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Introduction

The representation of actual scatterer by spheroids is

an approach widely used in various fields of science:

for example, in atmospheric optics [1–3], astronomy [4],
medicine [5], nanooptics [6], laboratory analysis [7], etc.
The spheroidal model is especially often used in modern

astrophysics due to the lack of information about the shape

of non-spherical cosmic dust particles [8–12].

The optical properties of spheroids can be calculated

by different methods. It is most natural to use the

method of variables separation in spheroidal coordinates

associated with the surface of the particle, i.e. expand the

fields in the corresponding spheroidal basis [13,14]. One

has to pay for naturalness by the difficulty of calculating

spheroidal functions and the complexity of the equations.

A simpler approach is to use the expansion of fields

in a spherical basis and then the method of T -matrices

[15]. In this case, for an ensemble of spheroids, the

averaging over orientations can be done analytically. The

disadvantage of the approach is that the computational

problems for spheroids increase rapidly with increasing

diffraction parameter, ratio of semiaxes, or refractive index.

In particular, in astrophysical applications the first one and

sometimes the second one [16,17] are critical, while in

microwave experiments — the third one [18]. In addition

to those listed above, to calculate the optical properties

of spheroids one can apply universal methods developed

for particles of arbitrary shape and structure (see, for

example, the review in [19]). However, the range of

applicability of these methods is noticeably narrower than

the range of applicability of separation of variables and T -
matrices [20], and besides, universal methods are relatively

slow in calculations.

There are two widely known computer programs for

calculating light scattering by spheroids by the separation

of variable method in spheroidal coordinates: the Asano

& Yamamoto [21] code and the Voshchinnikov and Fara-

fonov [14] code. In the first one, the standard basis was

used1, in the second one — the original non-orthogonal,

which was found to be more computationally efficient [14].
Both programs are over 30 years old. During this time, new,

more stable algorithms for calculating spheroidal functions

appeared [22–24] and the practical significance of the

spherical T -matrix [25] became clear. In this connection,

the question arises about the calculation of the spheroidal

T -matrix and its transformation to a spherical one.

In this article, we consider the axisymmetric problem

of light scattering by a spheroid, which is a representative

part of the complete problem, and calculate the T -matrix

for it with a spheroidal basis associated with the particle

surface. Then we find a way to transform this spheroidal

T -matrix to a spherical one, which arises when using the

same scalar potentials. The next step is to discuss the

transformation of a spherical T matrix associated with a

non-orthogonal spherical basis to a T matrix defined for

a standard orthogonal spherical basis. The relations found

between the T -matrices are used for numerical calculations

of the scattering and extinction cross sections for various

1 The basis used in [21] is a generalization of the standard spherical basis

that arises when using Debye potentials and underlies the Mie theory.
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spheroids, and the results obtained in this article are

discussed on their basis.

1. Axisymmetric light scattering problem
and its solution

1.1. Main equations

Propagation of electromagnetic waves is described by

Maxwell’s equations. In the case of light scattering by

a particle, harmonic fields E(r, ω), H(r, ω) are usually

considered, which depend on the point position [C(r) and

radiation frequency (ω) and satisfy the vector Helmholtz

equation [26]:
1E + k2E = 0, (1)

where k is the wave number in the medium, and do not

contradict the field transverse condition: ∇ · E = 0.

The boundary conditions in the light scattering problem

define the continuity of the tangential components of the

fields on the particle surface S [26]:

(

Ein + Esca
)

× n = Eint × n,
(

Hin + Hsca
)

× n

= Hint × n, r ∈ S, (2)

where Ein, Hin denote the known radiation field incident

on the particle, Esca, Hsca and Eint, H int — unknown

fields of scattered radiation and radiation inside the particle,

respectively, n — outward normal to S.
The above differential formulation of the problem is

equivalent to the integral formulation based on the Stratton-

Chu formulas and including boundary conditions [27]:

∇×
∫

S

n× Eint(r′)G(r, r′)ds ′

− 1

ikε
∇×∇×

∫

S

n×Hint(r′)G(r, r′)ds ′

=

{

−Ein(r), r ∈ D,

Esca(r), r ∈ R3 \ D̄,
(3)

where D — volume occupied by the particle,

G(r, r′) = exp(ik|r− r′|)/(4π|r − r′|) — Green’s function,

ε — dielectric capacity.

We use the integral formulation of the problem and con-

sider mainly axisymmetric fields, i.e. fields independent on

the azimuth angle. Such fields arise, for example, when the

incident radiation is the radiation of a dipole, the moment

of which is oriented parallel to the particle symmetry axis.

In addition, axisymmetric fields appear when the fields are

expanded in terms of spherical or spheroidal harmonics

as components with azimuthal number m equal to 0.

The problem of light scattering by axisymmetric particles

reduces for such components to a scalar problem, which is

often separated into a separate subproblem [14]. The latter

is convenient for numerical and theoretical analysis, since,

despite its relative simplicity, this subproblem contains all

the features of the problem being solved [28].

1.2. Solution method and T-matrix

We use an approach to solving the light scattering

problem based on the expansion of fields in terms of

a vector basis and determination of unknown expansion

coefficients by substituting the expansions into the boundary

conditions (for more details see [27]).
As is known, the Helmholtz equation (1) has the

following solutions, suitable for representing transverse

electromagnetic fields [26]:

Ma = ∇× (9a), Na =
1

k
∇×Ma =

1

k
∇×∇× (9a),

(4)
where a can be a constant vector, for example, the ort of

the Cartesian coordinate system iz , or the radius vector r,

and the function 9 is the solution of the corresponding

scalar Helmholtz equation. We will use both spherical and

spheroidal coordinates (and, accordingly, functions).
In the spherical system (r, θ, ϕ), the solutions of the

scalar Helmholtz equation have the form (i = 1, 3)

9(i)
mn(r, θ, ϕ) =

1√
2π

z (i)
n (kr) P̄m

n (cos θ) eimϕ, (5)

where z (1)
n (kr) — the spherical Bessel functions jn(kr),

and z (3)
n (kr) — the spherical Hankel functions of

the 1st kind h(1)
n (kr), P̄m

n (cos θ) — normalized as-

sociated Legendre functions with normalization factor

Ñnm = [2(n + m)!/(2n + 1)/(n − m)!]1/2.
In the spheroidal system (ξ, η, ϕ)

9(i)
mn(ξ, η, ϕ) =

1√
2π

R(i)
mn(c, ξ) S̄mn(c, η) e

imϕ, (6)

where R(i)
mn(c, ξ) — radial spheroidal functions of the i-th

kind (i = 1, 3), S̄mn(c, η) — normalized angular spheroidal

functions with normalization factor Nmn(c) (see details

in [29]), Nmn(0) = Ñmn, c = kd/2 and c = −ikd/2 for

prolate and oblate spheroidal coordinates, respectively, d —
focal length (for example, see [30] for details).
Trigonometric functions are often used instead of eimϕ

functions, and along with mn the third index σ is introduced,

equal to e or o depending on whether cosmϕ or sinmϕ is

used2. As a result, for example, for a basis including the

functions Ma and Na, the field expansion has the form

E =
∞
∑

m=0

∞
∑

n=m

(aσmnM
a
σmn + bσmnN

a
σmn). (7)

Since the light scattering problem is linear, this approach

to its solution naturally gives rise to the so-called T -
matrix — a matrix that relates the vectors containing the

2 Then, in relations similar to formulas (5), (6), the factor
√

2− δm0

appears, where δm0 — Kronecker symbol [14].
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scattered radiation expansion coefficients a sca
σmn, bsca

σmn and

incident radiation expansion coefficients a in
σmn, bin

σmn,

asca = Tain. (8)

The T matrix contains complete information about the

change in radiation during scattering and is useful when

considering randomly oriented particles, since it makes

it possible to analytically average the cross sections over

particle orientations [19].

1.3. Scalar potentials and their series expansion

In the considered approach to solving the light scattering

problem, instead of fields, their scalar potentials are often

used. There are several ways to select scalar potentials,

each of which has its own merits.

Debye potentials (Ve,Vm) are widely known. They are

used when considering light scattering by a sphere (Mie

theory [31]) and a spheroid [21,32] and are introduced by

the following relations, for example, for the TE mode:

E = ik0µ∇× (Vmr) + ∇×∇× (Ver), (9)

where k0 — wave number in vacuum, µ — magnetic

susceptibility of the medium. Expansion of these potentials

in a series in terms of solutions of the scalar Helmholtz

equation 9σmn has the form

Vm =

∞
∑

m=0

∞
∑

n=m

aσmn9σmn, Ve =

∞
∑

m=0

∞
∑

n=m

bσmn9σmn. (10)

It is important to note that the representation (9) with

expansions (10) are equivalent to the expansion of the

field (7) in the vector basis Mr,Nr with the same expansion

coefficients aσmn, bσmn . This remark also applies to other

potentials considered below.

A different set of potentials was used in the article [14],
where the Debye potential V and the z -component of the

Hertz vector U were used. In this case, for the TE mode

we have

E = ∇× (Umiz ) + ∇× (Vmr). (11)

The expansion of these potentials in the functions 9σmn

corresponds to the expansion of the fields in the non-

orthogonal basis Mz, Mr. It was proved that significant

advantages are achieved in this way3 when considering light

scattering by spheroids [14].
In addition, the original potentials p, q defined as fol-

lows [14,33] were also used for axisymmetric fields:

p = Eϕ cosϕ, q = Hϕ cosϕ, (12)

where ϕ — azimuth angle, Eϕ and Hϕ — ϕ-field com-

ponents. Since the fields E,H are axisymmetric and do

not depend on ϕ, and the dependence p, q on ϕ is given

3 This is due to the fact that the functions used to represent fields in the

problem of light scattering by a sphere (Mr) and an infinite cylinder (Mz)
are combined.

explicitly as a cosine, the expansions of the potentials have

the form

p =
∞
∑

n=1

an9e1n, q =
∞
∑

n=1

bn9e1n. (13)

Thus, it is obvious that both different coordinate sys-

tems and different potentials lead to different vector basis

functions used in the expansion of fields and, accordingly,

to different coefficients of their expansions and T -matrices.

Therefore, the question arises about the connection between

such matrices, which we consider below, starting with the

definition of the T -matrix in the case of axisymmetric fields,

spheroidal coordinates, and potentials p, q.

1.4. Solution of the axisymmetric problem

We will solve the problem in spheroidal coordinates,

following, if possible, the article [34]. Let us substitute the

field potentials p into the integral equations (3) and after

some simple transformations we obtain the relations

∫

S

{

pint(r′)
∂G(r, r′)

∂n′
− G(r, r′)

∂

∂n′
pint(r′)

}

ds ′

=

{

−pin(r), r ∈ D,

psca(r), r ∈ R3 \ D̄.
(14)

First, we will solve the scalar integral equation for the

potential of the internal radiation field pint in the region

D, and then the potential of the scattered radiation field psca

will be determined based on the known potential pint. The

equations solution for the potential q will be similar [27].

Let us represent all potentials in the equation (14) in

the form of expansions (13). For the scattered field

potentials, we use the coefficients a sca
l , bsca

l and the functions

9
(3)
e1n(c1, r), for the inner field — a int

l , bint
l and 9

(1)
e1n(c2, r)

and incident radiation — a in
l , bin

l and 9
(1)
e1n(c1, r), where

c i = k i d/2 and k1 and k2 — the wave numbers outside and

inside the particle, respectively. In the case of a TE-type

plane wave, the coefficients are known [27]

a in
l = −2i l S̄1l(c1, cosα), bin

l = 0, (15)

where α – the angle between the incident wave propagation

direction and the spheroid symmetry axis. It follows from

relations (15) that for such a wave the potential p is nonzero.

For a TM wave, we have [27]

a in
l = 0, bin

l = 2i l S̄1l(c1, cosα), (16)

and only the potential q is nonzero.

Algebraization of the integral equations (14) after substi-

tuting the expansions of the p potentials and the Green’s

function (its expansion in terms of spheroidal functions can

be found in the monograph [29]) in them leads to 2 infinite
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systems of linear equations with respect to the unknown

expansion coefficients:

{

zin = −A31z
int,

zsca = A11z
int,

(17)

where vectors zin =
{

z in
l

}

∞

l=1
, zsca = {z sca

l }∞l=1
,

zint =
{

z int
l

}

∞

l=1
have components

z in
l = a in

l R(1)
1l (c1, ξ0), z sca

l = a sca
l R(3)

1l (c1, ξ0),

z int
l = a int

l R(1)
1l (c2, ξ0), (18)

diagonal matrices are equal to

Ri, j =
{

R(i)′
1l(c j, ξ0)/R(i)

1l (c j, ξ0)δnl

}

∞

1
,

W1 = −[R3,1 − R1,1]
−1

= {ic1(ξ
2
0 − f )R(1)

1l (c1, ξ0)R
(3)
1l (c1, ξ0)δnl}∞1 (19)

and, finally,

A31 = W1

{

R3,11
(1)
1,2 −

µ1

µ2
1

(1)
1,2R1,2 −

(

µ1

µ2
− 1

)

ξ0

ξ20 − f
1

(1)
1,2

}

,

A11 = W1

{

R1,11
(1)
1,2−

µ1

µ2
1

(1)
1,2R1,2−

(

µ1

µ2
− 1

)

ξ0

ξ20 − f
1

(1)
1,2

}

.

(20)
Here ξ0 is the value of the coordinate ξ on the spheroid

surface, f is equal to 1 for prolate particles and −1 for

oblate ones. Matrix elements 1
(1)
i, j =

{

δ
(1)
nl (c i , c j)

}

∞

n,l=0
are

integrals of the product of angular spheroidal functions and

can be represented as series

δ
(m)
nl (c i , c j) =

1
∫

−1

S̄mn(c i , η)S̄ml(c j, η)dη =

N−1
mn (c i)N

−1
ml (c j)

∞
∑′

r=0,1

dmn
r (c i)d

ml
r (c j)

2

2r +2m +1

(r + m)!

r !
,

(21)
where dmn

r — expansion coefficients of the angular

spheroidal function in terms of associated Legendre func-

tions [29]. For the same parameters (c i = c j), the matrix

1
(m)
i j coincides with the identity matrix.

Equations (17) imply that zsca = −A11A
−1
31 z

in, and as a

result we obtain the so-called
”
spheroidal“ (since expansions

in spheroidal functions are used) T -matrix for the poten-

tial p:
T s p

p = −R−1
3 A11A

−1
31 R1, (22)

where Ri = {R(i)
1n (c1, ξ0)δnl}∞n,l=m — diagonal matrices

(i = 1.3).

The numerical calculations will use the radiation ex-

tinction Cext and scattering Csca cross sections, which, for

example, for the TE mode are equal to [14]

Cext =
4π

k2
1

Re

∞
∑

l=1

i−la sca
l S̄1l(c1, cosα),

Csca =
2π

k2
1

∞
∑

l=1

|a sca
l |2. (23)

In case of the TM mode, the corresponding equations

for the potentials q are obtained based on the above

after replacing µ j → ε j , ε j → µ j and an → bn . Similar

relations hold for an oblate spheroid and the corresponding

coordinate system.

2. Transformation of T-matrices

It is natural to solve the problem of light scattering

by a spheroid in a spheroidal system associated with a

particle and, consequently, to obtain a spheroidal T -matrix.

However, T -matrices defined in the spherical system [19]
still have a number of useful properties. Therefore, we

first consider the transition from expansions in spheroidal

functions to expansions in spherical ones. Then we show

how spherical T -matrices change when the basis changes.

2.1. Transition from spheroidal to spherical
T-matrix

Relations between spheroidal and spherical functions,

which are convenient for solving this problem, were gen-

eralized in [35]. They look as follows ( j = 1, 3):

R( j)
mn(c, ξ)S̄nm(c, η) =

=

∞
∑

l=m

i l−n Nml(0)

Nmn(c)
dmn

l−m(c)z ( j)
l (kr)P̄m

l (cos θ), (24)

z ( j)
n (kr)P̄m

n (cos θ)

=

∞
∑

l=m

in−l Nmn(0)

Nml(c)
dml

n−m(c)R( j)
ml (c, ξ)S̄lm(c, η). (25)

Let us introduce vectors of wave spher-

ical ϒ
(i)
m = {9(i)

ml (r, θ, ϕ)}∞l=m and spheroidal

9(i)
m = {9(i)

ml (ξ, η, ϕ)}∞l=m functions. It follows from rela-

tions (24) and (25) that they are related by matrix relations

9
(i)
m = Dm(c)ϒ(i)

m , (26)

ϒ
(i)
m = D−1

m (c)9(i)
m = DT

m(c)9(i)
m , (27)

where the matrix Dm(c) = {Dm
nl(c)}∞n,l=m =

{

i l−ndmn
l−m(c)Nml(0)/Nmn(c)

}

∞

n,l=m
is used, and T means

transpose.

Based on the equality of scalar potentials in the spheroidal

and spherical coordinate systems and the properties of scalar
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products, we find a connection between the T -matrices

obtained in the spheroidal (T sp) and spherical (T s) bases:

T s = Dm(c)T spDT
m(c). (28)

The relation found does not depend on the form of

scalar potentials and, therefore, is applicable to any of them,

including all those considered in Sect. 1.3.

Note that earlier the transfer of a spheroidal T -matrix to a

spherical one was considered only in the article [36], where

a different, much more cumbersome approach was used.

2.2. Transition from potentials p, q to Debye

potentials

It is advisable to solve the axisymmetric problem for

a spheroidal particle using the corresponding spheroidal

system and involving the potentials p, q [14]. The T -
matrix obtained in this case is described in Sect. 1.4,

and its transfer to the case of the corresponding spherical

basis — in Sect. 2.1. Let us determine how the T -matrix

(T s
p,q) calculated as a result of such a transfer is related

to the spherical T -matrix obtained for the standard Debye

potentials Ve,Vm (T s
V,V ).

Let us consider the incident radiation. For the axisym-

metric part of the plane wave TE mode, we have the

expansion of the potential p according to formula (13) with

the following expansion coefficients4 and functions:

a in
n = −2inP̄1

n(cosα), (29)

9
(1)
e1n =

1√
π

jn(kr)P̄1
n(cos θ) cosϕ. (30)

On the other hand, the axisymmetric field EAS has expan-

sion (7), where the functions Mr
σmn,N

r
σmn should be applied

for Debye potentials. In this case, for the axisymmetric field,

all functions with m 6= 0 are not needed, and in addition, it is

obvious that Nr
σ 0n = 0 and ae00 = 0 [32]. We will consider

the azimuthal component of the field

EAS,ϕ =

∞
∑

n=1

f in
e0nMr

e0n,ϕ, (31)

where, according to [32] and without taking into account

Legendre functions normalization,

f in
e0n = −in (2n + 1)

n(n + 1)

dPn(cosα)

dα
, (32)

Mr
e0n,ϕ = − 1√

2π
jn(kr)

dPn(cos θ)

dθ
. (33)

Using the known relation

Pm
n (x) = (−1)m(1− x2)

m
2
dmPn(x)

dxm
, (34)

4 For example, by analogy with formula (15).

we pass to the normalized Legendre functions P̄m
n and

obtain

f in
e0n = −2in

√

n(n + 1)

2n + 1
P̄1

n(cosα) = hna in
n , (35)

Mr
e0n,ϕ =

√

2n + 1

πn(n +1)
jn(kr)P̄1

n(cos θ) =
1

hn
9

(1)
e1n

1

cosϕ
,

(36)
where hn =

√

n(n + 1)/(2n + 1).
Let us compare the expansions of p by formula (13)

with coefficients (29) and functions (30) and the expansions

of EAS,ϕ cosϕ by formulas (31), (35), (36). Obviously, for

the axisymmetric part of the incident plane wave, these

expansions coincide term-by-term, since the factor hn is in

the numerator and denominator. It is easy to understand that

a similar term-by-term coincidence must also take place for

the scattered field expansion. Then the transition between

the T -matrices obtained for the potential p (T s
p) and the

Debye potential Vm (T s
V ), is written as

T s
V = H−1T s

pH, (37)

where H = {hnδln}∞l,n=1 is a diagonal matrix. The relation-

ship between T -matrices for the potentials q and Ve looks

similar. Previously, the T -matrix and its transformations in

the case of applying the potentials p, q were not considered.

2.3. Transition from non-orthogonal to orthogonal

basis

When finding the non-axisymmetric parts of the fields in

spheroidal coordinates, it is preferable to use the basis Mz
σmn,

Mr
σmn associated with potentials U,V . Relation between

spherical T -matrices generated by a given non-orthogonal

basis and the standard orthogonal basis Mr
σmn,N

r
σmn related

to the Debye potentials has not been considered before.

Let us study a method for obtaining such a relation in the

special case of an axisymmetric problem.

We start with the expansion of the plane wave TE mode.

In case of applying the potentials U,V [14] we have

Ein =
∞
∑

m=0

∞
∑

n=m

a in
emnM

z
emn, (38)

and when using the Debye potentials Ve,Vm —

Ein =

∞
∑

m=0

∞
∑

n=m

(

f in
emnM

r
emn + g in

omnN
r
omn

)

. (39)

For the axisymmetric part of such a wave (m = 0, etc. —
see Sect. 1.4 for details), we obtain the following relation

based on the equations (38), (39)

Ein
AS =

∞
∑

n=0

a in
e0nM

z
e0n =

∞
∑

n=0

f in
e0nM

r
e0n, (40)
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where the coefficients are equal to [14,32]

a in
e0n = in−1 2(2n + 1)

sinα
Pn(cosα),

f in
e0n = in 2n + 1

n(n + 1)
sinα

dPn(cosα)

d cosα
. (41)

Relation (40) with coefficients (41) is valid for any values

of α. Let us integrate over this angle from 0 to π, having

previously multiplied by sinα Pn(cosα), and we obtain

Mz
e0n =

1

2n + 1

(

Mr
e0(n+1) + Mr

e0(n−1)

)

. (42)

It is easy to find that the functions Nz
e0n used in considering

the TM mode are similarly expressed in terms of Nr
e0(n+1)

and Nr
e0(n−1).

When using the normalized Legendre functions, we have

Mz
e0n =

1
√

(2n + 1)(2n + 3)
Mr

e0(n+1)

+
1

√

(2n − 1)(2n + 1)
Mr

e0(n−1) (43)

or in the matrix form

Mz = F TMr, (44)

where Mz = {Mz
e0n}∞n=1, M

r = {Mr
e0n}∞n=1 and the elements

of the symmetric two-diagonal matrix F are equal to

Fln = (δl,n+1 + δl,n−1)/
√

(2n + 1)(2l + 1).
Let us now consider the scattered radiation TE mode.

Let us compare the field expansions when using the Debye

potentials and the potentials U,V , and in the second case

we take into account the relation (44)

Esca
AS =

∞
∑

n=1

f sca
e0nM

r
e0n =

∞
∑

n=1

(a sca
e0nM

z
e0n + bsca

e0n M
r
e0n)

=

∞
∑

n=1

[

a sca
e0n

( ∞
∑

l=1

FlnM
r
e0l

)

+ bsca
e0nM

r
e0n

]

=

∞
∑

l=1

[ ∞
∑

n=1

(

Flna sca
e0n + bsca

e0n

)]

Mr
e0l . (45)

Based on the equations (40) and (45), we obtain, taking

into account relation (44), in matrix form

fin = F ain, fsca = F asca + bsca. (46)

When applying the potentials U,V in a spherical system,

we have the following relations (bin = 0):

asca = T s
UV,11 a

in, bsca = T s
UV,21 a

in, (47)

where T s
UV,i j — 4 blocks of the complete T -matrix

(i, j = 1, 2).

Finally, from equations (46) and (47) we obtain a relation

between T -matrices associated with non-orthogonal (T s
UV )

and orthogonal (T texts
VV ) bases:

T s
VV = (F T s

UV,11 + T s
UV,21)F

−1. (48)

In the same way, i.e. using the plane wave expansion, one

can obtain the connection between the functions Mz
σmn and

Mr
σmn in the general case m 6= 0 and then find a relation

similar to formula (48) between T -matrices associated

with non-orthogonal and orthogonal bases for the non-

axisymmetric fields.

Note that the transformation of T -matrices during transi-

tion from a non-orthogonal to an orthogonal spherical basis

and vice versa has never been studied before.

3. Results of numerical calculations
and their discussion

The main results of the work are the formu-

las (28), (37), (48), which are based on the rela-

tions (24), (25), (42). The first two of them were known

before, but they could not be fully tested for spheroidal

functions of the 3rd kind due to their not quite accurate

calculation in the original article [35], the third relation

is new. Therefore, first of all, in this article, we made

sure that all these three relations are correct by carrying

out numerical calculations with high accuracy both for the

azimuthal number m = 0 and for m > 0.

Relation (28), the first one found by us, relates the T -
matrices obtained for the spheroidal and spherical bases

generated by the same potentials. For a set of param-

eters, we calculated the spheroidal matrices T sp
p,q for the

potentials p, q using formulas from Sect. 1.4. Then, using

equation (28), we calculated the spherical matrices T s
p,q ,

and for the incident plane wave, using these T -matrices,

we found the expansion coefficients of the scattered field

a sca
mn, bsca

mn and then the extinction Cext and scattering Csca

cross sections. In this case, for spheroidal coordinates,

relations (23) were used, and for spherical coordinates,

similar expressions were used with S̄1l(c1, cosα) replaced

by P̄1
l (cosα). The same calculations were carried out

for the potentials U,V at m = 0 (matrix T sp
U,V , etc.).

Consideration of cross sections instead of T matrices is

more compact and focuses on the matrix elements that

are the most important for determining fields in the far

zone, in which light scattering programs are used in most

cases.

Figures 1, 2 show some of the results of our cal-

culations, namely, the scattering cross sections obtained

in double-precision calculations for prolate and oblate

spheroids with the semiaxes ratio a/b = 4, refractive index

m = 1.5 + 0.02i and diffraction parameter xv = 40, as

well as with m = 2.5 and xv = 10; the plane wave was

incident on the particles at an angle to their symmetry

axis α = 45◦ . Figure 1 illustrates the results of the trans-

formation
”
spheroidal→ spherical“ for T -matrices based on
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Figure 1. Convergence of Csca(N) scattering cross sections (to the value at N = 156) with increase in the number N of terms taken into

account in expansions for prolate (left panel) and oblate (right panel) spheroids in the axisymmetric problem.
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Figure 2. Same as Fig. 1, but for TM mode (left panel) and refractive index m = 2.5 (right panel).

the use of prolate (left panel) and oblate (right panel)

spheroidal functions. Figure 2 shows the results of this

transformation for another mode and a real refractive

index.

The most important conclusion that the above figures

allow us to make is that the transformation (28) makes

it possible to calculate the spherical T -matrix within the

values range of the problem parameters, in which the usual

method of T -matrices does not allow for this. In particular,

the most advanced algorithm SMARTIES of this method

gives a convergent solution for particles with a/b = 4 and

m = 1.5 + 0.02i only at xv < 16 for oblate spheroids and

xv < 12 for prolate spheroids [37]. Our spheroidal T -
matrix and relation (28) gave a very accurate spherical T -
matrix far beyond this region. We add that we performed

calculations within the range of parameter values, in which

no approach gives a spherical T -matrix: the standard use of

quadruple precision allows only xv ≈ 20 [38] to be achieved,

while more universal approaches are limited (for the given

parameter values, but using significantly larger resources)

to the region xv < 10−40 (see, for example, the discrete

dipole method in [39]).
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Efficiency factors QAS
sca calculated based on different T -matrices for prolate and oblate spheroids with parameters a/b = 4, xv = 40,

m = 1.5 + 0.02i , α = 45◦, TE-mode of the axisymmetric problem

Coordinates Potentials Prolate Oblate

Spheroidal p, q 0.0516640899039573 0.0261366229316886

Spherical p, q 0.0516640899039574 0.0261366229316886

Spheroidal U,V 0.0516640900725206 0.0261366229316860

Spherical U,V 0.0516640900725207 0.0261366229316860

Let us consider in more detail the calculation results of

the transition from a spheroidal T -matrix to a spherical one.

Note that if for potentials p, q the spheroidal T matrix

is calculated well, then, as can be judged based on the

results, for potentials U,V (for m = 0), in case of prolate

spheroids, the spheroidal T -matrix is calculated not very

precisely. In all the cases we have considered, as the number

of terms N (T -matrix size) taken into account increases,

the cross sections calculated based on the spheroidal and

spherical T -matrices converge, moreover, to the same value

(see the table). For a real refractive index, such agreement

between the spheroidal and spherical T -matrices has always

been very good (right panel of Fig. 2). Also, the agreement

is better for the matrices found for the potentials p, q
compared to U,V .

It is noteworthy that for the same T -matrices size N scat-

tering cross sections calculated for absorbing spheroids

based on the found spherical matrix can be less accurate

by several significant digits than those calculated based on

the spheroidal matrix (left panels, Figs. 1 and 2). This

happens when the terms added to the expansion for the

section contribute less than approximately 10−6 of the

exact value. The effect seems to be related to the different

consequences of rounding errors. Note that this defect is

completely compensated by the fact that it always negates

as N increases.

The second relation (37) found in the article was verified

by comparing the matrix T s
p,q obtained using relation (28)

at m = 1 from the matrix T sp
p,q , calculated by the formulas

of Sect. 1.4, with the matrix T s
VV , produced by the program

from the monograph [32], based on the fields expansion in

terms of a spherical basis associated with Debye potentials,

and also on the application of the extended boundary

conditions method (Sect. 1.1). In all the cases considered,

we found complete agreement between the T s
p,q and T s

VV

matrices within the calculations accuracy.

The third relation (48) obtained by us was tested by

comparing the matrix T s
U,V , obtained for the axisymmetric

problem (m = 0) from relation (28), with the matrix T s
VV

discussed in the previous paragraph. In all cases, the

agreement of the matrices was complete, taking into account

the used calculation accuracy. The only feature that should

be noted is the specificity of relation (44): it is true

at infinite number of considered functions, and at finite

number the first term of the two-term formula (43) is not

technically taken into account. However, as the number of

basis functions increases, this effect becomes insignificant.

Conclusion

Based on the solution of the axisymmetric problem of

light scattering by the spheroid in a spheroidal coordinate

system associated with a particle, the relation between the

T -matrices obtained for field expanssions in the spheroidal

and spherical bases associated with the same scalar poten-

tials is found and verified.

An approach is proposed for building a relationship

between T -matrices arising from the use of non-orthogonal

(but effectively used in the method of variable separation in

spheroidal coordinates) and standard orthogonal spherical

bases.

The performed numerical calculations showed high ac-

curacy of the found relationships between the T -matrices.

It is noted that the calculation of the spheroidal T -matrix

and its transformation using the obtained formulas to

the standard spherical T -matrix used in applications for

calculating optical properties of randomly oriented particles

is the only way to calculate the latter in a wide range of

values of the diffraction parameter and the ratio spheroid

semiaxes.
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