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In the study of extremely short light pulses, it is no

longer possible to use the approximation of a slowly varying

envelope of the electric field intensity variable E(t). With the

loss of the concept of the pulse envelope, the pulse

area tool θ = d12

~

∞
∫

−∞

E(t)dt does not work, here d12 —

dipole transition point a two-level atom, ~ — Planck’s

constant. But the concept
”
electric area“ SE =

∞
∫

−∞

Edt (in

a dimensionless form se =
2d{12}

~
SE) is meaningful. It was

found in the articles [1–4] that the quantity SE(z ) does

not change with the change in the spatial coordinate z
along which the electromagnetic radiation propagates. The

articles [3,4] provide conditions under which integration

with infinite limits in calculation of SE(z ) is replaced by

finite limits SE =
t2
∫

t{1}

Edt . Here is an excerpt from the

article [3]:
”
the radiation wave packet at the initial time

is located in vacuum, there is no field in the medium, and

after a sufficiently long time interval after the packet passes

through, the field disappears at any fixed point in space“.

Based on the one-dimensional Maxwell equations of

electrodynamics of continuous medium, we will obtain the

balance ratios of electric and magnetic areas for problems

solved in a finite region both in space and time. For the one-

dimensional geometry of the problem of electromagnetic

radiation propagation in a dielectric, we use the Maxwell

equations

∂E
∂z

+
1

c
∂H
∂t

= 0, (1)

∂H
∂z

+
1

c
∂E
∂t

= −
4πṖ

c
. (2)

Polarized radiation propagates along the z axis, the electric

field intensity E is directed along the x axis, and the

magnetic field intensity H— along the y axis, t — time. The

electrodynamic combined equations (1), (2) have a solution

in the form of electromagnetic waves. They propagate in

both positive and negative directions.

The problem is solved in a rectangular region Dp of two

independent variables z and t, z L ≤ z ≤ z R , tB ≤ t ≤ tE .

Everything that follows will be valid for any rectangular

subregion D of a region DP limited by z 1, z 2 such that

z L ≤ z 1 < z 2 ≤ z R , and t1, t2 — tB ≤ t1 < t2 ≤ tE . The

regions D are shown in Fig. 1 and 2 (a).
Let’s introduce the designations

SE,z =

t2
∫

t1

E(z , t) dt, SH,z =

z 2
∫

z 1

H(z , t)
c

dz , (3)

SH,z =

t2
∫

t1

H(z , t) dt SE,z =

z 2
∫

z 1

E(z , t)
c

dt,

SP,z =

z 2
∫

z 1

4πP(z , t)
c

dz . (4)

In these formulas, the subscripts have the following mean-

ing: the first index is the integrand, the second index is one

of the independent variables, which remains constant during

integration. Integration is carried out over the remaining

independent variable.

Then the following two statements are true for any

subregion D:

(SE,z 2
− SE,z 1

) + (SH,t2 − SH,t1) = 0 (5)

(SH,z 2
− SH,z 1

) + (SE,t2 − SE,t1 + SP,t2 − SP,t1) = 0. (6)

Let us prove the first of them. Let us take the double

integral of the left-hand side (1) over the region and apply

Green’s formula. We obtain

x

DK

(

∂E
∂z

+
1

c
∂H
∂t

)

dz dt =

∮

K

(

−
1

c
Hdz + Edt

)

. (7)
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The integrand on the left side of this formula is equal to

zero, therefore, the double integral is equal to zero. So the

right curvilinear integral is also equal to zero. Let us write

the curvilinear integral on the right side of (7) taking into

account the direction of integration

∮

K

(

−
1

c
Hdz + Edt

)

=

t2
∫

t1

E(z 2, t)dt −

t2
∫

t1

E(z 1, t)dt

+

z 2
∫

z 1

H(z , t2)
c

dz −

z 2
∫

z 1

H(z , t1)
c

dz = 0.

Taking into account (3), we obtain (5).
To prove the validity of (6), we transform (2) to the

following form:

∂H
∂z

+
1

c
∂(E + 4πP)

∂t
= 0.

The further proof is carried out in the same way as in the

proof (5). The expression in brackets in (8) is the electric

induction vector D = E + 4πP , which allows us to write (6)
in short form

(SH,z 2
− SH,z 1

) + (SD,t2 − SD,t1) = 0. (9)

Here SD,t =
z 2
∫

z 1

D(z ,t)
c dz =

z 2
∫

z 1

E(z ,t)+4πP(z ,t)
c dz .

Researchers often use dimensionless variables.

For a two-level medium, we introduce

dimensionless variables [5,6] τ = t/t0, ζ = z/z 0, e =
= E/E0, h = H/H0, p = P/P0, here t0 = ω−1

0 , z 0 = c/ω0,

E0 = H0 = P0 = ~ω0/2d . Maxwell’s equations are written

as
∂e
∂ζ

+
∂h
∂τ

= 0,
∂h
∂ζ

+
∂(e + 4πp)

∂τ
= 0.

Having performed the above actions, we get the following

relations instead of (5), (6), (9):

(se,ζ2 − se,ζ1) + (sh,τ2 − sh,τ1 ) = 0, (10)

(sh,ζ2 − sh,ζ1 ) + (se,τ2 − se,τ1 ) + (s4πp,τ2 − s4πpτ1) = 0,

or

(sh,ζ2 − sh,ζ1 ) + (sd,r 2 − sd,r 1 ) = 0. (11)

Here,

se,ζ =

r 2
∫

r 1

e(ζ , τ )dτ , sh,r =

ζ2
∫

ζ1

h(ζ , τ )dζ ,

sh,ζ =

τ2
∫

τ1

h(ζ , τ )dτ , se,τ =

ζ2
∫

ζ1

e(ζ , τ )dζ ,

s4πp,τ =

ζ2
∫

ζ1

4πp(ζ , τ )dζ ,

sd,τ =

ζ2
∫

ζ1

(

e(ζ , τ ) + 4πp(ζ , τ )
)

dζ =

ζ2
∫

ζ1

d(ζ , τ )dζ .

Let us introduce the following designation:

r f ,ξ = (s f ,ξ2 − s f ,ξ1), this expression is the difference

in areas with a larger value ξ2 and with a smaller value ξ1
of the region D. Then (10), (11) can be written in short

form

re,ζ + rhτ = 0, (12)

rh,ζ + rd,τ = 0 or rh,ζ + (re,τ + r4πp,τ ) = 0. (13)

From these ratios it follows:

The first conclusion. In order for one of the differences in

equalities (12), (13) to be equal to zero, it is necessary and

sufficient that the second difference is also equal to zero.

For example, when modeling radiation transport in

substance, the initial state of the medium is assumed to

be unperturbed, and τ2 is taken large enough for the

medium to return to the initial (unperturbed) state, and

all electromagnetic radiation to leave the medium. Then

rh,τ = 0, rd,τ = 0, hence re,ζ = 0, rh,ζ = 0. Here the law

of electric and magnetic areas conservation is realized [1–4].
The second conclusion. If one of the differences is not

equal to zero, then the other is also not equal to zero. In

addition, these differences are equal in absolute value and

opposite in sign.

Here equalities (12), (13) must be satisfied at any time

τ2 = τ . The equality must be satisfied even when there

is an electromagnetic field in the medium or medium

polarization.

In numerical simulation, we obtain an approximate

solution. To control correctness of the solution obtained

by the numerical method, the calculation of the balance of

quantities that fall under the conservation laws, e.g. total

energy conservation law. The total energy means the sum

of the electromagnetic radiation energy and the energy

accumulated by the substance when the medium is excited.

The above-described allows us to additionally introduce a

balance of two quantities: 1se , 1sh (imbalances of the

electric and magnetic fields areas).

1se = (re,ζ + rh,τ )nu, 1sh = (rh,ζ + rd,τ )nu. (14)

In relative view

δse =
1se

max(re,ζ )
, δsh =

1sh

max(rh,ζ )
.

The subscript of imbalances is inherited from the first

difference in parentheses (14).
Let us take a region D limited in space by variable

ζ1 ≤ ζ ≤ ζ2, and in time by variable τ1 ≤ τ ≤ τz . Here

τz is the current time of the problem, further we will denote
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Figure 1. Problem I. Medium parameters: N = 9× 1021 cm−3, ω0 = 2.6909× 1015, λ = 700 nm, d = 5D, α = 1, γ1 = γ2 = 0; pulse

duration τp = 2. a) Region D(τ ) on a plane ζ , τ , the inclined line is the pulse maximum trace. b) Dependence e(ζ , τ ). c) Dependences

e(τ ) on the left and right boundaries. d) Functions −r eζ , rhr , and −rh,ζ , rd,r . e) Imbalances δs e(τ ) and δsh(τ ).

it τ . Then
”
the area imbalances“ will be a function of the

variable τ : δse(τ )δsh(τ ).
When deriving the obtained results, only Maxwell

electrodynamics equations were used as initial ones, the

constitutive equations were not involved in the derivation.

Therefore, we have the right to expect that the results

obtained will be valid for any correct model of the

medium. In the following two examples, we will use

the Bloch equations for a two-level atom as a medium

model: ds1/dτ = −s2 − γ2s1, ds2/dτ = s1 + es3 − γ2s2,
ds3/dτ = −es2 − γ1se3, here γi = (ω0Ti)

−1. Polarization

P(t, z ) = N · d · s1.
The main results of solving Problem I and Problem II

are shown in Figs. 1 and 2, respectively. For clarity, the

parameters of the problems were selected to be extremely

dense so that the parameter α = 4πNd2/(~ω0) was of the

order of ≈ 1−6.

The first problem is about propagation of the unipolar

pulse of self-induced transparency in a dense medium. This

problem has an analytical solution [7]

e =
2

τp
sech

(

τ − τ0 − ζ /υ

τp

)

. (15)

In the problem, the electromagnetic radiation pulse is

localized. Both scenarios can be observed, defined by both

the first and the second conclusions.

As the second calculation, we took the problem from the

articles [8,9], in which the interaction of unipolar counter-

pulses of self-induced transparency (15) in dense medium

was studied. As a result of the collision of two unipolar

pulses of opposite polarity, a long-lived polariton cluster is

formed, which has a double spatial structure. The diagram

in Fig. 2, b shows the dependence s3(ζ , τ ).
Due to antisymmetry of the problem, the imbalances of

the electric and magnetic areas turned out to be equal to

zero identically, which indicates a good symmetrization of

the numerical solution technique. Therefore, the region D
was taken only by negative values ζ , the diagram of Fig. 2, a.

On the diagram in Fig. 2, c only eL(τ ) is shown. On the

right boundary of the region D due to the antisymmetry of

the problem eR(τ ) = e(0, τ ) = 0. This diagram shows the

dependence of the magnetic field intensity at ζ = 0 at the

symmetry center hR(τ ).
Diagrams (d) in both figures demonstrate how relations

(12), (13) are satisfied. Let us transform (12), (13) to the

form −re,ζ = rh,τ , −r r,ζ = rd,τ , right and the left parts of

these ratios are shown on the diagrams (d). Corresponding
pairs of curves −re,ζ (τ ), rh,τ (τ ) and −rhζ (τ ), rd,τ (τ )
are not distinguishable on the diagrams. But there are

still differences. This is shown by diagrams (e), where

the dependences of the relative imbalances of areas δse(τ )
and δsh(τ ) are shown. The cause of imbalances is the

Optics and Spectroscopy, 2022, Vol. 130, No. 2



On the area of extremely short electromagnetic pulses in medium for problems... 263

5

–5

τ

–1.0

–0.5

ζ

0

200

100

s
3

–1.0

0

–0.5

0–2 2 4

τ

0

50

250

ζ

0 100 150 250

δ
s

r
/π

e

0

4

–2

τ
50 200

e

b

a

–4

2

0 100 150 250

0

4

–2

τ
50 200

d

–6

2

–4

–re, ζ
–rh, ζ
–rh, τ
–rd, τ

0 100 150 250

0

6

–2

τ
50 200

c

–4

2

4

8

10
eL

hR

100

150

200

–4

τ  = τ2
D

ζ  = ζ2 R
ζ  = ζ1 L

τ1

0

0.5

0

0.5

7δs  ·10e
6δs  ·10h

Figure 2. Problem II. Medium parameters: N = 2.22× 1021 cm−3, ω0 = 3.142 fs−1 (λ = 599.5 nm), d = 25D, α = 5.260 (ωc = 2 fs−1),
T1 = 1× 10−13, T2 = 0.5× 10−13 . The pulse duration is τp = 0.78. a) Region D(τ ) on a plane ζ , τ , inclined lines are traces of counter-

pulse maxima, polariton clusters are schematically depicted by narrow vertical regions. b) Dependence s3(ζ , τ ). c) Dependence eL(τ ) on
the left boundary and dependence hR(τ ) on the right boundary. d) Functions r e,ζ , rh,r and −rh,ζ , rd,x . e) Imbalances δs e(τ ) and δsh(τ ).

Values of energy imbalances and maxima of area imbalances of

electric and magnetic fields for problem II

Difference steps δW max δs e max δsh

diagrams

101τ2, 101z 2 1.26 · 10−5 5 · 10−5 0.37 · 10−3

1τ2, 1z 2 1.27 · 10−7 4 · 10−7 0.4 · 10−5

0.11τ2 , 0.11z 2 1.27 · 10−9 5 · 10−9 0.4 · 10−7

use of numerical methods for solving the Maxwell−Bloch

equations. The second problem was calculated on three

different grids for independent variables. The grid detail

in the calculations changed by an order of magnitude.

The table shows the energy imbalances δW of the maxima

of the area imbalances max δse and max δsh, for problem II.

The data presented in the table confirm the second order

of accuracy of the applied calculation method. Reducing the

difference grid by an order of magnitude leads to a decrease

in imbalances by two orders of magnitude.

Basically, the peak values of the imbalances arise when

the radiation pulses pass through the boundaries of the

medium. For the first problem, which has an analytical

solution, even the dependence of the imbalance on time

has an analytical expression — this is the derivative of the

hyperbolic secant. In the second problem, until collision

of counter-pulses, the development occurs as in the first

problem. Starting from the moment when the pulses meet,

the behavior of the imbalances δse(τ ) and δsh(τ ) becomes

oscillatory. At that, the oscillation amplitude increases and

reaches max δsh = 0.4 · 10−5, but the imbalance remains

quite acceptable. Moreover, we can always reduce it by

splitting the difference grid.

Finally, the subregion D can consist of one, two, or four

difference grid cells. In this case, relations (5), (6) can

be a tool for building an integration-interpolation difference

scheme for the numerical solution of problems [10].
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