01

Операторная форма обобщенной оптической теоремы для волновых задач

© Л.А. Апресян

Институт общей физики им. А.М. Прохорова РАН, 119991 Москва, Россия e-mail: leon apresyan@mail.ru

Поступило в Редакцию 7 апреля 2022 г. В окончательной редакции 24 мая 2022 г. Принято к публикации 28 мая 2022 г.

Полученная ранее для модели скалярного волнового уравнения операторная форма обобщенной оптической теоремы (OT) распространяется на случай электромагнитного излучения, а также других волновых уравнений. Показано, что при переходе от операторной к обычной формулировке OT в общем случае неплоской падающей волны вместо амплитуды рассеяния "вперед" выступает отвечающий этой волне диагональный матричный элемент T-оператора рассеяния. Проиллюстрированы переходы к различным известным из литературы формам OT, вытекающим из операторной OT как частные случаи.

Ключевые слова: сохранение энергии, обобщенная оптическая теорема, наблюдения в ближней и дальней зонах, радиационные потери.

DOI: 10.21883/JTF.2022.10.53241.89-22

Введение

Оптическая теорема (ОТ), одна из базовых в теории рассеяния, связывает сечение экстинкции плоской падающей на рассеиватель волны $\sigma_{\rm ext}$ с амплитудой рассеяния в направлении "вперед" A(0) известным соотношением $\sigma_{\rm ext}=(4\pi/k_0){\rm Im}\,A(0)$, где k_0 — волновое число [1]. Известна также обобщенная оптическая теорема (ООТ), являющаяся интегральным соотношением, выражающим мнимую часть амплитуды рассеяния под разными углами [2] . При совпадении направлений падения и рассеяния ООТ переходит в обычную ОТ. Как ОТ, так и ООТ непосредственно вытекают из закона сохранения энергии. Они применяются в широком круге волновых задач теории рассеяния независимо от природы волновых процессов (история вопроса изложена в работе [3]). Общее описание ООТ для случая акустических, электромагнитных, квантово-механических и упругих волн было дано в работе [4].

Обе формы оптической теоремы относятся к описанию поля в дальней волновой зоне, где поле приближенно представляется в виде суперпозиции плоских бегущих волн. В работах автора [5,6] на примере скалярного волнового уравнения была предложена операторная форма ООТ, пригодная для произвольных источников излучения. Эта форма позволяет, в частности, рассматривать случай точечных источников, а также поле в ближней зоне, включая возбуждение рассеивателя пучками излучения и эванесцентными волнами. При этом в [5] рассмотрен случай непоглощающего рассеивателя, а в [6] — рассеивателя с поглощением. В настоящей работе результаты [5,6] распространяются на случай рассеяния электромагнитного излучения, а также других волновых уравнений, удовлетворяющих определенным

сформулированным ниже условиям. Основным из них является возможность выделения в исходной дифференциальной (или другими словами, локальной) постановке задачи диссипативной части, описывающей поглощение в рассеивателе. Оказывается, что такое разделение удается сохранить и при переходе от исходного дифференциального уравнения к интегральному, в котором учитываются дополнительные условия, обеспечивающие единственность решения задачи. В наиболее общей формулировке обобщенная оптическая теорема позволяет оценить изменения, вносимые введением рассеивателя в результаты исходной задачи, в которой этот рассеиватель отсутствует.

Традиционный подход к получению оптической теоремы основан на выражении баланса потоков энергии, протекающих через выбранные замкнутые поверхности. В случае плоских волн в качестве такой поверхности обычно берется сфера бесконечно большого радиуса. Наиболее детально такой подход описан в работах [7,8], где для электродинамической задачи рассмотрен общий случай источников излучения, локализованных на произвольном расстоянии от рассеивателя. Это позволило авторам [7,8] получить некоторые новые результаты, подробно описав условия энергетического баланса для потоков через поверхности, охватывающие рассеиватель, источники, а также рассеиватель вместе с источниками. В отличие от такого "энергетического" подхода использованный ниже операторный метод отличается простотой и позволяет получить не только обычную ОТ, связанную с энергетическими потоками и отвечающую диагональным элементам соответствующих операторов, но также и ООТ, которая связывает их недиагональные элементы.

1498 Л.А. Апресян

При этом рассматриваемый ниже подход не привязан однозначно к электродинамическому случаю. Конкретная постановка задачи выбрана лишь в качестве иллюстрации общего подхода, так что сколь-нибудь подробное описание электродинамических следствий не входит в цели настоящей работы. За счет отказа от строгих математических определений и использования операторов на "физическом" уровне строгости удается получить обобщенную ОТ в виде (11) (см. ниже), пригодном для широкого класса волновых задач. Ранее универсальность ООТ была проиллюстрирована в цитированной работе [4], но с использованием более сложного подхода для конкретной (хотя и достаточно общей) модели исходного дифференциального уравнения и лишь для случая плоских волн (дальнее поле).

В следующих разделах приводятся основные результаты по формам операторной оптической теоремы. Простые, но несколько громоздкие выкладки вынесены в Приложении.

1. Уравнения Максвелла и интегральная формулировка задачи рассеяния

Рассмотрим трехмерную стационарную задачу о рассеянии монохроматического электромагнитного излучения на рассеивателе, находящемся в непоглощающей среде. Вектор электрического поля ${\bf E}$ определяется уравнением, вытекающим из системы уравнений Максвелла (множитель $e^{-i\omega t}$ всюду опускаем) [9]:

$$[\nabla \times \nabla \times -k_0^2 \varepsilon(\mathbf{r})] \mathbf{E}(\mathbf{r}) = i\omega \mu_0 \mathbf{j}(\mathbf{r}). \tag{1}$$

Здесь, $k_0=2\pi/\lambda$ — волновое число, λ — длина волны, $\varepsilon(\mathbf{r})$ и $\mathbf{j}(\mathbf{r})$ описывают соответственно распределение диэлектрической проницаемости среды и токов, а μ_0 — магнитная проницаемость вакуума. Диэлектрическая проницаемость $\varepsilon(\mathbf{r})$ в (1) представляется в виде суммы $\varepsilon(\mathbf{r})=\varepsilon_0(\mathbf{r})+\chi_{\mathrm{e}}(\mathbf{r})$, функция $\chi_{\mathrm{e}}=\chi_{\mathrm{e}}(\mathbf{r})$ отлична от нуля лишь внутри рассеивателя, и в общем случае может быть тензорной величиной, учитывающей анизотропные характеристики рассеивателя. При этом $\varepsilon(\mathbf{r})$ также будет тензорном.

Предполагается, что $\varepsilon_0(\mathbf{r})$ имеет вид, допускающий полное решение, т.е. нахождение оператора Грина в отсутствие рассеивателя. Это условие существенно ограничивает класс допустимых задач. Ниже будет рассмотрено два примера такого рода. Это случай однородной непоглощающей среды, $\varepsilon_0(\mathbf{r})=\varepsilon_0=\mathrm{const}$, а также случай рассеивателя вблизи однородного непоглощающего полупространства.

Однородное уравнение (1), отвечающее отсутствию источников $\mathbf{j}=0$, имеет отличные от нуля решения. Поэтому для однозначности решения (1) дополняется известными условиями излучения, а при наличии разрывных изменений $\varepsilon(\mathbf{r})$ также условиями непрерывности

тангенциальных компонент электрического **E** и магнитного **H** полей. С математической точки зрения эти условия ограничивают класс допустимых к рассмотрению функций, выделяя тем самым область определения рассматриваемых ниже операторов. Детальное описание указанных условий можно найти в учебниках электродинамики. Имея в виду, что эти условия выполняются, можно перейти от дифференциального уравнения (1), записанного символически в виде (см., например, [10])

$$(L_0 - V)u = q, (2)$$

к интегральной форме уравнения для поля и:

$$u = G^0 q + G^0 V u \equiv G q. \tag{3}$$

обозначения Здесь использованы сокращенные для поля $u = E(\mathbf{r})$ и источников $q = i\omega\mu_0 \mathbf{j}(\mathbf{r}),$ $L_0 = \nabla \times \nabla \times -k_0^2 \varepsilon_0(\mathbf{r}).$ При рассматриваются как функции аргумента $x = (i, \mathbf{r}),$ содержащего дискретный тензорный индекс i и пространственный аргумент \mathbf{r} , а интегрирование по x всякий раз понимается как интегрирование по \mathbf{r} , дополненное суммированием по соответствующему тензорному индексу і, который не выписывается в явном виде.

Входящий в (3) G — оператор Грина с тензорным ядром $G(\mathbf{r}, \mathbf{r}_0)$, действует по правилу

$$Gq=\int G(\mathbf{r},\mathbf{r}_0)q(\mathbf{r}_0)d\mathbf{r}_0,$$

а $G^0 = \left(\nabla \times \nabla \times -k_0^2 \varepsilon_0(\mathbf{r})\right)^{-1}$ — матричный оператор "свободного распространения", описывает задачу в отсутствие рассеивателя и считается заданным. Оператор возмущения V в рассматриваемом случае сводится к умножению на $\nu(\mathbf{r}) = k_0^2 \chi_{\rm e}(\mathbf{r})$ и имеет ядро $V(\mathbf{r},\mathbf{r}_0) = \nu(\mathbf{r})\delta(\mathbf{r}-\mathbf{r}_0)$ (символы единичных операторов и матриц всюду опускаются).

В общем случае G^0 не обязательно относится к случаю свободного распространения. Считается, что G^0 описывает некоторую исходную "невозмущенную" задачу, решение которой фактически полностью известно. В качестве такой задачи кроме простейшего случая свободного пространства может выступать, например, случай волн вблизи полупространства (см. ниже), либо более сложные задачи, связанные с резонаторами и волноводами, которые в настоящей работе не рассматриваются. При этом использование оптической теоремы позволяет, в частности, упростить некоторые оценки вносимых рассеивателем изменений в распределение потоков энергии.

2. Операторная форма задачи рассеяния

Переход от векторного уравнения Гельмгольца (1) с дополнительными условиями к интегральной постановке

задачи (2) в общем случае нетривиален, поскольку ядро оператора Грина содержит сильную сингулярность, требующую использования понятия исключенного объема [11,12]. Оказывается, что уже сама форма интегрального уравнения (3) содержит в себе неявно много физики, позволяя выделить в (3) диссипативные слагаемые, к которым добавляются также неизбежные потери на излучение.

Подстановка в (3) u = Gq дает соотношение

$$Gq = G^0q + G^0VGq,$$

откуда после сокращения на q вытекает операторное уравнение для G

$$G = G^0 + G^0 V G. (4)$$

Определим оператор T обычным соотношением [10]:

$$VG = TG^0. (5)$$

так что

$$G = G^0 + G^0 T G^0. (6)$$

Тем самым полное решение задачи рассеяния, т.е. вычисление G, сводится к нахождению T-оператора, поскольку оператор свободного распространения G^0 считается известным.

Домножив обе части (6) слева на V и учтя (5), после простых сокращений получаем уравнение для T-оператора

$$T = V + VG^0T. (7)$$

Согласно (3):

$$u=u^0+u^{\rm sc}$$

где u^0 и $u^{\rm sc}$ представляют соответственно падающую и рассеянную волны:

$$u^0 = G^0 q, \quad u^{\text{sc}} = G^{\text{sc}} q,$$
 (8)

а оператор рассеяния G^{sc} выражается как

$$G^{\mathrm{sc}} = G^0 V G = G^0 T G^0$$

Будем рассматривать введенные линейные операторы как бесконечномерные матрицы, действующие в унитарном пространстве функций u=u(x) со скалярным произведением вида

$$u^{\dagger}u \equiv \int u^*(x)u(x)dx,$$

где символ † — означает эрмитово сопряжение, а интеграл по $x=(i,\mathbf{r})$ понимается как интеграл по \mathbf{r} , дополненный суммированием по тензорному индексу i (в используемых в квантовой физике "бракет" обозначениях $u=|u>,u^{\dagger}=< u|$, так что $u^{\dagger}u=< u|u>$ — число, а $u\,u^{\dagger}=|u>< u|$ — матричный оператор). Такой подход позволяет использовать общие свойства операторов, не привязываясь заранее к какому-либо фиксированному базису (см., например, [13]). При этом ядро сопряженного оператора V^{\dagger} выражается как $V^{\dagger}(x,x_0)=V^*(x_0,x)$.

3. Операторная форма обобщенной оптической теоремы

Ключевым моментом для дальнейшего является запись оператора возмущения V в виде суммы диссипативной и консервативной частей. В общем случае оператор возмущения V, как и всякий линейный оператор, можно разложить на эрмитову (V^h) и антиэрмитову (iV^a) составляющие 1

$$V \equiv V^h + iV^a$$
, $V^h \equiv (V + V^{\dagger})/2$, $V^a \equiv (V - V^{\dagger})/2i$.

Известно, что в рассматриваемом здесь электромагнитном случае среднюю по времени диссипируемую в рассеивателе мощность можно записать в виде [14]:

$$P_{abs} = rac{\omega}{2} \operatorname{Im} \int E^{\dagger} \varepsilon E d\mathbf{r}_0 = rac{\omega}{2} \int E^{\dagger} \varepsilon^a E d\mathbf{r}_0,$$

где $\varepsilon^a=(\varepsilon-\varepsilon^\dagger)/2i,\ a^\dagger$ означает обычное эрмитово сопряжение векторов и матриц. В соответствии со сказанным выше, это соотношение можно сокращенно записать в виде

$$P_{abs} = b \operatorname{Im} u^{\dagger} V u = b u^{\dagger} V^{a} u, \tag{10}$$

где коэффициент $b=\frac{c^2}{2\omega}$ зависит от выбора системы единиц и далее для простоты полагается равным единице.

Таким образом, согласно (10) средняя по времени поглощаемая мощность с точностью до множителя выражается как матричный элемент $u^\dagger V^a u$ антиэрмитовой, или иначе, диссипативной части оператора V^a , отвечающий полю u. При этом поле u=u(x) рассматривается как один из базисных векторов в пространстве функций, зависящих от x, который можно дополнить до базиса, накрывающего все рассматриваемое пространство функций.

В работе [6] на примере скалярного волнового уравнения было показано, что из операторных уравнений (6) или (7) в случае рассеивателя с поглощением вытекает следующее операторное соотношение:

$$G^{0\dagger}T^{a}G^{0} = G^{0\dagger}T^{\dagger}G^{0a}TG^{0} + GV^{a}G$$
 (11)

(для частного случая $V^a=0$ эквивалентное (11) соотношение ранее было найдено в [5]).

В Приложении показано, что выполнение (11) не связано со скалярным характером волнового уравнения и может быть получено из уравнения (7) в общем виде с помощью простых преобразований операторов. Соотношение (11) представляет собой операторную

 $^{^{1}}$ Вместо эрмитового оператора V^{a} в (9) можно было бы использовать антиэмитов оператор $V^{a^{\prime}}\equiv iV^{a}$, исключив тем самым из рассмотрения "лишнюю" мнимую единицу, однако запись (9), аналогичная разложению комплексного числа на вещественную и мнимую часть, представляется более наглядной. Для электромагнитной задачи алгебраические свойства линейных операторов более подробно описаны в Appendixes E, F работы [8].

1500 Л.А. Апресян

форму ООТ. В нем оператор в левой части непосредственно связан с экстинкцией излучения, первое слагаемое справа обусловлено радиационными потерями, а последнее — поглощением в рассеивателе. Покажем, как из этого соотношения вытекают другие формы ОТ, используемые в литературе.

Для перехода от (11) к выражениям для мощностей домножим обе части (11) справа на функцию источника q, а слева на q^{\dagger}

$$q^{\dagger}G^{0\dagger}T^{a}G^{0}q = q^{\dagger}G^{0\dagger}T^{\dagger}G^{0a}TG^{0}q + q^{\dagger}G^{\dagger}V^{a}Gq$$

или с учетом (3) и (8)

$$u^{0\dagger} T^a u^0 = u^{0\dagger} T^{\dagger} G^{0a} T u^0 + u^{\dagger} V^a u. \tag{12}$$

Это соотношение можно записать как

$$P_{\rm ext} = P_{\rm sc} + P_{abs},\tag{13}$$

где

$$P_{\text{ext}} = u^{0\dagger} T^a u^0, \quad P_{\text{sc}} = u^{0\dagger} T^{\dagger} G^{0a} T u^0, \quad P_{abs} = u^{\dagger} V^a u.$$
 (14)

Соотношение (13) представляет собой расширение обычной ОТ на случай неплоской падающей волны u^0 . В нем мощность экстинкции $P_{\rm ext}$, равная сумме радиационных и тепловых потерь, согласно (14), представляется как отвечающий u^0 диагональный матричный элемент диссипативной части T^a оператора T. Этот элемент заменяет мнимую часть амплитуды рассеяния "вперед", и переходит в нее для плоской падающей волны. Величина P_{abs} выражает среднюю по времени мощность поглощаемого рассеивателем излучения и дается диагональным матричным элементом V^a для полного поля u. Определенная (14) мощность рассеяния $P_{\rm sc}$ также представляется диагональным матричным элементом по полю u^0 оператора рассеяния $T^\dagger G^{0a}T$, который содержит оператор G^{0a} , описывающий радиационные потери. Рассмотрим эти выводы, а также некоторые следствия операторной оптической теоремы (11) более подробно.

4. Рассеяние плоской электромагнитной волны на уединенном рассеивателе

Рассмотрим падение плоской волны

$$u^0 = \mathbf{E}^0 \equiv \mathbf{e}_0 e^{ik_0 \mathbf{n}_0 \mathbf{r}} \tag{15}$$

на уединенный рассеиватель в свободном пространстве. Здесь $\mathbf{n}_0 = \mathbf{k}_0/|\mathbf{k}_0|$ и \mathbf{e}_0 — единичные векторы соответственно направления и поляризации падающей волны. В рассматриваемом случае рассеянное поле $u^{\mathrm{sc}} \equiv \mathbf{E}^{\mathrm{sc}} = G^0 T \mathbf{E}^0$ вдали от рассеивателя имеет вид расходящейся сферической волны, так что в волновой зоне при $k_0 \mathbf{r} \gg 1$ рассеянное поле выражается как

$$E^{\mathrm{sc}} = G^0 T \mathbf{E}^0 \sim \frac{e^{ik_{\varepsilon}r}}{r} \mathbf{F}(\mathbf{n}, \mathbf{n}_0),$$

где $\mathbf{n}=\mathbf{r}/|\mathbf{r}|$ — единичный вектор направления рассеянной волны. Векторная амплитуда рассеяния $\mathbf{F}(\mathbf{n},\mathbf{n}_0)$ — пропорциональна вектору поляризации падающей волны,

$$\mathbf{F}(\mathbf{n}, \mathbf{n}_0) = f(\mathbf{n}, \mathbf{n}_0)\mathbf{e}_0.$$

При этом тензор преобразования поляризаций $f(\mathbf{n}, \mathbf{n}_0)$ выражается через "T-оператор на энергетической поверхности" соотношением

$$f(\mathbf{n}, \mathbf{n}_0) = \frac{1}{4\pi} \rho(\mathbf{n}) T(k_0 \mathbf{n}, k_0 \mathbf{n}_0) \rho(\mathbf{n}_0). \tag{16}$$

Здесь

$$T(\mathbf{k}, \mathbf{k}_0) = \int e^{-ik\mathbf{r}} T(\mathbf{r}, \mathbf{r}_0) e^{ik_0\mathbf{r}} d\mathbf{r} d\mathbf{r}_0$$

— тензорное ядро T-оператора в представлении волновых векторов, а $\rho(n)=1-\mathbf{n}\times\mathbf{n}$ — проектор на плоскость с нормалью \mathbf{n} (для скалярной модели аналогичное (16) соотношение выводилось в [5]). Если $\{\mathbf{e}_{\alpha}(\mathbf{n})\}$ — произвольно выбранный ортогональный базис в плоскости с нормалью $\mathbf{n}(\alpha,\beta=1,2,\mathbf{e}_{\alpha}(\mathbf{n})^{\dagger}\mathbf{e}_{\beta}(\mathbf{n})=\delta_{\alpha\beta})$, то $\rho(\mathbf{n})$ можно записать как

$$ho(\mathbf{n}) = \sum_{\delta=1,2} \mathbf{e}_{\delta}(\mathbf{n}) \mathbf{e}_{\delta}(\mathbf{n})^{\dagger}.$$

Согласно (16), тензор $f(\mathbf{n}, \mathbf{n}_0)$ поперечен относительно направления распространения падающей и рассеянной волн, так что $\mathbf{n}^{\dagger}\mathbf{f}(\mathbf{n}, \mathbf{n}_0) = \mathbf{f}(\mathbf{n}, \mathbf{n}_0)\mathbf{n}_0 = 0$. Это позволяет свести 3×3 тензор $\mathbf{f}(\mathbf{n}, \mathbf{n}_0)$ к 2×2 матрице $f_{\alpha,\beta}$, связывающей векторы поляризации падающей и рассеянной волн [15]:

$$f_{\alpha,\beta}(\mathbf{n}, \mathbf{n}_0) = \mathbf{e}_{\alpha}(\mathbf{n})^{\dagger} f(\mathbf{n}, \mathbf{n}_0) e_{\beta}(\mathbf{n}_0)$$
$$= \frac{1}{4\pi} \mathbf{e}_{\alpha}(\mathbf{n})^{\dagger} T(\mathbf{k}, \mathbf{k}_0) e_{\beta}(\mathbf{n}_0). \tag{17}$$

В рассматриваемом здесь случае от операторной ОТ (11) нетрудно перейти к обычной обобщенной ОТ для электромагнитного поля, ограничившись описанием полей в дальней зоне. Для этого достаточно учесть, что в представлении волновых векторов действие входящего в (11) оператора G^{0a} сводится к умножению на дельта-функцию:

$$G_{\mathbf{k}}^{0a} = \rho(\mathbf{n}) \frac{\pi}{2k_0} \delta(|\mathbf{k}| - k_0), \tag{18}$$

так что

$$G^{0a}(\mathbf{r}, \mathbf{r}_0) = \int G_{\mathbf{k}}^{0a} e^{i\mathbf{k}(\mathbf{r} - \mathbf{r}_0)} \frac{d\mathbf{k}}{(2\pi)^3},$$
 (19)

и вычислить недиагональные матричные элементы от (11), отвечающие падению и рассеянию плоских волн.

Заметим, что в соответствии с (18) и (19), описывающая радиационные потери часть G^{0a} оператора свободного распространения G^0 в пространстве волновых векторов локализована на "энергетической поверхности"

 $|{\bf k}|=k_0$ и "поперечна" относительно направления ${\bf n}$. Выражаясь нестрого, можно сказать, что оператор G^{0a} "помнит", что радиационные потери происходят в дальней зоне, где волновое поле приближенно имеет структуру плоских волн, для которых выполняются эти условия.

Используя (17)—(19) и выполнив интегрирование по модулю k, можно преобразовать оптическую теорему (11) к виду

$$\frac{1}{2i} \left((f_{\alpha,\beta}(\mathbf{n}, \mathbf{n}_0) - (f_{\beta,\alpha}^*(\mathbf{n}_0, \mathbf{n})) - (f_{\beta,\alpha}^*(\mathbf{n}_0, \mathbf{n})) \right)$$

$$= \frac{k_0}{4\pi} \sum_{\delta=1,2} \oint_{4\pi} f_{\delta,\alpha}^*(\mathbf{n}', \mathbf{n}) f_{\delta,\beta}(\mathbf{n}', \mathbf{n}_0) d\mathbf{n}' + \sum_{abs}, \quad (20)$$

где матрица \sum_{abs} связана с поглощением в рассеивателе и не выписывается явно. Это соотношение представляет собой обычную форму обобщенной оптической теоремы для электромагнитного поля [15]. При совпадении направлений и поляризаций рассеянной и падающей волн $\mathbf{n}=\mathbf{n}_0,~\alpha=\beta~(20)$ переходит в "классическую" оптическую теорему, связывающую сечение экстинкции с мнимой частью амплитуды рассеяния вперед. При этом \sum_{abs} переходит в сечение поглощения, а сечение экстинкции выражается соотношением

$$\sigma_{\rm ext} = P_{\rm ext} = \frac{4\pi}{k_0} \operatorname{Im} f_{\alpha,\alpha}(\mathbf{n}_0, \mathbf{n}_0).$$

5. Оптическая теорема для падающей и рассеянной волн и случай рассеивателя вблизи непоглощающего полупространства

Из общих выражений для мощностей (14) непосредственно вытекает еще одна широко цитируемая в литературе форма оптической теоремы. Используя соотношения $A^+B^aA = (A^+BA)^a$ и $u^{0\dagger}T^au^0 = \text{Im}u^{0\dagger}Tu^0$, а также (5), из (14) нетрудно получить выражения (см. Приложение)

$$P_{\text{ext}} = \operatorname{Im} u^{0\dagger} V u = \operatorname{Im} \int dx \, u^{0\dagger}(x) V u,$$

$$P_{\text{sc}} = -\operatorname{Im} u^{s\dagger} V u = -\operatorname{Im} \int dx \, u^{s\dagger}(x) V u,$$

$$P_{abs} = \operatorname{Im} u^{\dagger} V u = \operatorname{Im} \int dx \, u^{\dagger}(x) V u.$$
(21)

Поскольку полное поле выражается в виде суммы падающей и рассеянной компонент, $u=u^0+u^s$, отсюда, в частности, сразу следует выполнение оптической теоремы (13).

Эквивалентные (21) соотношения были получены в [16] для скалярной модели, и в [17] для модели электромагнитного излучения (см. также [8]). В этих работах в качестве G^0 выступает уже не "оператор

свободного распространения", а аналогичные операторы для прозрачного полупространства, явные выражения для которых приведены, в частности, в [16,17]. Соотношения (21) использованы в указанных работах при получении оптической теоремы для рассеивателя вблизи прозрачного полупространства, когда вместо амплитуды рассеяния "вперед" возникает взвешенная сумма амплитуд рассеяния в направлении отраженной и прошедшей волн. Последнее отражает интерференционный характер оптической теоремы для данной задачи, связанный с синфазностью рассеянной волны с падающей лишь для направлений отражения и преломления.

Выводы

В работе на примере рассеяния электромагнитного излучения рассмотрен вывод операторной формы обобщенной оптической теоремы, связанной с выполнением закона сохранения энергии в задачах теории рассеяния. В отличие от традиционного подхода к получению ОТ этот вывод не связан непосредственно с вычислением потоков энергии через замкнутые поверхности и асимптотическими оценками быстро осциллирующих интегралов, и использует лишь простые общие свойства линейных операторов, действующих в унитарном пространстве. Сформулировано основное условие, приводящее к такой форме ООТ. Оно требует возможности разделения в исходной дифференциальной постановке задачи консервативных и диссипативных слагаемых. Из операторной формы ООТ следует, в частности, что в общем случае неплоской падающей волны и точек наблюдения вблизи рассеивателя фигурирующая в обычной оптической теореме величина мнимой части амплитуды рассеяния "вперед" переходит в диагональный матричный элемент T-оператора рассеяния, отвечающий падающей волне. Прослежен переход от операторной к обычной форме ООТ для электромагнитного поля, а также к описанному в литературе случаю рассеивателя вблизи непоглощающего полупространства.

Предлагаемая схема проиллюстрирована на примере рассеяния электромагнитного излучения, однако полученные общие результаты распространяются на случай волн произвольной природы, удовлетворяющих сформулированным выше условиям.

Благодарности

Автор выражает благодарность двум анонимным рецензентам за полезные и конструктивные замечания.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

1502 Л.А. Апресян

Приложение

Пусть A и B — два линейных обратимых, в общем случае некоммутирующих оператора $(AB \neq BA)$. Для дальнейшего достаточно использовать известные простые свойства обращения и эрмитового сопряжения $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$, а также $(A+B)^a = A^a + B^a$, и $(A^{\dagger})^a = -A^a$, где верхний индекс "а" означает вычисление диссипативной части соответствующего оператора в соответствии с (9). Эти соотношения справедливы как для обычных матриц, так и для операторов. Используя их и (9), нетрудно проверить также, что

$$(A^{-1})^{a} = -(A^{\dagger})^{-1}A^{a}(A)^{-1} \tag{\Pi1}$$

И

$$(A^{\dagger}BA)^{a} = A^{\dagger}B^{a}A. \tag{\Pi2}$$

Возьмем эрмитово сопряжение от уравнения (6)

$$G^{\dagger} = G^{\dagger} + G^{0\dagger} T^{\dagger} G^{0\dagger}.$$

Умножим это соотношение справа на TG^0 , заменив в левой части полученного выражения TG^0 на VG в соответствии с (5):

$$G^{\dagger}VG = G^{0\dagger}TG^0 + G^{0\dagger}T^{\dagger}G^{0\dagger}TG^0.$$

Взяв отсюда диссипативную часть (a) с учетом $(\Pi 2)$ и $(\Pi 1)$, получаем искомое уравнение (11).

Переход от операторной формы ООТ (11) к величинам мощностей (21) эквивалентен вычислению диагонального матричного элемента от обеих частей (11), отвечающего падающей волне u_0 . Учитывая соотношения (5) и (8), величины (14) нетрудно преобразовать следующим образом:

$$P_{\text{ext}} = \operatorname{Im} u^{0\dagger} T u^0 = \operatorname{Im} u^{0\dagger} T G^0 q = \operatorname{Im} u^{0\dagger} V G q$$

= $\operatorname{Im} u^{0\dagger} V u = \operatorname{Im} dx u^{0\dagger}(x) V u$, (Π 3)

$$P_{\rm sc} = -\operatorname{Im} u^{0\dagger} T^{\dagger} G^{0\dagger} T u^{0} = -\operatorname{Im} u^{0\dagger} T^{\dagger} G^{0\dagger} V u$$

$$= -\operatorname{Im} u^{s\dagger} V u = -\operatorname{Im} dx u^{s\dagger}(x) V u, \qquad (\Pi 4)$$

$$P_{abs} = u^{\dagger} V^a u = \operatorname{Im} u^{\dagger} V u = \operatorname{Im} dx u(x) V u. \tag{\Pi5}$$

Выражения для мощностей $(\Pi 3) - (\Pi 5)$ эквивалентны соотношениям (21).

Список литературы

- [1] К. Борен, Д. Хафмен. Поглощение и рассеяние света малыми частицами (Мир, М.,1986)
- [2] M. Born, E. Wolf. *Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light* (7th expanded ed., Cambridge, 1999)
- [3] R.G. Newton. Am. J. Phys., **44**, 639 (1976). DOI: 10.1119/1.10324
- [4] K.Wapenaar, H. Douma. J. Ac. Soc. Am., 131 (5), 3611 (2012). DOI: 10.1121/1.3701880

- [5] Л.А. Апресян. Светотехника, (2), 52 (2021).
 [L.A. Apresyan. Light Engineer., 29 (5), 4 (2021).
 DOI: 1033383/2021-005
- [6] L.A. Apresyan. J. Ac. Soc. Am., 150, 2024 (2021). DOI: 10.1121/10.0005915
- [7] A.E. Moskalensky, M.A. Yurkin. Phys. Rev. A, 99, 053824 (2019). DOI: 10.1103/PhysRevA.99.053824
- [8] A.E. Moskalensky, M.A. Yurkin. Rev. Phys., 6, 100047 (2021).DOI: 10.1016/j.revip.2020.100047
- [9] Л. Новотный, Б. Хехт. *Основы нанооптики* (Физматлит, М., 2009)
- [10] Л.А. Апресян, Ю.А. Кравцов. *Теория переноса излучения: Статистические и волновые аспекты* (Наука, М., 1983) [Расширенное издание: L.A. Apresyan, Yu.A. Kravtsov. *Radiation Transfer: Statistical and Wave Aspects.* (Gordon and Breach, Amsterdam, 1996)]
- [11] A.D. Yaghjian. Proc. IEEE, 68 (2), 248 (1980).DOI: 10.1109/proc.1980.11620
- [12] M.A. Yurkin, M.I. Mishchenko. Phys. Rev. A, 97 (4), 043824 (2018). DOI: 10.1103/physreva.97.043824
- [13] Ф.Р. Гантмахер. Теория матриц (Наука, М., 1966)
- [14] Л.Д. Ландау, Е.М. Лифшиц. Электродинамика сплошных сред (Наука, М., 1982)
- [15] Р. Ньютон. Теория рассеяния волн и частиц (Мир, М., 1969)
- [16] P. S. Carney, J.C. Schotland, E. Wolf. Phys. Rev. E, 70 (3), 036611 (2004). DOI: 10.1103/physreve.70.0366
- [17] D.R. Lytle, P.S. Carney, J.C. Schotland, E. Wolf. Phys. Rev. E, 71 (5) 056610 (2005). DOI: 10.1103/physreve.71.056610