ+ + γ−) 0 −iγcd

0 −2i(γ+ + γ−) 0

−iγcd 0 −i(γ+ + γ−)



 .

(19)
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Let us first consider the case when the pumping in

the matrix M is determined by the external field only,

i.e. β = β∗ = �. Next, we will use the matrix Mpn and

calculate using formulas (13) and (16). The resonance

fluorescence spectra become asymmetric with respect to the

heights of the satellites (Fig. 2, c), which exactly reproduces

the result of the paper [4]. At that in this paper, we

present a calculation of the absorption spectra of the probe

field, from which one can see a clear weakening of the

absorption/amplification effect with a significant widening

of the corresponding bands. Thus, probe field spectroscopy
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Figure 2. Fluorescence spectrum for various parameters: a)
single two-level emitter; b) ensemble of two-level emitters (here,
1 = 10, γc = 0.9), c) single model QD (here, 1 = 10), where

”
γ phon = high“ means set of parameters γ+ = 0.9, γ− = 0.8,

γcd = 0.6 and
”
γ phon = low“ stands for γ+ = 0.45, γ− = 0.4,

γcd = 0.3; d) ensemble of model quantum dots (here, � = 10,

1 = 10, γc = 0.9).

is also sufficiently sensitive to the considered effects and can

serve as an alternative technique for studying the processes

in material in the vicinity of the emitter. At the same time,

the question of the specificity of the change in the spectral

curves in the presence of several strong effects remains

open. In order to illustrate this situation, let us consider

the joint influence of ensemble local fields, the influence of

the carrier as a continuous medium, and the influence of

dephasing and widening.

To solve the latter problem, collective and dephasing

effects should be taken into account simultaneously. This

can be done formally by performing calculations for (13)
and (16) using expressions (17) and (19). Figs. 1, d and 2, d

show the corresponding results of calculations for the

chosen parameters, allowing comparison with the previous

spectral patterns. Noticeable mutual compensation of the

effects is observed in the absorption spectra. The absorption

and amplification bands are shifted, but occupy positions

different from those for independent emitters. In this case,

as can be seen, the balance of absorption and amplification

can change depending on the ratio of the parameters of

”
competing“ processes. A similar situation is observed in

the resonance fluorescence spectrum. The spectral peaks

are shifted relative to the positions determined by the

frequency �, but the height ratio changes. In this case,

the asymmetry with respect to both the heights and widths

of the spectral lines is preserved.

4. Discussion and conclusion

The paper presents a theoretical analysis of the absorption

spectra of the probe field and the resonance fluorescence

spectra of two-level quantum emitters under various model

conditions, when the absorption and emission of light

depend on the parameters and state of the environment. A

mathematical apparatus has been developed for calculating

the particle emission spectra in the presence of a strong

external field in the semiclassical approximation based on

the well-known formalism, i.e. the probe field method.

The emission spectrum can be restored from the analysis

of the absorption/amplification factor of weak probe signal

with wavelength tuning in the vicinity of the transition

of the emitter interacting with the control monochromatic

signal. The equivalence of the presented method with

the quantum-kinetic approach based on Bogolyubov chains

for the emitter density matrices and the field is shown.

Calculations are made of the absorption spectra of weak

probe signal propagating through a medium controlled by

strong cw laser tuned near a single transition of optically

active impurity centers. Resonance fluorescence spectra for

models where light-emitting systems are affected by local

fields and effects of local electron-phonon interactions are

calculated.

It follows from the calculation results that the considered

types of spectral dependences can be used to restore

the characteristics of media containing probe particles —
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Figure 3. Photoluminescence excitation spectra of terylene

molecules in a thin film of 1,2-ortho-dichlorobenzene.

emitters. The paper analyzes the phenomenon of resonant

fluorescence of two-level particles. When this type of

photoluminescence is realized, the spectra under study at

sufficiently strong pumping have more than one frequency

band, the characteristics of which may contain information

about the state of the emitter and its participation in

the processes in the medium near it. Thus, the mutual

configuration of the parameters of each of the absorption

and amplification contours of the probe field (frequency
position, height, width) is determined by the pumping

parameters, the presence of radiative corrections due to the

medium and interaction with phonon modes. The analysis

of the spectral contour dependence on the controlled

pumping parameters (wavelength, power) and the state of

the medium (temperature) makes it possible to determine

the nature and types of processes accompanying photolu-

minescence. Similar possibilities can be provided by the

analysis of Apanasevich−Mollow resonance fluorescence

triplets. The frequency positions, heights and widths of

the radiation peaks are also determined by the processes

taking place in the medium around the emitter. Separate

processes manifest themselves unambiguously against the

background of controlled pumping and can be identified.

The presence of a larger number of parameters (determining

the state of a single transition) than in the analysis of a single

emission line in certain cases can provide a more accurate

restoration of the medium characteristics. The latter should

be ensured by the development of theoretical knowledge

about the optics of impurity particles.

In conclusion, note that the multivariative analysis of

spectral triplets is not limited to the considered examples

and, in particular, to the possibilities of using two-level

emitters described in the paper. As mentioned above, pairs

of two-level emitters can be introduced in solid medium

and experience dipole-dipole entanglement. The photolumi-

nescence excitation spectra (the total luminescence intensity

dependence on the pumping frequency) of cooperative pairs
also have the form of triplet. Examples of original excitation

spectra of organic molecules are shown in Fig. 3. The

Figures show that the excitation contours have the same

distances between the peaks, but the peaks differ in height

and width. It follows from this that the function of the

resonance fluorescence triplet contour is not specific to

systems of two-level emitters. At the same time, the sets

of characteristics of the spectral maxima in the emission

and excitation spectra are determined by different physical

processes, but all are subject to the influence of the local

environment.
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N. Zheludev, I. Aharonovich, W.-B. Gao. Phys. Rev. Lett.,

123 (3), 033602 (2019).
DOI: 10.1103/PhysRevLett.123.033602

[7] R. Vlasov, A. Lemeza, M. Gladush. Laser Phys. Lett., 10 (4),
045401 (2013). DOI: 10.1088/1612-2011/10/4/045401

[8] A.A. Panteleev, Vl.K. Rerikh, A.N. Starostin. JETP, 90 (1), 50
(2000). DOI: 10.1134/1.559093

[9] A.A. Panteleev, Vl.K. Roerieh. JETP, 92 (2), 210 (2000).
DOI: 10.1134/1.1354678

[10] L. Mandel, E. Wolf. Optical Coherence and Quantum Optics,

(Cambridge University Press, Cambrigde, 1995).
DOI: 10.1119/1.18450

[11] M.O. Scully, M.S. Zubairy. Quantum Optics, (Cambridge

University Press, Cambrigde, 1997).
DOI: 10.1017/CBO9780511813993

[12] P. Apanasevich, S.Y. Kilin. Journal of Applied Spectroscopy,

24 (4), 528 (1976). DOI: 10.1007/BF00938675
[13] B.R. Mollow. Phys. Rev., 188 (5), 1969 (1969).

DOI: 10.1103/PhysRev.188.1969

[14] A. Muller, E.B. Flagg, P. Bianucci, X.Y. Wang, D.G. Deppe,

W. Ma, J. Zhang, G.J. Salamo, M. Xiao, C.K. Shih. Phys. Rev.

Lett., 99, 187402 (2007).
DOI: 10.1103/PhysRevLett.99.187402

[15] C. Hettich, C. Schmitt, J. Zitzmann, S. Kühn, I. Gerhard,
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