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Critical current in a long Josephson contact with weak pinning in an

external magnetic field
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The analysis of possible current distributions when passing current through a periodically modulated

long Josephson contact located in an external magnetic field is carried out. An approach based on the

analysis of continuous configuration modification proceeding in the direction of Gibbs potential reduction

is used for the calculation. The case when the pinning parameter is less than the critical value is

considered. It is shown that at any value of the external magnetic field, there is a critical value of

the transport current, when exceeded, the situation ceases to be stationary, as a result of which energy

passes into radiation and heat, i.e. currents cease to be persistent. The value of the critical current

is determined by the value of the magnetic field at which the vortices begin to fill the entire length

of the contact. With an increase in the external magnetic field, the critical value of the current de-

creases.
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Introduction

Over the last years the series of theoretical and ex-

perimental studies were performed, that bring us closer

to superconductivity at room temperature [1,2]. There-

fore, the problem of critical fields and currents became

even more important for practical use of superconduc-

tors. This problem is solved in the low-temperature

superconductors based on Ginzburg-Landau theory. High-

temperature superconductors (HTSC) are mainly ceram-

ics, consisting of contacting granules separated with di-

electric. In the places of the granules contact the

Josephson contacts appear, that are described with non-

linear equations, thus complicating the theoretical analy-

sis. Porosity of the ceramic HTSC, resulting in samples

inhomogeneity and vortices pinning, also raises difficulties.

This prevents from Ginzburg-Landau equations using for

calculation of current states in HTSC. Other approaches

to analysis of phenomena in such media should be

searched.

Over the last years the interest of physicists, studying

the superconductivity, was focused on Josephson junctions.

On the one hand, structures of this type can be made

artificially [3,4]. Processes in the long Josephson contacts

attract attention, for instance, regarding the idea of short

contacts chain using for radiation efficiency increase [5].
Long contacts, in which dielectric in a layer between the

superconductors is replaced with ferromagnetic, are also

studied [6]. On the other hand, such contact is a model,

applicable to all processes in the superconducting samples:

Meissner state, vortices existence, their pinning and all

related phenomena. In this model the calculations can be

performed extremely accurate, that allows to understand

the occurring processes in detail. Therefore, the processes

in the long Josephson contacts are analyzed in a lot of the

works [7–9].
The artificial periodically modulated Josephson contact

(Fig. 1, a) is a thin layer of dielectric (xz plane) between

two superconductors, crossed with parallel with each other

and infinite along z axis dielectric strips with thickness l
along y axis and width d along x axis, periodically located

along x axis at distance L from each other. The external

magnetic field, as well as vortices axes are directed along

z axis. Fig. 1, b shows the structure of artificially created

periodically modulated Josephson contact [3]. On the

sections between the strips the value of phase jump between

the contact sides slowly changes with coordinate, while at

junction through the strip it changes abruptly. Let’s indicate

the jump value, averaged over k-th section between the

strips, through ϕk (Fig. 1, a). Let’s assume, that the phase

jump at the section, closest to the contact boundary, is equal

to ϕ1, and ϕ2, ϕ3, etc with movement inward. Distribution

of values of ϕk describes the steady current state.

In the works [10–12] it was shown, that contact behavior

in the magnetic field is defined with the value of so

called pinning parameter g = 2πµ0iCLld/80 (in [10,11]
designation I is used). Here, iC is critical current density

of each point Josephson junction, 80 is magnetic flux

quantum, meaning of values L, l, d is clear from Fig. 1.

At low values of g situation is the same as at zero

pinning, i.e. when the external field exceeds some value

of Hmax the vortices fill the whole contact at once —
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Figure 1. a — model of periodically modulated Josephson

contact; b — structure of artificially created periodically modulated

Josephson contact.

from its boundary to infinity. This is similar to situation

in the II-type superconductor. At higher values of g
the vortices, with field growth, gradually move from the

boundary to the interior of the contact, while the magnetic

field in the contact depth remains equal to zero, i.e. the

situation is similar in the III-type superconductor. In [11]

it is shown, that these two modes are divided with the

critical value of pinning parameter gC , that which is

within a range of 0.95−1.00. In [12] based on approach,

developed in non-linear physics [13], the exact value is

found gC = 0.9716. At g > gC there is a possibility

of unlimited growth of the field towards the contact

boundary, i.e. at any external field the finite length current

configuration can exist near the boundary, providing the

complete field compensation inside the contact far from the

boundary.

In the work [11] the long contact in the external magnetic

field is examined, when the total current through the

contact is equal to zero. In the work [12] the currents

distribution in the contact at specified total current in zero

external magnetic field is calculated. In the work [14] the

analysis of the general case, when both current and external

magnetic field are not equal to zero, is performed at pinning

parameter values, exceeding the critical value (g > gC).

The purpose of this work is a detailed study of the general

case at g < gC , when the long Josephson contact is put into

the external magnetic field, and through this contact the

persistent superconducting current is flowing.

1. Problem statement and calculation
technique

If there is the pinning, the distribution of phase jumps

and currents over the contact is not unambiguous. The

reason behind that is a
”
hysteresis nature“ of the situation:

type of the settled configuration depends on prehistory,

i.e. how this state was set. For instance, if firstly we

put the contact in any small field and then we cool it

and transfer into the superconducting state, the magnetic

flux will also penetrate the internal cells of the contact. If

we put it into the field in superconducting state, then at

low fields the configuration will be of Meissner type, i.e.

the field penetrates only narrow layer near the boundary.

There are a lot of options. Let’s solve this problem for the

case of gradual field inclusion and the following increase of

transport current. The contact is in superconducting state

already, while the external field slowly increases from zero

value to He . After that the external current is passed through

the contact, and this current slowly and monotonously

increases from zero to J . Let’s introduce the dimensionless

parameters

h = He/H0, j = J/bH0,

where H0 = 80/µ0S is value of external field, at which

1 quantum of magnetic flux 80 is passed through the cell

with area S, b is contact length along z axis (Fig. 1).

Let’s assume that the external field He is directed against

us (against z axis in Fig. 1), while transport current —
upward (along y axis). Then, the total field outside of

contact from the right side is equal to h + j/2, while from

the left side — h − j/2.
Let’s apply the method, used in [11] for calculation of the

field profile in the contact at zero total current. At the first

stage we will consider the total current as equal to zero and

find the field profile in the contact at monotonous increase

of the external field He .

Let’s examine the finite length contact, containing an

odd number of cells 2N − 1, i.e. number of current series

is equal to 2N. Let’s write the Gibbs potential of such

configuration with a height of 1m [2]

G = E −

∫

BHdV =
82

0

2π2µ0S

2N−1
∑

i=1

[(

1

2
(ϕi+1 − ϕi )

2

+ g(1− cosϕi)

)

− 2πh(ϕ1 − ϕN+1)

]

. (1)

For definiteness we assume that i = 1 in the extreme

left row. At conclusion (1) we considered, that in the

examined geometry the thermodynamic intensity of the

magnetic field H in all points is the same and equal to the

intensity of the external field He , and we used the conditions

of fluxoid quantization

2π8m/80 + ϕm − ϕm+1 = 0, (2)
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where 8m is total magnetic flux through m-th cell. Then,

∫

BHdV = He

∑

i

8i =
He80

2π

2N−1
∑

i=1

(ϕi − ϕi+1)

=
He80

2π
(ϕ1 − ϕ2N).

We will treat value G as a height (or potential energy)
of a mountain relief on multidimensional set of coordinates.

Configurations, settled at some value of the external field h,
correspond to the minimums of energy (hollows) in this

relief. If h abruptly increases by some small value, this

will result in some modification of the relief, after which

the configuration (set of coordinates), corresponded to

the minimum of the previous relief, will find itself on

the hillside of the new one. The further change of this

configuration shape can be considered as
”
rolling down“

the new relief with decrease of
”
potential energy“. Let’s

assume that this process happens as a result of large amount

of small steps. It is logically to assume, that in each
”
point“

the rolling is performed along the line of the steepest

descent, i.e. along the gradient of function G. This means

that with each step all
”
coordinates“ of ϕi get increments,

proportional to the corresponding gradient projection:

1ϕi = −
∂G
∂ϕi

δ,

where δ is low constant multiplier, setting the step value.

Then, we calculate all ∂G/∂ϕi in the new point, i.e. at new

values of ϕi , and make the next step. This procedure is

repeated until we get the new stable configuration, located

in relief hollow, corresponding to the specified h.
From (2) we get the expressions for

”
gradient projections“

of G:

∂G
∂ϕi

=2ϕi−ϕi−1−ϕi+1+g sinϕi , (2 ≤ i ≤ 2N−1), (3a)

∂G
∂ϕ1

= ϕ1 − ϕ2 + g sinϕ1 − 2πh, (3b)

∂G
∂ϕ2N

= ϕ2N − ϕ2N−1 + g sinϕ2N + 2πh. (3c)

In [10,11] the point at the boundary of the Meissner

mode HS was selected as an initial point for this algorithm.

This method allows to calculate the Meissner configuration

from only near one contact end, i.e. on the assumption of

the contact infinite length. In the examined situation the

contact length is finite, therefore other end should also be

considered. Distribution of ϕi corresponds to the minimum

of the Gibbs potential, therefore it can be calculated, using

the same method as for h > hS in [11].
This approach is also preferable for the infinite length

contact [10], because, firstly, for all field values the single

calculation method is applied, and, secondly, it gives the

more accurate result. In the method, applied earlier [10],
the value of ϕ1 was specified and the possible value of ϕ2

was found, at which there is a solution in the form of

monotonously reduced combination of values of ϕm with

m increase. But change of ϕ2 significantly influenced ϕm

for not very high numbers m < M . At the same time, the

calculated value of ϕm had an order of at least 10−8, while

all ϕm at m > M were equal to zero. But in reality they

should be nonzero. The new approach allows to calculate

all ϕm until the values of order of 10−15, that allows to

obtain the more accurate results.

We select the field value h = 0 as the initial point, while

all ϕi are equal to zero. Let’s give h some small increment

for 1h and provide opportunity for
”
the point“ to move

along
”
the line of the steepest descent“, as was explained

above. In terms of programming this means to set a

cycle, on each step of which the new values of ϕm at

1 ≤ m ≤ 2N are calculated as per formula ϕm = ϕm − ∂G
∂ϕm

δ

considering (3). Finally, we get the configuration, in which

all derivatives of ∂G/∂ϕi become zero. This is the desired

equilibrium configuration, corresponding to h = hS + 1h.
Then, starting from this configuration, we can give a new

increment for 1h, etc. This way we can find the distribution

of currents and phase jumps at any value of the external

magnetic field.

It should be noted, that the simplified calculation, that

uses not gradual change of h from zero to the researched

value of h1, but the direct setting of the value of h1 from

the start and the following application of above mentioned

algorithm of Gibbs potential minimization, results in exactly

the same values of ϕm. But it takes much less time.

At the second stage let’s examine the change of situation

with gradual increase of the transport current, passing

through the contact in direction against us. The initial

configuration will be the calculated at the first stage (at
zero transport current) distribution of ϕm at 1 ≤ m ≤ 2N.

Let’s set the low value of current j .
Then, the expressions for

”
gradient projections“ G

from (3) are the following:

∂G
∂ϕi

=2ϕi−ϕi−1−ϕi+1+g sinϕi , (2 ≤ i ≤ 2N−1), (4a)

∂G
∂ϕ1

= ϕ1 − ϕ2 + g sinϕ1 − 2π(h − j/2), (4b)

∂G
∂ϕ2N

= ϕ2N − ϕ2N−1 + g sinϕ2N + 2π(h + j/2). (4c)

Summing up the equations (4) for all i from 1 to 2N + 1,

we get
2N
∑

i=1

g sinϕi = j,

i.e. the sum of all currents is equal to j , as we thought from

the beginning.

New values of ϕm are calculated as per formula

ϕm = ϕm − ∂G
∂ϕm

δ . Then, starting from this configuration,

we can set the new current value, not much exceeding the

previous one, and so on. Thus we can study the distribution

of phase jumps ϕi , and hence of currents and magnetic

Technical Physics, 2022, Vol. 67, No. 3



Critical current in a long Josephson contact with weak pinning in an external magnetic field 323

fields inside the contact in the whole range of the transport

current change.

According to (2), normalized magnetic induction inside

the m-th cell bm = 8m/80 can be calculated as per formula

ϕm = (ϕm+1 − ϕm)/2π.

2. Calculation results, their interpretation
and analysis

Critical value of the pinning parameter gC was deter-

mined in [12] and was equal to 0.9716. Let’s exam-

ine the value g < gC , particularly g = 0.90 (hS = 0.318,

hmax = 0.344).
Computer calculations completely confirmed the possibil-

ity of the proposed algorithm use for calculation of the field

penetration into the contact. Indeed, by gradually increasing

the value of the magnetic field from zero to h, and then

by increasing the current from zero to j , it is possible to

track the gradual change of the configuration, wherein at

all values of h and j all ∂G/∂ϕi are equal to zero, i.e. G
has the minimum. For each value of h there is a maximum

current value, above which the stationary picture does not

exist.

Figure 2 shows the diagram jC(h) of critical current

dependence on the external magnetic field at g = 0.9

(hS = 0.318) and contact length of 20 cells.

Let’s examined the conditions, at which the vortices

movement appears.

A) While h + j/2 < hS , from both contact ends the

Meissner configurations are built. If Meissner depth is

considered low compared to the contact length, this range

of current change is of no interest.

B) In case of hS < h + j/2 < hmax and

hS < |h − j/2| < hmax the finite length structures will

be from the both ends. If contact length is larger than these

structures lengths sum, this situation remains stationary. If

these structures overlap, the issue of stationarity needs to

be studied.

Let’s perform the analysis of the dependence of near-

boundary structure length on the magnetic field for field h
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Figure 2. Dependence of the critical current on the external

magnetic field at g = 0.9 and contact length of 20 cells.
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Figure 3. Dependence of the length of near-boundary vortex

structure (in cells number) on the external magnetic field.

in a range of hS < h < hmax. Let’s calculate as per the above

mentioned technique the values of the magnetic field in the

cells bm = (ϕm+1 − ϕm)/2π at various values of the field h
for the contact with a length of 100 cells. Figure 3 shows the

diagram of structure length (in cells number) dependence

on the value of h − hS .

Meeting the both conditions hS < h + j/2 < hmax and

hS < j/2− h < hmax is possible, if hS < j/2 < hmax and

h < min{ j/2− hS, hmax − j/2} at the same time. These

ranges are rather narrow [11], but this situation is possible

in principle. In this case the near-boundary vortex structures

will be from the both sides, while their orientations will

be opposite, since the field values from different sides

from the contact have different signs. Therefore, if the

contact length is less than these structures lengths sum,

the vortices will annihilate each other in the area of their

intersection. Vortices with opposite orientations will appear

from both sides of the contact, move inward, to the place of

”
annihilation“, and disappear there. At vortices movement

the energy will transfer to a heat and radiation, therefore

the current will cease to be persistent.

C) If h + j/2 > hmax, the sequence of vortices will

appear at the right end, trying to occupy the whole

contact length. The left structure can be either Meissner

configuration or finite near-boundary structure or vortices

chain, also trying to occupy the whole contact. It may

seem, that for the whole structure movement it is sufficient

for the system to have vortices with the force applied to

them. With any low current the field at the right end is

bigger than at the left, the force is bigger on the right

than on the left, and vortices should move from the right

to the left. However, this is not true. It is sufficient to

note that with the lack of the transport current the vortex

structures are in the rest state, since the forces, acting on

1∗ Technical Physics, 2022, Vol. 67, No. 3
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the central vortex from the different sides, while exist, are

equal to each other. When the current is not zero, one of

the forces will be bigger than another, but movement will be

prevented by the pinning on contact cells. For the movement

to exist the force from one side should be bigger than from

another by the value of the pinning force, i.e. the current

should exceed some finite value. The detailed calculation

is required to observe it. The proposed approach allows to

perform it.

Analysis of the diagram of Fig. 2 allows to make the

following conclusions:

1) Dependence jC(h) is periodical over the magnetic

field h with a period of 1, that allows to extend it to

other values of h. Periodicity arises from the fact, that with

h increase by a unit, the system of equations (4) can be

satisfied by means of increase of difference between any

adjacent values of ϕi by 2π. It follows, that the maximum

critical values of the transport current can be reached at the

magnetic field h, equal to any integer of N.

2) Dependence jC(h) turns out almost strictly symmetri-

cal relating to h = 0.5. It would seem, that it follows from

the equations (4). By replacing the variable ϕm = ξm − 2πn
in (4) we get

∂G
∂ξi

= 2ξi − ξi−1 − ξi+1+g sin ξi , (2 ≤ i ≤ 2N−1), (5a)

∂G
∂ξ1

= ξ1 − ξ2 + g sin ξ1 + 2π(1− h + j/2), (5b)

∂G
∂ξ2N

= ξ2N − ξ2N−1 + g sin ξ2N − 2π(1 − h − j/2). (5c)

It is easily seen that with numeration change in (5) to the

opposite one the systems (4) and (5) are equivalent at h1

and h2 = 1− h1, i.e. there is a symmetry relating h = 0.5.

However, this conclusion is wrong. Systems (4) and (5)
have multiple solutions, therefore at h1 and h2 = 1− h1

various configurations can be set.

Initial (at j = 0) diagrams of the field distribution bm(m)
in the contact for h and 1− h are not identical, since the

pinning does not allow configuration to track the value of

the external field, that results in hysteresis. But at j = jC

the configurations become identical. The reason is that at

the established movement of the vortex picture in all cells

the values of the fields, that minimize the Gibbs potential,

will be set. As an example let’s examine (Fig. 4) the depen-

dencies of the normalized induction of the magnetic field

bm = (ϕm−1 − ϕm)/2π on the cell number m at h = 0.204,

j = jC = 0.259 and at h = 0.796, j = jC = 0.258. The

diagrams have a symmetry relating the point K, i.e. bm

from the first dependence corresponds to 1− b20−m from

the second. This correspondence confirms and explains

the symmetry of the dependence jC(h) relating h = 0.5 in

Fig. 2.

3) Let’s examine the nature of the performed processes

depending on the value of the external field h.
At h < hS = 0.318 by the beginning of the second

stage of calculation ( j = 0) at both ends of the contact

1 10
0

1.0

0.5

20
m

5 15
b

m

K

Figure 4. Dependencies of the normalized induction of the mag-

netic field bm on the cell number m at h = 0.204, j = jC = 0.259

and at h = 0.796, j = jC = 0.258.

the Meissner configurations appear, without vortices. If

current is supplied at, the right end near which the field

is equal to h + j/2 > hS , the vortex structure appears,

at the left end the field is equal to h − j/2 < hS , i.e.

no vortices. For the vortex structure to reach the left

end, the field should be equal to hS + 1, where value

of 1 depends on contact length and can be defined

from Fig. 3. It would seem, that the condition of

vortices movement has the form of j/2 = hS + 1− h.
With contact length of 20 cells from Fig. 3 we find

1 ≈ 0.008. In Fig. 2 the dashed line corresponds to

ratio j = 2(0.318 + 0.008) − 2h = 0.652 − 2h. However,

at small contact lengths this consistency is violated. The

reason is in the influence of the Meissner configuration on

the left: it can either prevent from movement (with the same

orientation as vortices on the right) or contribute to it (with

the opposite orientation). Lack of Meissner configuration

on the left corresponds to zero field at the left end of

the contact h − j/2 = 0, and from condition h + j/2 > hS

we get h = j/2 ≈ hS/2 = 0.159. Indeed, in this point the

diagram intersects with the line.

Left from this point, at h < hS/2, we have

j/2 = hS + 1− h > hS/2, i.e. the field at the left end of

the contact (h − j/2) is negative, and the Meissner config-

uration, set there, has the opposite orientation. In this case

the vortices movement starts, when the right configuration

reaches the left Meissner structure, not the edge of the

contact, therefore 1 < 0.008, critical current is less than

observed as per formula j = 0.652 − 2h, and points on

diagram of Fig. 2 are below the line j = 0.652− 2h. Value
of this reduction is small.

Technical Physics, 2022, Vol. 67, No. 3
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At hS/2 < h < hS the Meissner configuration of the

same orientation appears at the left end, and it resists to

the vortices chain movement from the right to the left.

Therefore, the points are above the line.

Such situation happens, for instance, at h = 0.240, when

jC/2 = 0.110, h + jC/2 = 0.350, i.e. hp = 0.006 is a

resistance to the vortices movement, created with the

Meissner configuration at h − jC/2 = 0.130. At h = 0.310

we have jC/2 = 0.082, h + jC/2 = 0.392, i.e. hP = 0.048.

Such resistance is created with the Meissner configuration,

corresponding to h − jC/2 = 0.228. The larger
”
the height“

of the Meissner configuration, the bigger is resistance.

At h > hS at the left end the vortex configuration appears

from the beginning (at j = 0). With increase of the

current j the field to the left from the contact, equal

to h − j/2, reduces, but due to the pinning the vortices

continue to exist even at h − j/2 < hS . Figure 2 shows

that at h > hS the condition h > jC/2 is met. Therefore,

until the critical current the structures at different ends are

oriented identically, so there is no annihilation. But since the

field at the right end is bigger than at the left end, the right

structure displaces the left one from the contact, after which

the situation is established, when vortices appear at the right

boundary of the contact, move to the left and disappear at

the left end.

It is logical to consider, that the moving force is

proportional to the fields difference at the edges j . Figure 2

shows, that in a range from h = 0.215 to 0.785 the value

of jC varies between the values of 0.12 and 0.20. It

may be concluded that the resistance to the vortex chain

movement with increase of h remains almost constant, while

fluctuations are defined with details of vortices pinning on

the cells.

It should be noted, that in the works [15,16] the influence
of the current profile on volt-ampere characteristics and

nature of the traveling wave in the external field presence

was analytically and numerically studied. Particularly,

in [16] the diagram of the field distribution inside the contact

is presented, but for another discontinuity type.

Conclusion

The possible distributions of currents and magnetic fields

inside the long periodical ordered Josephson contact, put

into the external magnetic field and through which the

transport current is passed, are calculated. The case is

examined, when the pinning parameter is less than critical

(g < gC). For calculation the approach based on analysis of

continuous modification of configuration, going in direction

of the Gibbs potential decrease, is used.

It is shown, that at any value of the external magnetic field

there is a critical value of the transport current, at exceeding

of which the situation ceases to be stationary, resulting in

the energy transition into radiation and heat, i.e. currents

cease to be persistent.

The detailed analysis of the performed processes is

carried out, providing the qualitative explanation of the

observed consistencies.

In case of g < gC the critical current is defined with the

value of the magnetic field Hmax, at which the vortices start

to occupy the whole contact length, and does not depend on

contact length. When putting the contact into the external

magnetic field, the value of the critical current decreases.

Dependence of the critical current on the external

magnetic field is periodical over the magnetic field h with a

period of 1, that allows to extend it to other values of h.
Therefore, the maximum critical values of the transport

current can be reached at the magnetic field h, equal to

any integer of N.
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