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Calculations of relativistic Stark energies and widths in hydrogen-like

ions using the complex-scaling method
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Introduction

Bound states of an atom or ion placed in a homogeneous

electric field are shifted and turn into resonances having

nonzero width and hence finite lifetime. Such phenomena

is referred to as Stark effect and has been studied for a

long time both experimentally [1–6] and theoretically [7–28].
However, most of the theoretical studies are devoted to

nonrelativistic calculations. It shall be noted that relativistic

effects may be of importance even in case of a hydrogen

atom [23], but for heavy ions, only relativistic calculations

can give accurate results. Moreover, precision experiments

with heavy multicharged ions in very strong electric fields

will become possible in the very near future. For example,

such experimental research will be feasible within the

Gamma Factory project [29]. It is expected that the Stark

effect will be used to handle the heavy ion levels in a

pre-defined way. Accurate theoretical positioning of these

levels is essential for such research. Moreover, level widths

are required to estimate the ion beam stability in strong

magnetic fields.

Relativistic calculations of Stark resonance positions using

the perturbation theory were carried out in [8]. In [28], a
finite basis set was used to calculate the relativistic Stark

shift in the hydrogen atom and hydrogen-like argon. It

should be noted that the accuracy of methods based on the

Hermitian Hamiltonian representation in the finite basis is

limited because the resonance wave functions are not square

integrable as opposed to the basis functions. In addition,

such methods do not allow to calculate the resonance

width (ionization probability per unit time). The relativistic

Stark resonance width for hydrogen-like ions was calculated

in [21,22] using quasi-classical approximation. Accuracy of

such approximation, however, is also limited.

High-precision values for both resonance position and res-

onance width may be obtained by the complex-coordinate

rotation method. This method involves rotation of a

radial coordinate to a complex plane. After the rotation,

the resonance wave functions become square integrable

which enables to use standard methods based on the

use of the finite basis set. In this case Hamiltonian

loses Hermiticity and its intrinsic energies corresponding

to resonances take complex values. Real part of such

complex energy corresponds to the resonance position

and imaginary part determines the resonance width. The

relativistic complex-coordinate rotation method has been

successfully used before to calculate auto-ionization states

of multielectron ions [30–33] and supercritical resonance

parameters in heavy quasi-molecules [34–37]. Description

of the complex-coordinate rotation method and its variations

may be found in [38,39].
To calculate the Stark energies and widths, the relativistic

complex-coordinate rotation method was used in [23].
The calculations were carried out for lower states of the

hydrogen atom and hydrogen-like neon ion. According to

the obtained results, a conclusion was made regarding the

significance of the relativistic effects even for hydrogen, in

particular for relatively low electric field strengths. It was

found that with a decrease in the electric field strength,

the relativistic widths begin to exceed the nonrelativistic

ones. This result differs qualitatively from the conclusion

in [21,22] which is based on quasi-classical calculations

and according to which relativistic widths are lower than

nonrelativistic ones at low electric field strengths.

The purpose of the research was to settle the existing con-

tradiction in the theoretical results and study the influence

of the relativistic effects on the Stark resonance positions

and widths. For this purpose, relativistic calculations for

the hydrogen atom and hydrogen-like neon ion were carried

out. The calculations were carried out in the finite basis

set using the complex-coordinate rotation method. The

obtained results were compared with the corresponding

values from [23].
The Planck constant is assumed ~ = 1 herein.
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Theory and calculation methods

The relativistic spectrum of the hydrogen-like ion is

calculated using the Dirac steady-state equation:

Hψ(r) = Eψ(r) (1)

and in the presence of homogeneous electric field, Hamilto-

nian is as follows:

H = c(α · p) + Vnucl(r) − eFz + βmec2. (2)

Here, e is the electron charge (e < 0), c the speed of light,

(α, β) are Dirac matrices, Vnucl(r) is the nucleus potential,

the electric field with strength F is assumed to be directed

along axis z . A uniformly charged sphere model is used

herein for the nucleus potential:

Vnucl(r) =


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where Rnucl is the nucleus radius.

The Dirac equation is used in the spherical coordinate

system (r, θ, ϕ). Hamiltonian (2) is axially symmetrical

about z axis, as a result the total angular momentum

projection m on this axis is retained and the azimuth angle ϕ

may be separated from the rest coordinates. Separation of

variables may be carried out by substitution of the following

function
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(4)

in the Dirac equation (1). After such substitution, the Dirac

equation can be reduced to the following form:

Hm 8(r, θ) = E8(r, θ). (5)

Here, the four-component wave function 8(r, θ) is as

follows

8(r, θ) =
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, (6)

and Hamiltonian Hm can be expressed as follows

Hm=

(

mec2 + Vnucl+eFz c Dm

−c Dm −mec2 + Vnucl+eFz

)

, (7)

Dm = (σz cos θ + σx sin θ)

(
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1
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1
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∂
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1
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(
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2
σx

)

, (8)

where σx , σy and σz are Pauli matrices.

Due to the presence of a homogeneous electric field F , no

bound states are present in the Hamiltonian spectrum (7).
Instead, there are resonances which have a nonzero width Ŵ

that determines the electron ionization probability. Since

the resonance states do not belong to Hilbert space, they

cannot be described by the square integrable basis functions.

In order to overcome this problem, the complex-coordinate

rotation method is used which is based on rotation of

a radial coordinate to a complex plane. As a result of

such rotation, the resonance wave functions become square

integrable which enables to use standard methods of the

finite basis set. We use herein a so called exterior complex

scaling (ECS), when the radial coordinate is transformed as

follows:

r →

{

r, r ≤ r0,

r0 + (r − r0)e
i2, r > r0,

(9)

where parameter r0 is chosen so that with r > r0 the

potential in question is an analytic function. Thus, for

potential (3), condition r0 ≥ Rnucl shall be satisfied. In all

calculations described herein, r0 = Rnucl was assumed.

After the transformation (9), Hamiltonian intrinsic ener-

gies (7) corresponding to resonances take complex values:

ECS = E − iŴ/2. (10)

Real part E of this quantity corresponds to the resonance

position and imaginary part determines the resonance

width Ŵ.

Solutions of the Dirac equation rotated to the complex

plane are found using the finite basis set. The wave function

8(r, θ) is expanded in the basis:

8(r, θ) =

N
∑

n=1

CnWn(r, θ). (11)

Basis functions Wn(r, θ) are constructed from B-splines

according to the dual kinetic balance (DKB) method

for axial symmetry systems [28]. The DKB technique

prevents spurious states in the spectrum [40,41]. The basis

construction method is described in detail in [42]. By

substituting the expansion (11), the Dirac equation (5) is

reduced to a finite-dimensional generalized eigenproblem

which is solved using standard numerical procedures.

Results and discussion

Only states with the total angular momentum projection

m = 1/2 were addressed herein. Complex energies ECS

were calculated by the method mentioned above. Reso-

nance positions and widths are derived from ECS using the

equation (10).
Accurate solutions of the rotated Dirac equation do not

depend on the complex rotation method 2. However, the

solutions obtained in the finite basis have such dependence.
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Table 1. Position E and width Ŵ of the ground state of a hydrogen atom in a homogeneous electric field as function of field strength F

Relativistic Nonrelativistic
F, a.u. Ref.

E, a.u. Ŵ, a.u. E, a.u. Ŵ, a.u.

0.01 a −0.50023220(1)
b −0.50023223 −0.5 0

0.02 a −0.50091583(1)
b −0.50091585 −0.5 0

0.03 a −0.50208081(1) 2.236(2) · 10−8

b −0.50208083 −0.50207427

c −0.50207427 2.23752 · 10−8

0.04 a −0.50377803(1) 3.8913(9) · 10−6

b −0.50377804 4.1 · 10−6
−0.50377159 3.9 · 10−6

0.05 a −0.50611171(1) 7.7163(1) · 10−5

b −0.50611173 7.74 · 10−5
−0.50610543 7.72 · 10−6

0.06 a −0.50920954(1) 5.1496(1) · 10−4

b −0.50920955 5.152 · 10−4
−0.50920345 5.151 · 10−4

0.07 a −0.51308262(1) 1.8470(1) · 10−3

b −0.51308260 1.8473 · 10−3
−0.51307677 1.8474 · 10−3

0.08 a −0.51756625(1) 4.53896(3) · 10−3

b −0.51756619 4.5391 · 10−3
−0.51756062 4.5397 · 10−2

0.09 a −0.52241824(1) 8.78282(2) · 10−3

b −0.52241821 8.7828 · 10−3
−0.52241281 8.7840 · 10−3

0.1 a −0.52742345(1) 1.453646(3) · 10−2

b −0.527423540 1.45362 · 10−2
−0.52741818 1.45381 · 10−2

Note. a — this publication, b — publication [23], c — publication [18].

In order to improve convergence in the number of basis

functions, it is a good practice to make calculations with an

optimum complex rotation angle 2opt that corresponds to

the minimum of derivative |dE/d2|. It should be noted that

2opt takes different values for different states.

The calculations consisted of two stages. At the first

stage, optimum angles 2opt were found using calculations

in a small basis. At the second stage, the calculations were

made using only optimum complex rotation angle. In this

case, the calculations were carried out using bases of various

sizes in order to define the final error. The error calculation

procedure is described in detail in [32,33].

The results obtained for the ground state of a hydrogen

atom are listed in Table 1. The appropriate relativistic

and nonrelativistic values from [18,23] are also given for

comparison. As can be seen from in the Table, the results

obtained herein match well with the values in [23] at

a high field strength F . However, at a relatively weak

field, the calculated widths are repeatedly lower than the

relativistic values from [23] and closer to nonrelativistic

values. When F < 0.03 a.u., the accuracy of the used

method is not enough in order to get the width val-

ues.

Table 2 shows the results for states 2s , 2p1/2 and 2p3/2

of the hydrogen-like neon ion (Z = 10). For some F
values, there are slight differences in the resonance positions

between this publication and [23]. It should be noted

that [23] used a point nucleus model, while the calculations

described herein use the uniformly charged sphere model

which enables to take into account the finite nuclear size.

However, the influence of the finite nuclear size is negligible

in this case and, though it is responsible for the difference

in the resonance positions to some extent, it cannot account

for the significant difference in the relativistic widths. It can

be seen in the Table that the widths obtained herein are

always lower than the nonrelativistic widths. Moreover, the

relative difference between the relativistic and nonrelativistic

results increases with a decrease in the field strength. In this

case, with the decrease in the field strength, values from [23]
begin to demonstrate the inverse trend at some moment and

the relativistic width becomes higher than the nonrelativistic

one. It should be noted that the relative reduction of the

relativistic width with the decrease in the field strength

matches with the conclusions in [21,22] which were based

on the calculations with quasi-classical approximation.

Conclusion

Relativistic calculations of positions and widths of the

lower states of a hydrogen atom and hydrogen-like neon

ion in a homogeneous electric field have been carried out.

The calculations have been made using the finite basis set

method with complex rotation technique. Some of the

obtained results do not match the corresponding values

from [23]. The cause of the difference is not clear. All

obtained relativistic widths are lower than the corresponding

nonrelativistic ones and the relative difference increases with

the decrease in the electric field strength. Qualitatively, this
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Table 2. positions E and widths Ŵ of lower excited states of a hydrogen-like ion (Z = 10) in a homogeneous electric field as function of

field strength F

Relativistic Nonrelativistic
F , a.u. Ref.

E, a.u. Ŵ, a.u. E, a.u. Ŵ, a.u.

2s1/2

2 a −12.546703(1)
b −12.54670 −12.53157 0

4 a −12.646250(1) 7.790(1) · 10−5

b −12.64625 8 · 10−5
−12.63169 8 · 10−5

6 a −12.840441(1) 2.1280(1) · 10−2

b −12.84044 2.126 · 10−2
−12.82715 2.178 · 10−2

8 a −13.138005(1) 2.04167(2) · 10−1

b −13.13801 2.0423 · 10−1
−13.12615 2.0731 · 10−1

10 a −13.463513(1) 6.21217(1) · 10−1

b −13.46349 6.214 · 10−1
−13.45247 6.2792 · 10−1

2p1/2

2 a −13.149636(1)
b −13.14961 2 · 10−5

−13.13533 1 · 10−5

4 a −13.867642(1) 4.2833(4) · 10−4

b −13.86772 4.4 · 10−4
−13.85488 4.5 · 10−4

6 a −14.719703(1) 6.5523(1) · 10−2

b −14.71966 6.554 · 10−2
−14.70918 6.676 · 10−2

8 a −15.674145(1) 4.27531(1) · 10−1

b −15.67420 4.2773 · 10−1
−15.66554 4.3223 · 10−1

10 a −16.616918(1) 1.08062(1)
b −16.61683 1.08039 −16.60929 1.08833

2p3/2

2 a −11.948679(1)
b −11.94869 2 · 10−5 1 · 10−5

4 a −11.446913(1) 1.426(2) · 10−5

b −11.44692 3 · 10−5
−11.43054 2 · 10−5

6 a −11.019910(1) 5.9228(6) · 10−3

b −11.01991 5.93 · 10−3
−11.00366 6.09 · 10−3

8 a −10.683798(1) 8.4307(3) · 10−2

b −10.68390 8.444 · 10−2
−10.66829 8.619 · 10−2

10 a −10.404716(1) 3.23139(1) · 10−1

b −10.40443 3.2374 −10.38915 3.2853

Note. a — this publication, b — publication [23].

result matches the conclusions in [21,22] obtained within

the quasi-classical approximation.
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