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1. Introduction

Semiconductor compounds of the group AIIBIII
2 CVI

4 (A —
Zn, Cd; B — Ga; C — S, Se) are thiogallates to be

crystallized to a tetragonal structure with a spatial group of

symmetry I−4 (point group S4) [1]. This group of thiogallates

is characterized by an ordered cation vacancy, which

distinguishing them from crystal-chemical and isoelectronic

counterparts with a chalcopyrite and sphalerite structure,

therefor the compounds of this group are also called

defective chalcopyrite (DC). The compounds AIIBIII
2 CVI

4

(A — Zn,Cd; B — In, Ga; C — S, Se, Te) are promising

in connection with their usability in the semiconductor

instrumentation [2]. These compounds are characterized

by birefringence, significant values of the coefficient of

nonlinear susceptibility, and bright photoluminescence [3].
A large band gap (2−4.0 eV) and high photosensitivity

stimulate creation of ultraviolet radiation detectors, which

are already used in medicine, biology, space physics, and

other fields. Crystals of the group AIIBIII
2 CVI

4 , and, in

particular, CdGa2S4 are promising materials for creating

retunable narrow-band optical filters due to the presence

of the so-called
”
isotropic point“, at which the dispersion

curves of the ordinary and extraordinary refraction indices

intersect [4]. Recently, CdGa2S4 and CdGa2Se4 crystals have

been positioned as materials for solar batteries [5].
If optoelectronic properties of the compounds AIIBIII

2 CVI
4

are studied in relative detail, then it should be noted

that there is a lack of information about thermodynamic

and thermal properties (heat capacity, thermal expansion,

thermal conductivity) closely correlated to elastic properties

of these compounds. Values of the seven elastic constants

c11, c33, c12, c13, c44, c66, c16, which are inherent

to the compounds AIIBIII
2 CVI

4 , CdGa2S4 and CdGa2Se4
calculated ab initio, are given in the paper [6]. According

to [6], if in CdGa2S4 the elastic constant c11 = 61.77GPa

is above c33 = 50.02GPa, then in CdGa2Se4 the value

c11 = 52.46GPa is below c33 = 60.0GPa. Similar ab

initio calculations for HgGa2S4 [7] and HgGa2Se4 [8]
lead to significantly lower anisotropy of elastic forces:

c11 = 65.6GPa, c33 = 63.4GPa for HgGa2S4 [7] and

c11 = 54.2GPa, c33 = 55.5GPa for HgGa2Se4 [8]. Ac-

cording to [9], in the defective chalcopyrite ZnGa2Te4
c11 = 45.4GPa, c33 = 48.47GPa.

Thus, despite available data on the values of the elastic

constants of the compounds AIIBIII
2 CVI

4 , there is evident

scattering in anisotropy of the elastic constants and a

lack of data on individual compounds AIIBIII
2 CVI

4 , which

requires additional studies. The present article provides

results of the ab initio calculations of the values of the

elastic constants c11, c33, c12, c13, c44, c66, c16 CdGa2S4,

CdGa2Se4, CdGa2Te4 and ZnGa2Se4, values of bulk mod-

uli B determined based thereon, which are compared with

experimentally measured and theoretically calculated values

known from the literature. There are also evaluations of

force constants of interatomic bonds f n, accounted for

frequencies of optical phonons.

2. Elastic constants

It is well known that stresses and deformations are

described by means of second-rank tensors (σi j and εkl)
in the three-dimensional space and have 9 components

601



602 I.A. Mamedova, Z.A. Jahangirli, T.G. Kerimova, R.G. Seyidov, N.A. Abdullayev

each. Within the generalized Hooke’s law (1) they are

correlated to a fourth-rank tensor c i jkl, which is called

an elasticity tensor and generally contains 81 coefficients

(elastic constants):

σi j = c i jkl εkl . (1)

A requirement of symmetry of the stress and deformation

tensors (2) leads to reduction of a number of independent

elastic constants to 36.

c i jkl = c jikl = c i jlk = c jilk . (2)

Taking into account that the elastic deformation energy W :

W =
1

2
c i jklεi jεkl . (3)

It follows therefrom that c i jkl = ckli j and a number of the

independent elastic constants reduces to 21. Thus, in the

most generalized case of low-symmetrical crystals there are

21 independent components of the elasticity tensor.

Next, taking into account a specific crystal lattice

allows even more substantially reducing the number of

the independent elastic constants. For example, more

highly-symmetrical crystals with the tetragonal symmetry

and the structure of defective chalcopyrites are described

by means of seven elastic constants. According to the

W. Voigt notation, the elements of the elasticity tensor

c i jkl can be written using the following index replacement

11 → 1, 22 → 2, 33 → 3, 23, 32 → 4, 12, 21 → 6, as the

matrix 6× 6:
















c11 c12 c13. . . 0 . . . 0 . . . c16

c12 c11 c13. . . 0 . . . 0 . . .−c16

c13 c13 c33. . . 0 . . . 0 . . . 0

0 . . . 0 . . . 0 . . .c44. . . 0 . . . 0

0 . . . 0 . . . 0 . . . 0 . . .c44. . . 0

0 . . . 0 . . . 0 . . . 0 . . . 0 . . . c66

















. (4)

It should be noted that for the tetragonal symmetry

crystals there are two Laue classes (Laue group) —
TI and TII [8]. For the Laue class TII, to which the defective

chalcopyrites belong, the seven elastic constants are intrinsic

thereto, and for TI — the six elastic constants c11, c12,

c13, c33, c44, c66. Formulas for calculation of the elastic

moduli using the elastic constants of the TII Laue group can

not be obtained analytically due to a non-diagonal elastic

shift constant c16, which is usually not zero. However,

it is possible to convert the seven components c i j of the

elasticity tensor of the crystal TII to the six components

of the elasticity tensor c i j of the crystal TI [8]. For this

purpose, it is necessary to convert by rotating around the

tetragonal axis by the angle:

ϕκ,γ =
1

4
arctan

(

4c16

c11 − c12 − 2c66

)

, (5)

here 0 < ϕκ < |π/2|, ϕγ = ϕκ + π/4. The paper [8] shows
that in such a conversion the values of the six elastic

constants c11, c12, c13, c33, c44, c66 of the defective

chalcopyrites almost do not change.

The elastic constants in the crystals should have certain

relationships satisfied therebetween, which succeed from

an equilibrium condition of the crystal lattice. Its main

requirement is a minimum energy density. These rela-

tionships called the Born−Huang stability criteria succeed

from a necessity to fulfil a stability criterion of the crystal

lattice [10]. In order to make the lattice stable, the energy

density must be of a positively defined square form so

that the energy increases at any small deformation. If

the square form coefficients are arrayed as a matrix (4),
without the elastic constant c16, then, according to a

well algebraic theorem, this square form is positively

defined, when determinants of all matrices of successive

ranks (major minors) are positive. That is, the follow-

ing c66, c44c66, c2
44c66, c33c2

44c66, (c11c33 − c2
13)c

2
44c66,

(c11−c12)(c11c33 + c12c33−2c2
13) must be positive. Thus,

the following conditions must be met:

c11 > 0; c44 > 0; c66 > 0; c11 − c12 > 0,

c11c33 − c2
13 > 0, (6)

c11c33 + c12c33 − 2c2
13 > 0.

Similar relationships for the hexagonal symmetry crystals

are give in the paper [11].

3. Method of calculation of elastic
constants

The ab initio calculations of the elastic constants of the

compounds CdGa2S4, CdGa2Se4, CdGa2Te4 and ZnGa2Se4
have been carried out by Density Functional The-

ory (DFT) [12–14] using the pseudopotential method

on the base of plane waves realized in the code

ABINIT [15]. For a pseudopotential and exchange corre-

lation potential, one used form-conserving pseudopotentials

Hartwigsen−Goedecker−Hutter [16] and generalized gradi-

ent approximation (GGA) [17]. The wave functions have

been expanded by taking into account the plane waves with

the energy up to 80Ry, which provides good convergence of

the full energy. The Brillouin zone summations have been

carried out on the Monkhorst−Pack 4× 4× 4 grid [18].
The lattice parameters and equilibrium positions of atoms

in the lattice cell have been determined by minimizing

the Hellmann−Feynman forces. The equilibrium posi-

tions of atoms in the lattice cell have been found by

the BFGS method (Broyden−Fletcher−Goldfarb−Shanno)
using experimental data as initial values. The minimiza-

tion process has continued until the force moduli were

below 10−8 Ry/Bohr.

Table 1 contains the values of the elastic constants of

the compounds as calculated ab initio by us: CdGa2S4,

CdGa2Se4, CdGa2Te4 and ZnGa2Se4, and the data on

the values of the elastic constants c i j of other defective

chalcopyrites as well (the data is known from the literature).

Physics of the Solid State, 2022, Vol. 64, No. 6
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Table 1. Values of the elastic constants c i j of the defective

chalcopyrites in GPa (the square brackets hold a reference to a

work from which the data are derived)

Compounds
Elastic constants c i j , GPa

c11 c12 c13 c33 c44 c16 c66

CdGa2S4
This work

66.1 31.4 37.2 68.9 35.7 −1.9 34.3

CdGa2Se4
This work

71.1 29.7 40.6 74.5 39 −0.78 31.7

CdGa2Te4
This work

57 22.9 29.4 55.9 28.8 −0.083 25.1

ZnGa2Se4
This work

87.2 41.1 42.5 90.1 49.5 −0.61 50.7

CdGa2S4
Ref. [6]

61.8 24.7 35.7 50.0 33.9 −2.7 27.0

CdGa2Se4
Ref. [6]

52.5 20.4 38.8 60.0 31.6 −1.9 16.0

HgGa2S4
Ref. [7]

65.6 32.5 38 63.4 35.6 −2.0 31.6

HgGa2Se4
Ref. [8]

54.2 24.3 31.2 55.5 29.9 −0.3 26.2

ZnGa2Te4
Ref. [9]

45.4 19.8 26.2 48.5 25.7 − 26.5

Table 2. Values of the bulk modulus B determined theoretically

and from experimental studies. Each cell contains the values of B ,

the determination method (theoretically or experimentally) and a

work reference (in square brackets)

Compounds Bulk modulus B , GPa

CdGa2S4
45.8 theor 58.4 theor 46 theor 64 exp

This work Ref. [6] Ref. [23] Ref. [24]

CdGa2Se4
48.7 theor 36.1 theor 41 theor 41.5 exp Ref.

This work Ref. [6] Ref. [23] [26]

CdGa2Te4
37 theor

− − −

This work

ZnGa2Se4
57.4 theor 52 theor

− −

This work Ref. [25]

ZnGa2Te4
30 theor 31.3 exp 40 exp 39 theor

Ref. [9] Ref. [9] Ref. [27] Ref. [25]

4. Bulk moduli

In practice, besides the elastic constants, there are

bulk moduli B used. For example, for calculation of

the Gruneisen parameters [19], coefficients of volumetric

thermal expansion and other anharmonic effects [20]. By

definition, the bulk moduli are determined from the rela-

tionship:

W =
1

2
Bξ2. (7)

Here, the volumetric deformation is correlated to diagonal

components of the deformation εii tensor by the relation-

ship:
ξ

3
= ε11 + ε22 + ε33. (8)

Taking into account (8), it is easy to obtain from (3) and

(7) a correlation of the bulk modulus to the elastic constants

for the tetragonal symmetry crystals:

B =
1

9
(2c11 + c33 + 2c12 + 4c13). (9)

For the bulk modulus B of the tetragonal symmetry crystals,

the expression similar to (9) was used in the papers [21,22].
For the cubic symmetry crystals c11 = c33 and c12 = c13,

the expression (9) transforms into correlation of the bulk

modulus to the elastic constants for the cubic symmetry

crystals:

B =
1

3
(c11 + 2c12). (10)

The values of the bulk modulus can also be experi-

mentally determined from the known Birch−Murnaghan

equation of state [23,24]:

P =
3

2
B0(x

7/3 − x5/3)

[

1 +
3

4
(B I

0 − 4)(x2/3 − 1)

]

. (11)

Here x = V0/V , P — hydrostatic pressure, V0 — initial

volume, B0 — bulk modulus, B I
0 — first order volume

derivate of the bulk modulus.

Table 2 shows the values of the bulk modulus B
determined theoretically and from experimental studies.

5. Optical phonons in the compounds
AIIBIII

2
CVI

4

Knowingly, the lattice cell of the defective chalcopyrites

of the group AIIBIII
2 CVI

4 contains 7 atoms. That is why the

vibration spectrum consists in 21 modes and is described

in the center of the Brillouin zone (when q = 0) by the

following irreducible representations [28]:

Ŵ = 3A + 6B + 6E. (12)

All the symmetry modes E are doubly degenerated, one

mode B and one mode E are acoustic. All the optical modes

(3A, 5B and 5E) are active within the Raman scattering

spectra (RS). 5 symmetry modes B allowed in polarization

parallel to the tetragonal axis C and 5 doubly degenerated

symmetry modes E are active in the infrared absorption

spectra (IR). The modes B and E are polar, while the

modes A — non-polar. The totally symmetric vibrations

of the type A are correlated to shifts of anion sublattice

Physics of the Solid State, 2022, Vol. 64, No. 6



604 I.A. Mamedova, Z.A. Jahangirli, T.G. Kerimova, R.G. Seyidov, N.A. Abdullayev

Table 3. Frequencies of the modes A1, A2 and A3 in the compounds of the group AIIBIII
2 CVI

4

Modes
CdGa2S4 ZnGa2S4 HgGa2S4 CdGa2Se4 ZnGa2Se4 HgGa2Se4
ref. [30] ref. [28] ref. [31] ref. [32] ref. [32] ref. [33]

A1 219 230 220 140 143 139

A2 310 320 300 185 180 183

A3 359 367 358 207 209 206

atoms along the crystallographic axes x , y, z . At this, the

cation sublattice atoms do not participate in the vibrations.

The vibrations of the type B are correlated to shifts of

the cation sublattice atoms relative to the anion sublattice

along the tetragonal axis c (along the axis z ). The doubly

degenerated modes Ex and Ey are correlated to shifts of

the cation sublattice atoms along the crystallographic axes x
and y , respectively [29].
As the vibrations of the three symmetry modes A (12)

are correlated only to shifts of anion atoms S, Se and Te,

then it should be expected that in compounds of the

defective chalcopyrites of the group AIIBIII
2 CVI

4 , containing

the identical atoms of anions (for example, CdGa2S4,

ZnGa2S4, HgGa2S4 or CdGa2Se4, ZnGa2Se4, HgGa2Se4),
the respective frequencies of the modes A1, A2 and A3 will

differ slightly. Indeed, as it is clear from Table 3, the

frequencies of the modes A1, A2 and A3 in the compounds

CdGa2S4, ZnGa2S4, HgGa2S4 and in the compounds

CdGa2Se4, ZnGa2Se4, HgGa2Se4 are very close in the value.

Early studies of frequencies of RS-active modes in the

defective chalcopyrites [28,34] already mention that the

frequencies of the polar (E, B) and non-polar (A) modes

can be approximated by the following simple relationship:

ω2 =
f

M
. (13)

Here f — force constants of interatomic interaction, M —
atomic masses. This relationship is significantly simplified,

but correctly represents typical frequency regularities for

isostructural crystal, for example, the compounds of the

group AV
2B

VI
3 [20]. Assuming that the most low-frequency

mode A1 in the defective chalcopyrites is due to in-phase

shifts of the anion atoms, then in the relationship (13)
the mass can be accepted to be M = 4m, where m — a

mass of the anion. The Fig. 1 shows the dependence of

experimentally determined frequencies of the mode A1 of

the compounds AIIBIII
2 CVI

4 on the magnitude (4m)−1/2 . As

it is clear from the figure, there is an evident satisfactory

dependence (13) of the frequencies of the mode A1 on the

magnitude (M)−1/2.

Similar conclusions can be made for the polar modes E
and B as well. In the compounds AIIBIII

2 CVI
4 the most low-

frequency modes E seem to exist due to in-phase shifts of

the atoms of the cations A (Zn, Cd,Hg) and the anions C

(S, Se, Te). In this case, in (13) approximation of a linear

0.04 0.  50 0.  60 0.  70 0.  80 0.  90 0.10

50

200

100

150

250

0

R
am

an
 s

h
if

t,
 c

m
–
1

1/ 4 , amuÖ m –1/2

a

bc

de
f

g
h

i

Figure 1. Dependence of the experimentally determined frequen-

cies of the mode A1 of the crystals ZnGa2S4 (a), HgGa2S4 (b),
CdGa2S4 (c), ZnGa2Se4 (d), CdGa2Se4 (e), HgGa2Se4 (f ),
ZnIn2Se4 (g), CdGa2Te4 (h), CdIn2Te4 (i) on the magnitude

(4m)−1/2.

chain it can be assumed that M = mA + mC, where mA —
a mass of the cation, mC — a mass of the anion, as it has

been done in the paper [34].

Table 4 shows values of the experimentally determined

frequencies of the most low-frequency transversal modes

ETO of the compounds AIIBIII
2 CVI

4 together with respective

references to these experimental works.

The Fig. 2 shows the dependence of the experimen-

tally determined frequencies of the most low-frequency

transversal modes ETO of the compounds AIIBIII
2 CVI

4 on the

magnitude (mA + mC)−1/2. As it is clear from the figure, in

this case there is also a well-evident linear dependence (13)
of the frequencies of the most low-frequency transversal

modes ETO on the magnitude (M)−1/2.

In the compounds AIIBIII
2 CVI

4 the most high-frequency

longitudinal modes BLO probably exist due to out-of-phase

shifts of the atoms of the cations A (Zn, Cd,Hg) and

the anions C (S, Se, Te). For this, the reduced mass µ

is used. In [28], for calculation of the reduced mass µ

of the high-frequency symmetry modes E and B of the

defective chalcopyrites AIIBIII
2 CVI

4 the following relationship

Physics of the Solid State, 2022, Vol. 64, No. 6
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Table 4. Frequencies (in cm−1) of the most low-frequency transversal modes ETO and magnitudes (mA + mC)−1/2 (in amu−1/2) of the

compounds of the group AIIBIII
2 CVI

4

HgGa2Se4 HgGa2S4 CdGa2Se4 ZnGa2Se4 CdGa2S4 ZnGa2S4
ref. [33] ref. [31] ref. [28] ref. [34] ref. [28] ref. [28]

Frequences 51 61 68 84 86 108

(mA + mC)−1/2 0.060 0.066 0.072 0.085 0.083 0.104

Table 5. Frequencies (in cm−1) of the most high-frequency

longitudinal modes BLO and magnitudes µ−1/2 (in amu−1/2) of

the compounds of the group AIIBIII
2 CVI

4

CdGa2Te4 CdGa2Se4 ZnGa2Se4 CdGa2S4 ZnGa2S4
ref. [30] ref. [30] ref. [32] ref. [30] ref. [32]

Freq. 234 275 285 389 396

µ−1/2 0.126 0.144 0.157 0.198 0.207

is proposed to be used:

4

µ
=

2

mA

+
1

mB

+
4

mC

. (14)

Experimentally determined frequencies of the most high-

frequency longitudinal modes BLO of the compounds

AIIBIII
2 CVI

4 and references to the respective works are given

in Table 5.

The Fig. 3 shows the dependence of the experimentally

determined frequencies of the most high-frequency longitu-

dinal modes BLO of the compounds AIIBIII
2 CVI

4 on the value
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Figure 2. Dependence of the experimentally determined

frequencies of the most low-frequency transversal modes ETO

of the crystals HgGa2Se4 (a), HgGa2S4 (b), CdGa2Se4 (c),
ZnGa2Se4 (d), CdGa2S4 (e), ZnGa2S4 (f ) on the magnitude

(mA + mC)−1/2 .
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Figure 3. Dependence of the experimentally determined

frequencies of the most high-frequency longitudinal modes BLO

of the crystals CdGa2Te4 (a), CdGa2Se4 (b), ZnGa2Se4 (c),
CdGa2S4 (d), ZnGa2S4 (e) on the magnitude µ−1/2 .

of the reduced mass µ, as calculated according to (14).
The observed frequency dependence on the reduced mass

is satisfactorily described by the linear dependence (13).

6. Force constants of interatomic bonds
in the compounds AIIBIII

2 C
VI
4

The dynamics of the lattice of the compounds AIIBIII
2 CVI

4

(CdGa2S4 and CdGa2Se4) was calculated for the first time

in [35]. The calculation has been performed using the

Keating model [36]. In the calculation, taking into account

crystal-chemical affinity of compounds of the structure

of chalcopyrite (AIBIIICVI
2 — AgGaS2, AgGaSe2) and

thiogallates (AIIBIII
2 CVI

4 — CdGa2S4 and CdGa2Se4) the

force constants of interatomic bonds BIII−CVI were taken

as in AgGaS2, AgGaSe2, while the force constants AII−CVI,

V−CVI (V — vacancy) were determined by fitting to the

experimental frequencies using the method of least squares.

It was fit by using a minor number of the frequencies

(one symmetry mode A, two symmetry modes B and two

symmetry modes E). Taking into account the above said,

the dynamics of the lattice CdGa2Te4 and ZnGa2Se4 was

Physics of the Solid State, 2022, Vol. 64, No. 6
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Table 6. Values of the force constants of interatomic bonds in CdGa2Te4, ZnGa2Se4 CdGa2Se4, CdGa2S4, in units 104 dyn/cm

Force constants of

interatomic CdGa2Te4 (This work) ZnGa2Se4 (This work) CdGa2Se4 ref. [38] CdGa2S4 ref. [38]
bonds, f n

f 1 (AII
−CVI) 13.71 9.23 13.9 14.28

f 2 (BIII
1 −CVI) 7.89 4.05 6.38 6.28

f 3 (BIII
2 −CVI) 5.61 4.01 6.87 7.89

f 4 (AII
−BIII

1 ) −1.68 −0.08 −10.6 −0.6

f 5 (AII
−BIII

2 ) 2.99 0.38 1.68 3.0

f 6 (BIII
1 −BIII

2 ) 1.87 3.92 1.03 3.0

f 7 (CVI
−CVI) 1.77 1.29 1.37 0.74

calculated by applying the model of force constants [37].
Such a model was earlier used by us to calculate the

dynamics of the lattice CdGa2S4 and CdGa2Se4 [38].

When making up elements of the dynamic matrix, the

seven force constants were introduced ( f n, n = 1−7),
which account for interaction both between atoms of

the nearest neighbors f 1 (AII−CVI), f 2 (BIII
1 −CVI),

f 3 (BIII
2 −CVI), and atoms of the cation f 4 (AII−BIII

1 ),
f 5 (AII−BIII

2 ), f 6 (BIII
1 −BIII

2 ) and anion f 7 (C−C) sub-

lattice. In this case B1 and B2 — atoms of gallium Ga,

which take different positions in the lattice cell. The force

constants were found as values of variables corresponding

to a minimum of the function F = 6
(

ω
exp
i −ωi( f n)

)2
.

The minimum has been sought by means of a standard

program of minimizing the multi-variable function using

the method of least squares. The atomic masses M of

the relationship (13) were selected for the calculations

in accordance with approaches described in the previous

section 5. The force constants of interatomic bonds f n of

the compounds CdGa2S4, CdGa2Se4, CdGa2Te4, ZnGa2Se4
are given in Table 6.

It follows from the data of Table 6 that:

a) in the compounds AIIBIII
2 CVI

4 , the values of the force

constants f 1 (AII−CVI) significantly exceed the values of

the force constants of interatomic bond f 2 (BIII−CVI). This
means that a nature of the chemical bond in cadmium

tetrahedrons is more covalent than in gallium ones;

b) the cation-anion’s bonds f 1 (AII−CVI) are significantly
stronger than the cation-cations’ bonds f 5 (AII−BIII

2 )
and f 6 (BIII

1 −BIII
2 ), f 3 (BIII

2 −CVI);

c) the sign of cation−cation’s bonds f 4 (AII−BIII
1 ) is

negative, but it does not mean that the value f is negative

in the relationship (13), as the value f is a complex

combination of the magnitudes f n [38], each atom in these

compounds has several bonds with adjacent atoms;

d) the cation−anions’ bonds f 1 (AII−CVI),
f 2 (BIII

1 −CVI), f 3 (BIII
2 −CVI) are significantly stronger than

the anion–anions’ bonds f 7 (CVI−CVI).

7. Conclusion

The present paper provides data of ab initio calculations

of values of the seven elastic constants c i j of the compounds

CdGa2S4, CdGa2Se4, CdGa2Te4 and ZnGa2Se4. It also

provides the stability criteria of the crystal lattice of the

defective chalcopyrites. Using the calculated magnitudes of

the elastic constants, the values of the bulk moduli B have

been calculated. Based on the available data of one’s own

studies and literature data on frequencies of optical phonons,

the regularities have been established in the dependencies of

the frequency values of the RS-active phonons on the atomic

masses in the compounds of the group AIIBIII
2 CVI

4 . The force

constants of interatomic bonds of the compounds CdGa2Te4
and ZnGa2Se4 have been calculated using the method of

least squares by fitting to the experimental frequencies. The

obtained data on the force constants confirm that the nature

of the chemical bond in cadmium tetrahedrons is more

covalent than in gallium ones.
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