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Introduction

Study of interaction of microwave range electromagnetic

waves with magnetic materials is of great interest for devel-

opment of technology of their manufacture and applications

as concentrators or absorbers of microwave field [1–6].
In particular, electromagnetic wave equipment and devices

operating at frequencies of 0.5−8GHz are widely used in

wireless communication, data transmission systems, local

area networks, etc. Since many nanostructured materials

have a complex dependence of magnetic permeability (MP)
on frequency, there is a need to control the MP frequency

dispersion to obtain high values of magnetic permeability,

small losses or strong frequency dependence in a given

range [7,8]. Standard methods to study MP frequency dis-

persion are the Nikolson−Ross−Weir method in a coaxial

line or in free space, and the method for measuring MP of

thin ferromagnetic films using a shorted cell [8]. However,

these macroscopic methods prevent local probing of MP dis-

persion. Standard techniques of scanning magnetic force

microscopy (SFM) [9,10] and magnetic-resonance force mi-

croscopy [11,12] make it possible to study the domain struc-

ture, spatial distribution of resonance properties and spectra

of inherent magnetic vibrations of a sample. In this case,

a magnetic probe serves either as a source of an external

field acting on it or as a detector of magnetic torques. But

in both cases quasistatic conservative magnetic interaction

force of the probe and the sample is measured, for which

the electrodynamic response contains almost no information

on MP frequency dispersion of the surface material.

The aim of this paper is to discuss the possibility of

local MFM probing of MP frequency dispersion in materials

by measuring dissipative interaction force (friction force)
between a magnetized probe and a sample in the non-

contact interaction mode. The value of this force (viscous

”
friction“ coefficient) directly depends on the shape of the

MP frequency dependence of the sample material. To this

end, in Sections 1, 2 general equations were produced for

normal (conservative) and lateral (dissipative) forces of

interaction with the surface of a point magnetic dipole

particle and an extended probe in the form of a paraboloid

of rotation (sphere) in non-relativistic motion parallel to

the surface characterized by magnetic permeability µ(ω).
In Section 3 there are numerical calculations of the value of

expected forces, friction and merit coefficients of an MFM

oscillator in MP dispersion of relaxation type [5]. To record

all values, unless otherwise specified, Gaussian system of

units is used.

1. Interaction of a small dipole particle
with surface

Let us first consider interaction of a small particle

having constant dipole magnetic torque m = (mx , my , mz ),
with surface of homogeneous and isotropic medium

characterized by magnetic permeability of general type

µ(ω) = µ′(ω) + iµ′′(ω). Let us consider that a particle

moves with constant speed V in direction of an axis x of
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Figure 1. Scheme of interaction of a dipole magnetic particle (a) and an extended probe (b) with magnetic surface.

Cartesian coordinate system at distance z 0 from the surface

(fig. 1, a).

In absence of external magnetic field, force acting on

a particle shall be determined by classic electrodynamics

equation [13]

F = grad(mH), (1)

where H — vector of magnetic field induced by polarization

current of the particle j = c rotM (c — speed of light in

vacuum, M — polarization vector). For a point magnet

dipole let us write M in the form

M = mδ(x −Vt)δ(y)δ(z − z 0). (2)

Vector H is found from ratio H = rotA, where A —
vector potential meeting equation

1A = −4π

c
j, (3)

with the condition of Coulomb calibration divA = 0. Equa-

tion (3) is decomposed into three Poisson equations for

projections of vector potential Ax , Ay , Az , similar to equation

for scalar electric potential of the dipole in the configuration

shown in fig. 1, a. The method to solve this and similar

tasks is detailed in [14]. Let us break vector functions A

and M into 3D Fourier integrals by components of a 2D

wave vector k = (kx , ky) and by frequency ω:

A(r, t) =

∫

d2k
(2π)2

dω
2π

Akω(z ) exp
(

i(kx x + ky y − ωt)
)

,

(4)

M(r, t) =

∫

d2k
(2π)2

dω
2π

Mkω(z ) exp
(

i(kx x + ky y − ωt)
)

,

(5)

where r = (ρ, z ) = (x , y, z ). Using (2), we get Mkω using

inverted Fourier transform

Mkω(z ) =

∫

dxdydt M(r, t) exp
(

i(kx x + ky y − ωt)
)

= 2πmδ(ω − kxV )δ(z − z 0). (6)

Similarly to (6) with account of link j = c rotM, for Fourier-

transformat projections current density jkω(z ) we will have

jkω,x (z ) = 2πcδ(ω−kxV )
[

iky mz δ(z −z 0) − myδ
′(z −z 0)

]

,

(7)

jkω,y (z ) = 2πcδ(ω−kxV )
[

mxδ
′(z −z 0)−ikx mz δ(z −z 0)

]

,

(8)

jkω,z (z )=2πcδ(ω−kxV )
[

ikx myδ(z −z 0)−iky mxδ(z −z 0)
]

.

(9)

Going in (3) to Fourier components, we will get the

system of equations

(

i = x , y, z , k =
√

k2
x + k2

y

)

,

(

d2

dz 2
− k2

)

Akω,i(z ) = −4π

c
jkω,i (z ). (10)

It is convenient to find solution to equations (10) by parts,

considering separately the cases with different orientation

of dipole torque vector: m = (0, 0, mz ), m = (mx , 0, 0, )
and m = (0, my , 0), and then summing the produced

solutions. In case m = (0, 0, mz ), for example, suggesting

Akω,z (z ) = 0, equations (10) are reduced to the system of

two equations

(

d2

dz 2
− k2

)

Akω,x(z ) = −i8π2ky mz δ(ω − kxV )δ(z − z 0),

(11)
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(

d2

dz 2
− k2

)

Akω,y (z ) = i8π2kx mz δ(ω − kxV )δ(z − z 0).

(12)
The general solution to equations (11), (12) in areas z > 0

and z ≤ 0 include four integration constants. One of

the terms to determine such constants is calibration ratio

divA = 0, and three other proceed from terms of continuity

of tangential projections of magnetic field Hx , Hy and

normal projection of magnetic induction B z at boundary

z = 0. The procedure to solve equations (11), (12) is

described in Annex. As a result, the following equations

are produced for Fourier components of vector potential in

vacuum area z > 0, necessary to calculate force (1):

Akω,x (z ) = i
(2π)2

k
ky mz

[

µ − 1

µ + 1
exp

(

−k(z + z 0)
)

+ exp
(

−k|z − z 0|
)

]

δ(ω − kxV ), (13)

Akω,y (z ) = −i
(2π)2

k
kx mz

[

µ − 1

µ + 1
exp

(

−k(z + z 0)
)

+ exp
(

−k|z − z 0|
)

]

δ(ω − kxV ). (14)

In formulae (13) and (14) the first terms in brackets

comply with induced field of the surface, and second

ones — the own field of the particle in vacuum. Similarly

solutions to equations (10) are found for other projections

of dipole torque (see Annex). In the general case

m = (mx , my , mz ), after summing the corresponding in-

duced Fourier components of the vector potential described

by equations (13), (14) and (P8)−(P11), we will have

Akω,x (z ) =
(2π)2

k

(

µ − 1

µ + 1

)

(imz ky − my k)

× exp
(

−k(z + z 0)
)

δ(ω − kxV ), (15)

Akω,y (z ) =
(2π)2

k

(

µ − 1

µ + 1

)

(−imz kx + mx k)

× exp
(

−k(z + z 0)
)

δ(ω − kxV ), (16)

Akω,z (z ) =
(2π)2

k

(

µ − 1

µ + 1

)

(imx ky − imy kx)

× exp
(

−k(z + z 0)
)

δ(ω − kxV ). (17)

Function 1(ω) = (µ(ω) − 1)/(µ(ω + 1)) in (15)−(17) is

similar to the surface dielectric response function in interac-

tion with an electric dipole d (as well as with charges and

particles with other multipole torques) with replacement

of µ(ω) → ε(ω) [14]. Substituting (15)−(17) into (4),
we obtain value of the magnetic field, H = rotA. In this

case, in integral equations for vector projections H there

are derivatives on the coordinates x , y, z , effect of which

is reduced to multiplication of the corresponding Fourier

components by ikx , iky and −k . Resulting equations for

Fourier-transformant projections of induced magnetic field

have the form

Hkω,x (z ) = kAkω,y (z ) + iky Akω,z (z )

= A(mx k2
x + my kx ky − imz kx k), (18)

Hkω,y (z ) = −ikx Akω,z (z ) − kAkω,x (z )

= A(my k2
y + mx kx ky − imz ky k), (19)

Hkω,z (z ) = ikx Akω,y (z ) − iky Akω,x (z )

= A(mz k2 + imx kx k + imy ky k), (20)

where

A =
(2π)2

k
1(ω) exp

(

−k(z + z 0)
)

δ(ω − kxV ). (21)

Substituting (18)−(20) into Fourier expansion for H and

then into (1), after some simple transformations formula (1)
takes the form

F=
1

2π
grad

∫

d2kk−1(m2
x k2

x +m2
yk2

y +m2
z k2+2mx my kx ky )

× 1(kxV ) exp
(

−k(z + z 0)
)

exp
(

ikx(x −Vt) + iky y
)

,

x = Vt, y = 0, z = z 0. (22)

Note that to find different projections of vector F in (22),
first differentiation is carried out by coordinates x , y, z ,
and then coordinates of particle x = Vt, y = 0, z = z 0

are substituted. As a result, given analytical properties of

function 1(ω) (parity of the real part and non-parity of the

imaginary part), from (22) it follows that

Fz = − 1

2π

+∞
∫

−∞

dkx

+∞
∫

−∞

dky1
′(kxV )

(

m2
x k2

x + m2
y k2

y + m2
z k2

)

× exp(−2kz 0), (23)

Fx = − 1

2π

+∞
∫

−∞

dkx

+∞
∫

−∞

dky1
′′(kxV )kx k−1

×
(

m2
x k2

x + m2
y k2

y + m2
z k2

)

exp(−2kz 0), (24)

Fy = −mx my

π

+∞
∫

−∞

dkx

+∞
∫

−∞

dky1
′′(kxV )kx k2

y k−1 exp(−2kz 0).

(25)
Formulae (23) and (24) fully coincide with simi-

lar equations for interaction force of a moving electric

dipole d with dielectric surface (when substituting m → d,

µ(ω) → ε(ω)). Besides, (23) describes force of dipole

attraction to surface, and (24) — dissipative (braking) force.
In linear decomposition by speed (24) reduces to friction

force of viscous nature, proportionate to speed Fx ∝ V .

Further we will always call dissipative force Fx the friction
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force. The force Fy component has no electric analog and

is also proportional to speed in linear decomposition by V ,

but for its existence the difference from zero in projections

of mx and my of magnetic torque is necessary. As a

result, as it follows from (23)−(25), directions of all three

components of the magnetic force are opposite to directions

of the coordinate axes in fig. 1 (with positive values of the

integrals).

2. Interaction of extended probe
with surface

Point dipole approximation loses force at particle sizes

comparable to the size of distance from the surface. How-

ever, the theory developed in Section 1, is easy to generalize

by dividing the volume of a uniformly magnetized particle

into elementary components 1Vn and using superposition

principle to find the resultant force (fig. 1, b). With this

modification, instead of equation (2), we have

M(x , y, z , t) =
∑

n

mnδ(x − xn −Vt)δ(y − yn)δ(z − z n),

(26)

where mn — magnetic torque, and xn, yn, z n — coordinates

of elementary volume 1Vn. Given that (26), for Fourier

component of magnetic polarization vector we will get

(cp. with (6))

Mkω(z ) = 2πδ(ω − kxV )
∑

n

mn exp(−ikρn)δ(z − z n),

(27)

where ρ = (xn, yn) — 2D vector of coordinates of volume

1Vn in plane (x , y). Further procedure to calculate induced

magnetic field fully repeats Section 1. In particular,

formula (18) for Fourier transformant Hkω,x (z ) takes the

form of

Hkω,x (z ) =
(2π)2

k
1(ω) exp

(

−k(z + z 0)
)

δ(ω − kxV )

×
∑

n

(mx ,nk2
x + my,nkx ky − imz ,nkx k)

× exp
(

−k(z + z 0)
)

exp(−ikρn) (28)

and similarly for other components (com-

pare to (18)−(20)). In (28) designations of projections

m j,n of vector mn are used at j = x , y, z . With account

of (28) and similar equations for other Fourier components

of magnetic field, formulae for projections of force, similar

to (23)−(25), take the form of

Fz = − 1

2π

∑

n

∑

n′

+∞
∫

−∞

dkx

+∞
∫

−∞

dky1
′(kxV )

× exp
(

−k(z n + z n′)
)

exp
(

−k(ρn − ρn′)
)

× (mx ,nmx ,n′k
2
x + my,nmy,n′k

2
y + mz ,nmz ,n′k

2), (29)

Fx = − 1

2π

∑

n

∑

n′

+∞
∫

−∞

dkx

+∞
∫

−∞

dky1
′′(kxV )kx k−1

× exp
(

−k(z n + z n′)
)

exp
(

−k(ρn − ρn′)
)

× (mx ,nmx ,n′k
2
x + my,nmy,n′k

2
y + mz ,nmz ,n′k

2), (30)

Fy = − 1

π

∑

n

∑

n′

mx ,nmy,n

+∞
∫

−∞

dkx

+∞
∫

−∞

dky1
′′(kxV )kx k2

y k−1

× exp
(

−k(z n + z n′)
)

exp
(

−k(ρn − ρn′)
)

. (31)

In practically critical cases for probes having cylindrical

symmetry, equations (29)−(31) may be additionally simpli-

fied. Let us consider the two most critical ones.

2.1. Probe in the form of paraboloid of rotation

Let us consider homogeneously magnetized probe with

vertical direction of magnetization vector in the entire

volume (M0IIz ), having the form of paraboloid of rotation:

z = z 0 + ρ2/2R, z 0 ≤ z < z 0 + H , H ≫ R (fig. 1, b). Writ-

ing mn and mn′ in the form of

mn = M01Vn = M0ρdρdz dφ,

mn′ = M01Vn′ = M0ρ
′dρ′dz ′dφ′

and changing in (30) from summation by n and n′ to

integrals by probe volume, after integration by angles φ, φ′

and by coordinates ρ, ρ′, we will get

Fx = −2πM2
0

∫

dkx dkyk−1kx1
′′(kxV )

H+z 0
∫

z 0

dz
√

2R(z −z 0)

× J1

(

k
√

2R(z − z 0)
)

exp(−kz )

H+z 0
∫

z 0

dz ′
√

2R(z ′ − z 0)

× J1

(

k
√

2R(z ′ − z 0)
)

exp(−kz ′).
(32)

When formula (32) is made, determination of Bessel

function is taken into account,

J0(x) =
1

2π

2π
∫

0

exp(±ix cos y)dy (33)

as well as integral ratio
∫

dx x J0(x) = xJ1(x) [15]. Just sim-

ilarly (29) is transformed as well. Lateral force (31) for such
orientation of magnetization vector is unavailable. Since

internal integrals in (32) are identical, after replacement

of variables u = k
√

2R(z − z 0) and u′ = k
√

2R(z ′ − z 0),
taking into account analytical properties of function 1(kxV ),
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formula (32) takes the form of

Fx = −2πR−2M2
0

+∞
∫

−∞

dkx

+∞
∫

−∞

dkykx k−71′′(kxV )

× exp(−2kz 0) f 1(2kR,
√

H/2R)2, (34)

where function f 1(x , y) is determined by equation

f 1(x , y) =

xy
∫

0

du u2J1(u) exp(−u2/x). (35)

Similarly for Fz we will have

Fz = −2πR−2M2
0

+∞
∫

−∞

dkx

+∞
∫

−∞

dkyk−61′(kxV )

× exp(−2kz 0) f 1(2kR,
√

H/2R)2. (36)

For practical use of these common results it is necessary

to use specific equations for magnetic response function

1(ω). Standard approximation for magnetic permeabil-

ity µ(ω) is [5]

µ(ω) = 1 +
µs − 1

1− iωτ − (ω/ω0)2
, (37)

where τ and ω0 — time of relaxation and frequency of fer-

romagnetic resonance, µs = µ(0). Typical values ω0 make

109−1010 s−1. At frequencies ω ≪ ω0 a resonant member

in denominator (37) may be omitted. Then, taking into ac-

couhnt (37), equation for 1(ω) =
(

µ(ω) − 1
)

/
(

µ(ω) + 1
)

takes the form of

1(ω) =
µ2

s − 1

(µs + 1)2 + 4ω2τ 2
+ i

2ωτ (µs − 1)

(µs + 1)2 + 4ω2τ 2
. (38)

Substituting (38) in (34), (36), after transfer to polar

coordinates for wave vector (kx , ky ) and integration by

angles with account of tabular integral

2π
∫

0

dφ cos2 φ/(1 + x2 cos2 φ) = 2πx−2
(

1− (1 + x2)−1/2
)

,

we will get

Fx = −32π2 (µs − 1)

(µs + 1)
M2

0R
2 1

a

∞
∫

0

dtt−6

× e−pt
(

1− (1 + a2t2)−1/2
)

f 1(t, q)2, (39)

Fz = −64π2 (µs − 1)

(µs + 1)
M2

0R
2

∞
∫

0

dtt−5

× e−pt(1 + a2t2)−1/2 f 1(t, q)2, (40)

where a = 2V τ /R(µs + 1), p = z 0/R, q =
√
2H/R. At

a ≪ 1 equations (39) and (40) reduce to

Fx = −32π2 (µs − 1)

(µs + 1)2
M2

0RV τ

∞
∫

0

dtt−4e−pt f 1(t, q)2,

(41)

Fz = −64π2 (µs − 1)

(µs + 1)
M2

s R2

[ ∞
∫

0

dt t−5e−pt f 1(t, q)2

− a2

2

∞
∫

0

dt t−3e−pt f 1(t, q)2

]

. (42)

At a ≪ 1, it is evident, the second term in (42) represents
only a small correction proportionate to squared speed. If

a parabolic probe is not continuous but is coated by a

magnetized layer of h thickness, and parameters R and H
characterize the coated probe, then formulae (38)−(42)
may easily be modified by subtracting similar equations

with modified parameters R → R−h, z 0 → z 0 + h from the

right-hand parts.

2.2. Probe in the form of sphere

For a spherical probe with radius R and surface equation

(z − R − z 0)
2 + ρ2 = R2 whose center is at distance R + z 0

from the sample surface, as a result of calculations similar

to the previous case we will get

Fx = −16π2 (µs − 1)

(µs + 1)
M2

s R2a−1

∞
∫

0

dt
(

1− (1 + a2t2)−1/2
)

× exp
(

−2t(1 + p)
)

f 2(t)
2, (43)

Fz = −16π2 (µs − 1)

(µs + 1)
M2

s R2

∞
∫

0

dtt(1 + a2t2)−1/2

× exp
(

−2t(1 + p)
)

f 2(t)
2, (44)

where still p = z 0/R, a = 2V τ /R(µs + 1) and

f 2(x) =

1
∫

0

dt t J1(xt) sinh
(

x
√

1− t2
)

. (45)

At a ≪ 1 respectively from (43), (44) it follows that

Fx =−16π2 (µs −1)

(µs +1)2
M2

s RV τ

∞
∫

0

dtt2 exp
(

−2t(1+p)
)

f 2(t)
2,

(46)

Fz = −16π2 (µs − 1)

(µs + 1)2
M2

s R2

[ ∞
∫

0

dtt exp
(

−2t(1+p)
)

f 2(t)
2

−a2

2

∞
∫

0

dtt3 exp
(

−2t(1 + p)
)

f 2(t)
2

]

. (47)
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Figure 2. Dependence of reduced friction force on parameter a = 2V τ /(µs + 1)R in case of a parabolic (a) and a spherical (b) probes.

Sequence of curves from top to bottom complies with reduced distances p = z 0/R = 0.1, 0.5, 1 in case of (a) and p = 0.1, 0.2, 0.4 in

case of (b). q = 5 in case of (a).
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Figure 3. Reduced gravity force of a parabolic (a) and a spherical (b) probes to surface. Parameters are same as in fig. 2.

For a sphere coated by a magnetic layer with thickness h,
subtract from right-hand parts (43) and (44) similar equa-

tions taken at R → R−h, z 0 → z 0 + h. For magnetic perme-

ability of general type (37), common equations (34), (36)
remain in force.

3. Numerical results and discussion

Let us first briefly consider influence of probe motion at

value of forces Fx , Fz near resonance ω = ω0 in dependence

of MP (37). In accordance with (34) and (36), resonance
may manifest itself, if kV = ω0. Value of wave vector k
takes characteristic values k = 1/2z 0, therefore the corre-

sponding speed of the probe will make Vres ≈ 2ω0z 0. Then

at typical distance of the probe from the surface of 10 nm

and frequency of ferromagnetic resonance 109−1011 s−1

we will get speed estimate Vres = 20−103 m/s. At the

same time, even at amplitude of vibrations A = 1µm,

quite significant for dynamic MFM mode, and typical

frequency of mechanical oscillations f = 300 kHz, the

value of maximum speed of the probe is much smaller:

Vmax = 2π f A ≈ 1m/s ≪ Vres . Therefore, for MFM the

case of MP relaxation dependence of type (38) is more

realistic, when formulae (39)−(47) are fair. Such type of

dispersion, for example, have ferrites Zn1−xNixFe2O4 [16].
After normalization to value F0 = 32π2 µs−1

µs +1
M2

0R2 depen-

dences f x = Fx/F0 and f z = Fz /F0 will be the functions

of parameters p, q, a in case of a parabolic probe and

parameters p, a in case of a spherical one. Let us note that

at µs ≫ 1, F = 10 nm and M0 = 1740G (iron saturation

magnetization [17]) value F0 will be 9.13 nN.

Fig. 2, 3 compare dependences f x , f z on parameter

a = 2V τ /(µs + 1)R at several values of reduced distance

p = z 0/R for a parabolic (fig. 2, a, 3, a) and spherical
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Figure 4. Dependence of MFM oscillator merit in case of a parabolic (a) and spherical (b) probes on relaxation time of sample

magnetization. Sequence of curves from top to bottom complies with values of static magnetic permeability µs = 3, 10, 100. In case (a)
values p = z 0/R = 0.5, q = 5 are adopted; in case (b) p = z 0/R = 0.2.
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Figure 5. Dependence of MFM oscillator merit on reduced apex distance of a parabolic (a) and spherical (b) probes on surface.

Sequence of curves from top to bottom complies with relaxation time of magnetization 0.01, 0.1 and 1 µs. In both cases µs = 3 and q = 5

in case (a).

(fig. 2, b, 3, b) probes. Availability of extremum in depen-

dences of friction force f s on a (fig. 2) further leads to

the non-monotone dependences of MFM oscillator merit Q,

which is directly measured in the experiments. At a ≪ 1

we can use standard definition of merit Q = 2π f /γ , where

γ = Fx/meffV , meff — effective mass of the oscillator, and

the friction force is defined by formulae (41) and (46).
For a rectangular cantilever with a magnetic probe at

the end, the value meff and inherent resonant frequency

of the first harmonic of oscillations are meff ≈ 0.24lwhρ
and f = (3.516/2π)h/l2

√
E/12ρ [9], where l, w, h —

length, width and thickness of rectangular beam, and ρ

and E — density and Young’s modulus of material.

Therefore, taking into account (41), for a cantilever with

a parabolic probe at the end we will get

Q = 0.77 · 10−3 h
l
w

R
(µs + 1)2

(µs − 1)

√
Eρ

M2
0τ

h
ϕ1(p, q)

, (48)

where functionϕ1(p, q) = Fx/F0 complies with an inte-

gral multiplier in (41). In all calculations we further

use the following values of silicon cantilever parame-

ters: l = 100µm, w = 20µm, h = 5µm, E = 150GPa

and ρ = 2.3 g/cm3, M0 = 1740G. As it follows from (48),
merit Q monotonously decreases as relaxation time τ

increases. For a spherical probe the numerical coefficient

in (48) should be doubled , and instead of ϕ1(p, q)
substitute a similar integral multiplier from (46).

As parameter a increases, friction forces (39)
and (43) non-linearly depend on probe speed, there-

fore, to define merit, we use ratio Q = E0/1E , where

E0 = 2π2 f 2A2meff — energy of oscillator at harmonic oscil-

lations with amplitude A (in calculations we will further use

value A = 50 nm) and frequency f , and 1E =
1/ f
∫

0

FxV dt —

energy of dissipation for the period. In case of a parabolic
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√

H/2R of a parabolic probe (a) and ratio f x/ f z of friction force to

gravity force (b) at z 0/R = 0.5. Sequence of curves from top to bottom corresponds to parameters a = 0.1, 0.5, 2.

probe with the specified MFM cantilever shape we will get

Q = 0.98 · 10−4

(

h
l

)3 A
R

w

R

(

µs + 1

µs − 1

)

E

M2
0

1

ϕ2(p, q, a1)
,

(49)

ϕ2(p, q, a1) =

1
∫

0

dyy(1− y2)−1/2 f x (p, q, a1y), (50)

where a1 = 4πA f τ /(µs + 1)R, and f x (p, q, a1)y =
= Fx/F0 — normalized friction force in (39), depending

on parameters a ≡ a1y, p, q. For a spherical probe

the numerical coefficient in (49) must be doubled, and

instead of ϕ2(p, q, a1) take a similar function produced

when substituting in (50) the normalized friction force

corresponding to (43). Value Q in (49) is now a function

of τ /(µs + 1) and has a more complex form.

Fig. 4 shows dependences of Q on τ for two types of

probes at µs = 3, 10, 100. Increased merit Q with growth

of τ in these graphs is caused by reduced friction force (39)
and (43) at a ≫ 1 (fig. 2). Fig. 5 also provides dependences

of Q on reduced distance p = z 0/R.
Dependences of friction and gravity forces on distance are

monotonously decreasing. This follows from comparison

of curves in fig. 2, 3, corresponding to different values p,
and from fig. 5.

It is interesting to note that at small distances of probes

from surface (p = z 0/R = 0.1) absolute values of gravity

forces for a spherical probe are by an order less than for a

parabolic one (with the same value R), and values of friction

forces are close to each other (compare fig. 2 and 3). In

addition, from fig. 2 it follows that for a spherical probe the

friction forces may several times exceed the gravity forces

in the field of dependence maximum f x(a). For a parabolic
probe the reverse ratio is always true.

Fig. 6 provides dependences f x and f x/ f z on parameter

q = (H/2R)1/2, which characterizes length of a parabolic

probe. From fig. 6 it follows that at q > 5 increased

length of the probe weakly influences force value f x , but

at the same time it is significantly decreased compared to

gravity force f z (fig. 6, b). Use of parabolic probes is

probably more appropriate for sufficiently large distances

of the probe from the surface (z 0 ≥ R) due to slower

decrease in forces of interaction with distance, which

may be important when scanning surfaces with strongly

developed topography. On the other hand, as it follows

from fig. 4, 5, the merit behavior for probes of different

types is different for different ratios of parameters τ and µs ,

so the choice of probe shape must be determined by the

specific characteristics of the MP surface of the samples.

For magnetically coated probes, the magnitude of f x

and f z forces is slightly reduced by module compared

to probes made of homogeneous material. For example,

for a solid vertically magnetized spherical probe with a

radius of 20 nm and a probe with a radius of 15 nm having

a magnetic shell with a thickness of 5 nm, located at a

minimum distance of 10 nm from the surface, the difference

in the gravity forces in the static case will be 16%.

The case of vertical motion of the probe with re-

spect to the sample requires separate consideration, but

in view of the close analogy with the case of electric

dipole motion [14], we can expect that the numerical

coefficients in the formulae for friction forces will be

approximately two times higher.

Conclusion

Integral equations for the interaction force of a moving

magnetized MFM probe with the surface of a nanostruc-

tured magnetic material with a general frequency depen-

dence of magnetic permeability have been obtained. The

cases of a small dipole particle and extended probes in

the form of a paraboloid of rotation and a sphere have

2 Technical Physics, 2022, Vol. 67, No. 5
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been considered. Numerical calculations of the gravity and

friction forces of the probe during nonrelativistic motion

parallel to the surface for MP of relaxation type have been

performed. The values of gravity and friction forces are of

the same order, and in the case of a spherical probe the

friction force can exceed the gravity force several times for

some values of parameters.

Coefficients of merit of MFM oscillator in dynamic mode

have been calculated. It is shown that merit dependence

on the sample magnetic relaxation time has a characteristic

minimum, the features of which depend on the probe

shape and the value of the static MP of the sample. The

results of the paper may be used for the development of a

new method to study the frequency dispersion of magnetic

permeability of materials using MFM.
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Appendix

In accordance with the general method to solve differen-

tial equations of type (11), (12), it is necessary to find the

sum of solutions to the corresponding homogeneous equa-

tions and partial solutions of inhomogeneous ones. In areas

z > 0 and z ≤ 0 the solution to a homogeneous equation

(d2/dz 2−k2)y(z ) = 0 are functions y(z ) = C1 exp(−kz )
and y(z ) = C2 exp(kz ), where C1 and C2 — random

constants. Partial solution of a inhomogeneous equation

(d2/dz 2−k2)y(z ) = f (z ) (where f (z ) — known function)

is found by fold
+∞
∫

−∞

G(z , z ′) f (z ′)dz ′ of Green’s function

G(z , z ′) with f (z ). Green’s function G(z , z ′) is a solution

to equation

(d2/dz 2 − k2)G(z , z ′) = δ(z − z ′) (A1)

in the field −∞ < z < ∞ and looks like

G(z , z ′) = − 1

2k
exp

(

−k|z − z ′|
)

. (A2)

Partial solutions to equations (11), (12) are clearly found

by simple multiplication (A2) by corresponding coefficients

in the right-hand part of these equations. Given that,

solution to equations (11) and (12) is written as

Ax =























A1 exp(−kz ) + i
(2π)2

k
ky mz δ(ω − kxV )

× exp
(

−k|z − z 0|
)

, z > 0,

B1 exp(kz ), z ≤ 0,

(A3)

Ay =























A2 exp(−kz ) − i
(2π)2

k
ky mz δ(ω − kxV )

× exp
(

−k|z − z 0|
)

, z > 0,

B2 exp(kz ), z ≤ 0.

(A4)

In equations (A3), (A4) indices k, ω of Fourier compo-

nents of vector potential Ax , Ay are omitted for simplicity. It

should be noted that Fourier components of induced vector

potential in the field z > 0 in (A3) and (A4) are matched

with terms proportionate to A1, A2. Since in the considered

case Az = 0, the condition of calibration divA = 0 results

in ratios ikx A1 + iky A2 = 0 and ikx B1 + iky B2 = 0, where

A2 = −kx

ky
A1, B2 = −kx

ky
B1. (A5)

With account of link H = rotA the conditions of con-

tinuity of intensity components Hx , Hy , and B z in mag-

netic field induction at the boundary of z = 0 result in

the requirement of continuity of values ∂Ay/∂z , ∂Ax/∂z
and µ(∂Ay/∂x−∂Ax/∂y). Taking into account these con-

ditions and (A3)−(A5), we will get equations (13), (14)
for Fourier components of induced vector potential. For co-

efficients B1, B2 in (A3) and (A4) we will accordingly have

B1 = −A1 + i
(2π)2

k
ky mz exp(−kz 0), (A6)

B2 = A1

kx

ky
− i

(2π)2

k
kx mz exp(−kz 0), (A7)

but they are not required further, since to calculate force (1),
only vector potential in the field z > 0 is used.

When calculating contributions to vector potential from

components mx , my of magnetic torque of the particle,

we shall note that derivatives δ′(z−z ′), which are present

in (7), (8), may be replaced for kδ(z−z ′), after that the

equations for components of vector potential become fully

analogous to equations (11), (12). As a result at mx 6= 0,

my = mz = 0 and Akω,x = 0 for other Fourier components

of vector potential we will get

Akω,y (z ) = (2π)2mx

[

µ − 1

µ + 1
exp

(

−k(z + z 0)
)

+ exp
(

−k|z − z 0|
)

]

δ(ω − kxV ), (A8)

Akω,z (z ) = i
(2π)2

k
ky mx

[

µ − 1

µ + 1
exp

(

−k(z + z 0)
)

− exp
(

−k|z − z 0|
)

]

δ(ω − kxV ). (A9)

In case of my 6= 0, mx = mz = 0 and Akω,y = 0 accord-

ingly we will have

Akω,x(z ) = −(2π)2my

[

µ − 1

µ + 1
exp

(

−k(z + z 0)
)

+ exp
(

−k|z − z 0|
)

]

δ(ω − kxV ), (A10)

Akω,z (z ) = −i
(2π)2

k
ky mx

[

µ − 1

µ + 1
exp

(

−k(z + z 0)
)

− exp
(

−k|z − z 0|
)

]

δ(ω − kxV ). (A11)
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