05

Эффект управления спиновой поляризацией электронов проводимости через деформацию ферромагнетика

© В.К. Игнатьев, Н.Г. Лебедев, Д.А. Станкевич

Волгоградский государственный университет, Волгоград, Россия E-mail: nikolay.lebedev@volsu.ru

Поступило в Редакцию 13 сентября 2022 г. В окончательной редакции 13 сентября 2022 г. Принято к публикации 13 октября 2022 г.

Предложена модель обменного взаимодействия коллективизированных электронов проводимости с электронами намагниченности в деформированном ферромагнетике с учетом спин-орбитальных поправок. В условиях дисторсии неоднородного кручения спин электронов проводимости в домене ориентирован вдоль вектора обменного взаимодействия. Если вектор плотности тока проводимости ортогонален оси кручения, то средний спин электронов проводимости будет ориентирован преимущественно вдоль вектора плотности

Ключевые слова: спин-орбитальное взаимодействие, переходные металлы, функции Ванье, дисторсия кручения.

DOI: 10.21883/PJTF.2022.23.53949.19363

Современная спинтроника посвящена изучению эффектов, в которых существенную роль играют спиновые степени свободы. Одним из ее направлений является изучение спиновых потоков в проводниках и полупроводниках с целью их использования в различного рода устройствах микроэлектроники [1]. Динамика спина коллективизированных электронов проводимости в системах спинтроники традиционно моделируется гамильтонианами Рашбы и Дрессельхауса, учитывающими энергию спин-орбитального взаимодействия электрона проводимости [2]. Оценки показывают, что это взаимодействие может обеспечить когерентность спиновой поляризации на расстояниях порядка $0.1 \, \mu \text{m}$, но его недостаточно для эффективной макроскопической (порядка 1 mm) поляризации спиновых токов в поликристаллах. В последние десятилетия сформировалось новое научное направление физики конденсированного состояния — стрейнтроника, использующая физические эффекты в веществе, обусловленные деформациями, возникающими в микро-, нано- и гетероструктурах под действием внешних управляющих полей, приводящих к изменению электронного строения, электрических, магнитных, оптических и других свойств материалов [3]. Одна из ветвей стрейнтроники направлена на изучение влияния механических напряжений на электронные свойства вещества.

В рамках построенных ранее авторских моделей деформированного ферромагнетика показано, что кристаллическое поле эффективно взаимодействует со спиновыми моментами локализованных электронов [4], учет спин-орбитального взаимодействия может эффективно поляризовать электроны проводимости в макроскопической области [5].

Новизна предлагаемого подхода заключается в учете в модельном гамильтониане обменного взаимодействия коллективизированных электронов проводимости с электронами намагниченности в кристаллическом поле деформированного ферромагнетика релятивистских спинорбитальных поправок второго порядка. Ранее такое взаимодействие не принималось во внимание, так как в недеформированном кристалле оно не создает макроскопической когерентной поляризации спиновых токов.

Рассмотрим обменное взаимодействие двух электронов, коллективизированного и локализованного, в домене однородного и изотропного ферромагнетика с учетом спин-орбитального взаимодействия, т. е. релятивистских поправок во втором порядке по величине 1/c, где c — скорость света. Энергия кулоновского взаимодействия рассматриваемых электронов друг с другом, а также с остальными электронами домена, как коллективизированными, так и локализованными в ионах, т. е. с кристаллом, в рамках метода самосогласованного поля учтена заменой их массы m на эффективную массу m^* .

Спин-орбитальные добавки в энергию двух электронов, находящихся в точках с радиус-векторами \mathbf{r}_1 и \mathbf{r}_2 , имеют традиционный вид [6]:

$$\hat{V} = \frac{\hbar e}{2m^{*2}c^2} \left(\left[\mathbf{E}_1(\mathbf{r}) \times \hat{\mathbf{p}}_1 \right] \hat{\mathbf{s}}_1 + \left[\mathbf{E}_2(\mathbf{r}) \times \hat{\mathbf{p}}_2 \right] \hat{\mathbf{s}}_2 \right), \quad (1)$$

где \hbar — постоянная Дирака, \mathbf{p}_i и \mathbf{s}_i — операторы импульса и спина i-го электрона. Аргумент поля \mathbf{E} такой же, как у волновой функции, на которую действует оператор.

Рассматривая сумму (1) как возмущение, найдем его среднее значение V в состоянии

$$\psi(\mathbf{r}_1, \sigma_1, \mathbf{r}_2, \sigma_2) = (\psi_1(\mathbf{r}_1, \sigma_1)\psi_2(\mathbf{r}_2, \sigma_2)$$
$$-\psi_1(\mathbf{r}_2, \sigma_2)\psi_2(\mathbf{r}_1, \sigma_1))/\sqrt{2},$$

составленном из одночастичных спин-орбиталей $\psi(\mathbf{r}_i,\sigma_i),\ \sigma_i$ — спиновая переменная i-го электрона. Примем, что первый электрон — коллективизированный электрон проводимости i-го узла, а второй электрон локализован в j-м узле кристаллической решетки домена, и запишем волновую функцию коллективизированного электрона в виде функции Ванье

$$\psi_1(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} W_C(\mathbf{r} - \mathbf{r}_i - \mathbf{R}_n) \exp(i\mathbf{k}\mathbf{R}_n),$$

$$\psi_2(\mathbf{r}) = W_L(\mathbf{r} - \mathbf{r}_i), \tag{2}$$

где $W_C(\mathbf{r})$ и $W_L(\mathbf{r})$ — водородоподобные функции коллективизированного и локализованного электронов; \mathbf{R}_n — вектор трансляции; линейная комбинация векторов решетки \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 ; \mathbf{r}_i и \mathbf{r}_j — координаты i-го и j-го узлов решетки.

Будем считать, что все спины локализованных электронов в домене из-за обменного взаимодействия ориентированы одинаково (например, вдоль оси легчайшего намагничивания), соответственно все $\mathbf{s}_j = \mathbf{s}_L$. Рассматривая энергию обменного взаимодействия коллективизированного электрона проводимости со всеми локализованными электронами намагниченности как сумму его парных взаимодействий вида (1), подставим в формулы (1) соотношения (2), пренебрегая зависимостью водородоподобных функций от спин-спинового взаимодействия. После суммирования по спиновым переменным получаем

$$V = (\mathbf{J}_C \mathbf{s}_i) (\mathbf{s}_i \mathbf{s}_L) + (\mathbf{J}_L \mathbf{s}_L) (\mathbf{s}_i \mathbf{s}_L). \tag{3}$$

В формуле (3) введены следующие обозначения:

$$\mathbf{J}_{L} = -\frac{2DZ}{\hbar N} \sum_{j=1}^{N} \sum_{n=1}^{N} \sum_{m=1}^{N} e^{i\mathbf{k}(\mathbf{R}_{n} - \mathbf{R}_{m})}
\times \left\langle \Psi_{C}^{*}(\mathbf{r} - \mathbf{R}_{m} + \mathbf{r}_{j} - \mathbf{r}_{i}) \frac{\hat{\mathbf{l}}}{r^{3}} \Psi_{L}(\mathbf{r}) \right\rangle
\times \left\langle \Psi_{L}^{*}(\mathbf{r}) \Psi_{C}(\mathbf{r} - \mathbf{R}_{n} + \mathbf{r}_{j} - \mathbf{r}_{i}) \right\rangle, \tag{4}$$

$$\mathbf{J}_{C} = -\frac{2DZ}{\hbar N} \sum_{j=1}^{N} \sum_{n=1}^{N} \sum_{m=1}^{N} e^{i\mathbf{k}(\mathbf{R}_{m} - \mathbf{R}_{n})}
\times \left\langle \Psi_{L}^{*}(\mathbf{r}) \frac{\hat{\mathbf{l}}}{r^{3}} \Psi_{C}(\mathbf{r} - \mathbf{R}_{m} + \mathbf{r}_{j} - \mathbf{r}_{i}) \right\rangle
\times \left\langle \Psi_{C}^{*}(\mathbf{r} - \mathbf{R}_{n} + \mathbf{r}_{j} - \mathbf{r}_{i}) \Psi_{L}(\mathbf{r}) \right\rangle = \mathbf{J}_{L}^{*}. \tag{5}$$

Здесь Z — эффективный заряд ионного остатка, ${\bf l}$ — оператор орбитального момента электрона. Его можно оценить, приравняв координату максимума радиальной компоненты водородоподобной волновой функции к радиусу ионного остатка Me^{3+} . Для железа и кобальта радиус ионного остатка равен $6.3\cdot 10^{-11}\,\mathrm{m}$, что соответствует эффективному заряду $Z\approx 5.2$. Величина $D=\hbar^2e^2/(8\pi\varepsilon_0m^{*2}c^2)\approx 2\cdot 10^{-51}\,\mathrm{J\cdot m^3}$ при $m^*\approx 0.3m$. Под действием кристаллического поля орбитали электронов ориентируются по осям симметрии кристалла. Поэтому можно считать, что оси, в которых рассчитаны интегралы (4), (5) и последующие, жестко связаны с базисными векторами ${\bf a}_{\nu}$ кристалла.

Водородоподобные функции малы при $r>na_B/Z$, где $a_B=5.3\cdot 10^{-11}\,\mathrm{m}$ — боровский радиус, n — главное квантовое число. Поэтому первый интеграл в (4) и (5) отличен от нуля только при $\mathbf{r}_j-\mathbf{r}_i-\mathbf{R}_m=0$ или $\pm \mathbf{a}_v$, а второй — при $\mathbf{r}_j-\mathbf{r}_i-\mathbf{R}_n=0$ или $\pm \mathbf{a}_v$. При $\mathbf{r}_j-\mathbf{r}_i-\mathbf{R}_n=0$ или $\mathbf{r}_j-\mathbf{r}_i-\mathbf{R}_m=0$ соответствующие интегралы в недеформированном кристаллите равны нулю, так как различные атомные функции одного атома ортогональны. В переходных металлах s- и p-зоны перекрываются [7]. Поэтому электроны проводимости могут формироваться из p-орбиталей. Для p-d-взаимодействия формула (4) принимает вид

$$\mathbf{J}_{L} = -2DZ \langle \Psi_{P}(\mathbf{r}) \Psi_{D}^{*}(\mathbf{r}) \rangle \left\langle \Psi_{P}^{*}(\mathbf{r}) \frac{\hat{\mathbf{l}}}{r^{3}} \Psi_{D}(\mathbf{r}) \right\rangle
- 4DZ i \sum_{\nu=1}^{3} \sin(\mathbf{k} \mathbf{a}_{\nu})
\times \left\{ \langle \Psi_{P}(\mathbf{r} + \mathbf{a}_{\nu}) \Psi_{D}^{*}(\mathbf{r}) \rangle \left\langle \Psi_{P}^{*}(\mathbf{r}) \frac{\hat{\mathbf{l}}}{r^{3}} \Psi_{D}(\mathbf{r}) \right\rangle
+ \langle \Psi_{P}(\mathbf{r}) \Psi_{D}^{*}(\mathbf{r}) \rangle \left\langle \Psi_{P}^{*}(\mathbf{r} + \mathbf{a}_{\nu}) \frac{\hat{\mathbf{l}}}{r^{3}} \Psi_{D}(\mathbf{r}) \right\rangle \right\}.$$
(6)

Здесь в интегралах, содержащих функции $\Psi_P(\mathbf{r}-\mathbf{a}_{\nu})$, выполнена замена переменных $\mathbf{r}\to -\mathbf{r}$ с учетом нечетности функции $\Psi_P(\mathbf{r})$ и опущено слагаемое второго порядка малости по параметру $\exp(-|\mathbf{a}_{\nu}|/a_{\rm B})$. В недеформированном кристаллите величина $\mathbf{J}_L=0$.

Энергия обменного взаимодействия электрона проводимости с электронами намагниченности в ферромагнетике порядка энергии обменного взаимодействия соседних локализованных электронов и намного больше энергии магнитной анизотропии. Поэтому в (3) можно положить $\mathbf{s}_i = \mathbf{s}_L$ и $\mathbf{s}_L \mathbf{s}_i = 3/4$. Тогда, обозначив $\mathbf{J} = \mathrm{Re} \mathbf{J}_L$, получаем

$$V = 3\mathbf{J}\mathbf{s}_i/2. \tag{7}$$

При неоднородной дисторсии точка, в том числе узел кристалла с координатой ${\bf r}$, смещается в новое положение с координатой ${\bf r}'$ на вектор ${\bf u}$ [7]:

$$r_{lpha}'=r_{lpha}+u_{lpha}(\mathbf{r}), \quad dr_{lpha}'=\left(\delta_{lphaeta}+rac{\partial u_{lpha}}{\partial r_{eta}}
ight)dr_{eta},$$

$$dr_{eta} = \left(\delta_{lphaeta} + rac{\partial u_{eta}}{\partial r_{lpha}}
ight)^{-1} dr_{lpha}' pprox \left(\delta_{lphaeta} - rac{\partial u_{eta}}{\partial r_{lpha}}
ight) dr_{lpha}', \ rac{\partial}{\partial r_{lpha}'} = rac{\partial r_{eta}}{\partial r_{lpha}} rac{\partial}{\partial r_{lpha}} - rac{\partial u_{eta}}{\partial r_{lpha}} rac{\partial}{\partial r_{eta}}, \ \hat{l}_{lpha}' = -i arepsilon_{lphaeta\gamma} r_{eta}' rac{\partial}{\partial r_{\gamma}'} = \hat{l}_{lpha} - i arepsilon_{lphaeta\gamma} \left(u_{eta} rac{\partial}{\partial r_{\gamma}} - r_{eta} rac{\partial u_{\delta}}{\partial r_{\gamma}} rac{\partial}{\partial r_{\delta}}
ight), \ \Psi(\mathbf{r}') = \Psi(\mathbf{r}) + rac{\partial \Psi}{\partial r_{lpha}} u_{lphaeta} r_{eta},$$

где $\varepsilon_{\alpha\beta\gamma}$ — единичный антисимметричный тензор Леви—Чивитты, $u_{\alpha\beta}=\partial_{\beta}u_{\alpha}$ — тензор дисторсии, $\alpha,\beta,\gamma=x,y,z$. Соответственно меняется ориентация кристаллических осей и орбиталей валентных электронов. При дисторсии кручения образца вдоль оси \mathbf{n} вида $\Omega(\mathbf{r})=\mathbf{n}(\mathbf{r}\mathbf{n})\omega$, где ω — погонное кручение, ограничиваясь первой степенью дисторсии, получаем

$$u_{\beta} = \omega \varepsilon_{\beta \sigma \nu} n_{\sigma} n_{\mu} r_{\nu} r_{\mu},$$

$$u_{\gamma \delta} = \omega \varepsilon_{\delta \sigma \nu} n_{\sigma} n_{\mu} (r_{\nu} \delta_{\mu \gamma} + r_{\mu} \delta_{\nu \gamma})$$

$$= \omega \varepsilon_{\delta \sigma \nu} n_{\sigma} n_{\gamma} r_{\nu} + \omega \varepsilon_{\delta \sigma \gamma} n_{\sigma} n_{\mu} r_{\mu},$$

$$\hat{\mathbf{l}}' = \hat{\mathbf{l}} + \omega (\mathbf{n} \mathbf{r}) [\mathbf{n} \times \hat{\mathbf{l}}] + \omega (\mathbf{n} \hat{\mathbf{l}}) [\mathbf{n} \times \mathbf{r}],$$

$$\hat{l}'_{\alpha} = \hat{l}_{\alpha} + \omega \varepsilon_{\alpha \beta \gamma} n_{\beta} n_{\delta} (r_{\delta} \hat{l}_{\gamma} + r_{\gamma} \hat{l}_{\delta}),$$

$$\Psi(\mathbf{r}') = \Psi(\mathbf{r}) + i \Omega(\mathbf{r}) \hat{\mathbf{l}} \Psi(\mathbf{r}) = \Psi(\mathbf{r}) + i \omega n_{\beta} n_{\delta} r_{\delta} \hat{l}_{\beta} \Psi(\mathbf{r}).$$
(8)

Из соотношений (8) с учетом эрмитовости оператора момента и коммутационных соотношений $[\hat{l}_{\alpha},\hat{l}_{\beta}]=i\varepsilon_{\alpha\beta\gamma}\hat{l}_{\gamma},~[\hat{l}_{\alpha},r_{\beta}]=i\varepsilon_{\alpha\beta\gamma}r_{\gamma}$ в линейном по ω приближении получаем

$$\begin{split} \langle \Psi_C' | \Psi_L' \rangle - \langle \Psi_C | \Psi_L \rangle &= \omega n_\beta n_\delta \big\{ i \langle \Psi_C | r_\delta \hat{l}_\beta \Psi_L \rangle \\ &- i \langle r_\delta \hat{l}_\beta \Psi_C | \Psi_L \rangle \big\} = \omega \varepsilon_{\beta \delta \gamma} n_\beta n_\delta \langle \Psi_C | r_\gamma | \Psi_L \rangle = 0, \\ \langle \Psi_C' | \hat{l}_\alpha' | \Psi_L' \rangle - \langle \Psi_C | \hat{l}_\alpha | \Psi_L \rangle &= \omega n_\beta n_\delta \big\{ i \langle \Psi_C | \hat{l}_\alpha | r_\delta \hat{l}_\beta \Psi_L \rangle \\ &- i \langle r_\delta \hat{l}_\beta \Psi_C | \hat{l}_\alpha | \Psi_L \rangle + \varepsilon_{\alpha \beta \gamma} \langle \Psi_C | r_\delta \hat{l}_\gamma + r_\gamma \hat{l}_\delta | \Psi_L \rangle \big\} \\ &= 2\omega \varepsilon_{\alpha \beta \gamma} n_\beta n_\delta \langle \Psi_C | r_\gamma \hat{l}_\delta | \Psi_L \rangle. \end{split}$$

Подставим эти соотношения в уравнение (6) и в первом порядке малости по ω и ${\bf ka}_{\nu}$ получим

$$J_{\alpha'} = \varepsilon_{\alpha'\beta'\nu'} n_{\beta'} n_{\delta'} k_{\sigma'} a_{\nu\sigma'} B_{\nu\nu'\delta'},$$

$$B_{\nu\gamma'\delta'} = 4ZD\omega \operatorname{Im} \left\{ \langle \Psi_P(\mathbf{r} + \mathbf{a}_{\nu}) \Psi_D^*(\mathbf{r}) \rangle \left\langle \Psi_P^*(\mathbf{r}) \frac{r_{\gamma'}\hat{l}_{\delta'}}{r^3} \Psi_D(\mathbf{r}) \right\rangle \right\}. \tag{9}$$

Соотношение (9) записано в системе координат, связанной с кристаллическими осями домена. Из уравнения (7) следует, что средний спин электронов проводимости в домене ориентирован вдоль вектора **J**. Рассмотрим макроскопическую область многодоменного ферромагнетика, однородного и изотропного в отсутствие

деформаций. Введем лабораторную систему координат, связанную с приборами, которые задают деформации и измеряют компоненты спина. Компоненты векторов и тензоров в лабораторной системе будем обозначать индексами без штриха, а в системе координат, связанной с кристаллическими осями домена, — индексами со штрихом. Зададим в лабораторной системе кручение на угол $\Omega(\mathbf{r})$.

Преобразуем вектор кручения и волновой вектор из лабораторной системы в систему кристаллических осей: $n_{\beta'} = p_{\beta'\beta}n_{\beta}, k_{\sigma'} = p_{\sigma'\sigma}k_{\sigma}$, где $p_{\beta'\beta}$ — унитарная матрица поворота. Подставив это преобразование в уравнение (9), преобразуем компоненты векторов **J** и \mathbf{l}_L из системы кристаллических осей в лабораторную систему

$$J_{\alpha} = m^* p_{\alpha\alpha'}^{-1} p_{\beta'\beta} p_{\delta'\delta} p_{\sigma'\sigma} j_{\sigma} \varepsilon_{\alpha'\beta'\gamma'} n_{\beta} n_{\delta} a_{\nu\sigma'} B_{\nu\gamma'\delta'} / (ne\hbar),$$
(10)

где j — плотность тока проводимости, n — концентрация электронов проводимости.

Усредним вектор \mathbf{J} (10) в макроскопической области по случайным ориентациям кристаллитов. Матрицу поворота удобно выразить через углы Эйлера. Аналитическое усреднение дает выражение для усредненного вектора \mathbf{J} в виде

$$\bar{\mathbf{J}} = \frac{2m^*ZD\omega}{3ne\hbar} \operatorname{Im} \left\{ \left\langle \Psi_P(\mathbf{r} + \mathbf{a}_{\nu}) \Psi_D^*(\mathbf{r}) \right\rangle \right. \\
\left. \times \left\langle \Psi_P^*(\mathbf{r}) \frac{\mathbf{a}_{\nu} [\mathbf{r} \times \hat{\mathbf{l}}]}{r^3} \Psi_D(\mathbf{r}) \right\rangle \right\} \left[\mathbf{n} \times [\mathbf{n} \times \mathbf{j}] \right]. \tag{11}$$

Скаляр в фигурных скобках в формуле (11), где подразумевается суммирование по ν , зависит только от свойств недеформированного кристалла. Его можно вычислить в осях симметрии кристалла. Двойное векторное произведение в (11) состоит из векторов, заданных в лабораторной системе координат и описывающих воздействие на поликристаллический образец. Его модуль максимален, когда вектор плотности тока проводимости ортогонален оси кручения. В этом случае средний спин электронов проводимости будет ориентирован преимущественно вдоль вектора плотности тока.

За последние годы появился ряд экспериментальных работ, в которых обнаруженные эффекты спинтроники и спинкалоритроники еще не получили объяснения: управление направлением потока тепла магнитнотермоэлектрическим эффектом в деформированном металлическом магнетике [8], расширение температурного диапазона накачки тепла с помощью эластокалорического эффекта [9], аномальный эффект Риги—Ледюка в ферромагнитных материалах [10]. Представленная в работе модель может лечь в основу теории новых эффектов.

Финансирование работы

Исследование выполнено за счет средств гранта Российского научного фонда № 22-22-20035 (https://rscf.ru/project/22-22-20035/) и за счет средств бюджета Волгоградской области.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Н.Г. Бебенин, ЖЭТФ, **161** (5), 737 (2022). DOI: 10.31857/S004445102205011X [N.G. Bebenin, JETP, **134** (5), 630 (2022). DOI: 10.1134/S1063776122050028].
- [2] S. Zhang, in *Spin current*, ed. by S. Maekawa, S.O. Valenzuela, E. Saitoh, T. Kimura (University Press, Oxford, 2012), p. 424.
- [3] A.A. Бухараев, A.K. Звездин, Α.П. Пятаков. Ю.К. Фетисов, УФН, 188 (12), 1288 (2018).10.3367/UFNr.2018.01.038279 A.A. Bukharaev, A.K. Zvezdin, A.P. Pyatakov, Yu.K. Fetisov, Phys. Usp., 61 (12), 1175 (2018). DOI: 10.3367/UFNe.2018.01.038279].
- V.K. Ignatiev, N.G. Lebedev, A.A. Orlov, S.V. Perchenko,
 J. Magn. Magn. Mater., 494, 165658 (2020).
 DOI: 10.1016/j.jmmm.2019.165658
- [5] В.К. Игнатьев, Н.Г. Лебедев, Д.А. Станкевич, в сб. *Материалы Междунар. науч.-практ. конф. "Материаловедение, формообразующие технологии и оборудование* 2022" (Симферополь, 2022), с. 438.
- [6] В.Б. Берестецкий, Е.М. Лифшиц, Л.П. Питаевский, Квантовая электродинамика (Физматлит, М., 2002). [V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum electrodynamics, 2nd ed. (Elsevier, Amsterdam, 1982), vol. 4.].
- [7] Г.С. Кринчик, Физика магнитных явлений (Изд-во МГУ, М., 1976).
- [8] S. Ota, K.-I. Uchida, R. Iguchi, P.V. Thach, H. Awano,
 D. Chiba, Sci. Rep., 9, 13197 (2019).
 DOI: 10.1038/s41598-019-49567-2
- [9] R. Snodgrass, D. Erickson, Sci. Rep., 9, 18532 (2019). DOI: 10.1038/s41598-019-54411-8
- [10] D.-K. Zhou, Q.-L. Xu, X.-Q. Yu, Z.-G. Zhu, G. Su, Sci. Rep., 10, 11732 (2020). DOI: 10.1038/s41598-020-68669-w