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Introduction. Quasimolecular radiative
transitions. Forbidden transitions.
Spin-forbidden transitions

The review relates to a theoretical description of the spec-

troscopy of single-quantum radiative transitions in diatomic

quasimolecules, i. e., absorption/emission spectra, which are

formed during slow pair collisions of atoms. The term

”
asymptotic forbidden“ means, as in atomic spectroscopy,

that the dipole moment of such transition becomes zero, but

at large interatomic distances. At first thought, it might seen

that there is no special need to pay attention to some special

case of the relatively long and well-developed physics of

broadening and shift of spectral lines, which deals precisely

with the collisions effect on the shape of lines. For example,

in the extensive review [1] known to spectroscopists,

maximum one page is devoted to such transitions, which

are called
”
forbidden“there. Already simple qualitative

considerations, however, point to a significant difference

between quasimolecular transitions, which are allowed or

forbidden in isolated atoms.

Allowed transitions can be understood and described,

at least approximately, as radiative transitions between

two quasimolecular states that do not interact with other

states. In the first approximation, we can assume that the

central part of the contour of the allowed quasimolecular

transition — Lorentz is located by frequency near the

corresponding atomic transition. The broadening of the

contour is associated with the long-range part of the

interatomic interaction potential, and the satellites in the far

wings are due to possible extrema in the difference between

the potential curves of the initial and final states.

A satisfactory description of forbidden transitions in

isolated atoms is made on the basis of high orders of

perturbation theory [2] and leads to a significantly lower

transition probability compared to allowed transitions. But

the situation changes radically in the presence of buffer gas

atoms. The interaction of an excited atom with a buffer gas

atom is accompanied by a decrease in the symmetry of the

electronic potential compared to an isolated atom, so that

radiative transitions forbidden by parity, momentum, or spin

in isolated atoms are allowed in quasimolecules.

The quasimolecular mechanism of the prohibition re-

moval can be understood and described, as a rule, already

in the first order of the perturbation theory, but for

several states interacting with the initial excited state in

the region of average interatomic distances R ∼ 10a0. The

variety of mechanisms of interaction of atoms leads to

the fact that the formed bands differ from the Lorentz

ones and can no longer be described by a single formula.

Another consequence of the need to take into account

the interaction of excited states is that the description of

forbidden radiative transitions turns out to be related to

the problem of nonadiabatic transitions in collisions, so

that there is an opportunity to extract information about

nonadiabatic transitions in collisions of atoms from data on

the shape of the contour [3]. Usually, at the first stage of

the analysis of forbidden transitions,
”
a quantum-chemical

(or static) problem“is solved in a certain sense, i.e., the

dependence of the energy terms and dipole moments of

the quasimolecule on the interatomic distance is determined

in one way or another, and only then the problem of

determining the shape of the spectrum of the corresponding

transition is solved.
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In this paper, we discuss the results of calculations

and, in some cases, compare them with experimental

data for transitions that are spin-forbidden in the LS-
bond approximation in isolated atoms. The prohibitions

removal relating the orbital momentum, especially for the

quasimolecules of alkali metal atom–inert gas atom, has

been developed in sufficient details [3–5]. In the review

paper on the collisions effect on atomic spectral lines [1]
only s−s, s−d transitions in alkali metals are discussed.

In the collective monograph [6] maximum one paragraph is

devoted to forbidden quasimolecular transitions.

Note two more thematic features of the proposed review.

It discusses quasimolecules of two types, composed of

atoms of groups 2A, 12 of the Periodic Table with an excited

two-electron configuration nsnpand atoms of inert gases in

the ground states, as well as asymmetric quasimolecules

composed of excited atoms of inert gases with electron-

hole configuration np5n′s, and inert gas atoms in ground

states.

This choice of objects was made for two reasons. In both

cases, we are talking, in essence, about the description of a

two-particle excited configuration, which makes it possible

to most clearly trace the mechanisms for the prohibitions

removal on radiative spin transitions. On the other hand,

the absence of symmetry in rearrangement of atoms makes

it possible to significantly simplify calculations and restrict

oneself to a transparent analytical approach for estimating

the interaction in the region of average interatomic distances,

which is responsible for removal of the prohibition on the

radiative transition in the quasimolecule.

Radiation processes in symmetric quasimolecules repre-

sent a separate and important field, especially since one of

the first papers on the theory of forbidden transitions was

carried out by Allison et al. [7] on the calculation of the

cross section of radiation induced by He(21S) + He(11S)
collisions. For the static part of the problem in [7] an

analogue of LCAO was used. Radiation processes in

symmetric collisions can also include processes involving

ions, such as charge exchange. In particular, resonant charge

exchange to the ground state of ion is accompanied by a

quasimolecular radiative transition, the probability of which

goes to zero at large distances R [8,9].
On the topic of forbidden transitions in the experiment.

For obvious reasons, its
”
popularity“ is significantly below

the popularity of the study of quasimolecular radiative

transitions associated with allowed atomic transitions. See

review [10] about those for the nsnp configuration. Nev-

ertheless, the discussed transitions are also interesting for

experiment for at least two reasons. First, their study, as

compared with atomic ones, is facilitated by a significantly

higher transition probability, since it is due to the interaction

of several quasimolecular states already in the first order. In

addition, there is no need to extrapolate the data to zero

density of the buffer gas. Secondly, the change in the

concentration of atoms in metastable states, which often

determines the properties of low-temperature plasma, is

largely due to radiative transitions, which is especially true

for quasimolecules containing a heavy atom. Note that the

use of experimental data below is mainly illustrative and

does not pretend to be complete.

Below, unless otherwise noted, atomic units are used.

1. Radiative transitions nsnp
3P2 ↔ ns 21S0

1.1. Mechanism of prohibition removal

The first discussion of the prohibition removal for the

spin-forbidden radiative transition induced by thermal colli-

sions of atoms of the 12 group of the periodic table (or, in
the old terminology, the side subgroup of the II group)

M(nsnp3P2) + X(1S0) → M(ns21S0) + X(1S0) + ~ω, (1)

where M = Zn, Cd, Hg with heavy rare atoms X = Ar, Kr,

Xe was carried out in [11]. The discussion was based on

the calculation of the matrix elements of the quasimolecule

Hamiltonian:

Ĥ = ĤM∗ + ĤX + V̂S0 + V̂, (2)

in the basis of molecular functions composed of the

products of the corresponding atomic functions in c basis

according to Hund:

|1,3P j� = 1〉 = |M(1,3P j mJ〉|X(1S0)〉, (3)

j = 1, 2, 3, mj = 1.

For one excited configuration the matrix elements are

expressed in terms of the Slater exchange integral G, the

Lande coefficient, and the interaction potentials of H6,5

atoms in the states 6 and 5 without taking into account

the electrostatic and spin -orbital splitting of atomic levels

M(nsnp). In [11] these potentials were estimated within the

framework of the asymptotic theory [12,13]. The prohibition
removal for the radiative transition is caused by the interac-

tion of three states. In the course of collisions with inert gas

atom, the interaction of the excited states 3P1,
3P2 leads to

splitting of 6- and 5-terms: 1H(R) =3 H6(R) −3 H5(R),
so the adiabatic quasimolecular wave function of the state

� = 13P2 will include the wave function of the resonance

state 1P1, which, in its turn, is connected by spin-orbit

interaction with the state function 3P1 already in an

isolated atom. Thus, the quasistatic radiation width of the

quasimolecular state turns out to be proportional to the

probability of a spontaneous resonant transition 1P1 → 1S0.

The shape of the spectrum averaged over the Maxwellian

distribution of atoms with temperature T can be described

in the first approximation as

W(1ω) =
1ω

T2
exp

(
−1ω

T

)
, (4)

where the frequency 1ω > 0 is measured from the tran-

sition energy 3P2 → 1S0. The radiation maxima form
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transitions in the vicinity of the turning point for the

classical motion of atoms in the potential � = 1 (3P2).
The total average cross section of radiation quenching

turns out to be proportional to Tn, n ≈ 1.5−2.5. Such a

dependence on temperature agrees with experimental data,

but the absolute value of the cross section for a number

of pairs is by an order of magnitude smaller, although

it significantly exceeds estimates based on perturbation

theory as applied to the isolated atom. On the whole, the

results [11] led to the conclusion that, when considering

forbidden transitions in an atmosphere of buffer gases,

the quasimolecular mechanism should be involved, but in

order to achieve quantitative agreement with experiment,

the theoretical approach should be more accurate and take

into account the effect of nonadiabatic transitions and the

associated violation of the quasistatic approximation for the

shape of the spectral lines.

1.2. Calculation of interaction potential and

radiation width

Focusing on the most important area of application for

the processes under consideration i.e. low-temperature

plasma, we can assume that the collision energies of atoms

forming quasimolecules are thermal, therefore, for quanti-

tative estimates, information is needed on the interaction

potentials at medium and large interatomic distances. To

analytically estimate the potentials in this region, one can

use the method of the effective Hamiltonian [12]. With the

use of this approach in [14–17] the potentials of the lower

excited states of various asymmetric quasimolecules with

atoms of the 12 group and inert gases were constructed. In

this approach, the Hamiltonian is constructed as the sum of

the Hamiltonians of the interacting excited atom with the

buffer gas atom without taking into account the spin-orbit

interaction:

Ĥ = ĤM∗X + V̂S0. (5)

As follows from Section 1.1, in order to calculate the

radiative decay of a metastable atomic state 3P2, it is

necessary to take into account the interaction between

quasimolecular states with the projection of the total

momentum onto the molecular axis � = 1. Bearing in

mind the subsequent calculation of the radiation width, it

is convenient to carry out such calculation in the basis

of the wave functions that is intermediate between the a
and c coupling types according to Hund. Indeed, at

medium interatomic distances, the interaction of the orbital

momentum with the axis prevails, while at large distances

this interaction is comparable to and is smaller than the

spin-orbit interaction in the excited atom. Functions of

the intermediate type of coupling are built in two stages.

At the first stage, among the distance-dependent functions

|R, (LS)36〉(a) in the Hund basis a, which diagonalize the

Hamiltonian ĤM∗X :

〈R, (LS)3′6′|ĤM∗H |R, (LS)36〉(a)

= 2S+1H|3|(R)δ33′δ66′, (6)

functions of the diabatic basis are constructed for the case c:

|R, (LS) j�〉(c) =
∑

3,6

〈LS j�|L3S6〉|R, (LS)36〉(a), (7)

〈LS j�/L3S6〉 — Clebsch-Gordon coefficients. In the case

under consideration j = 1, 2, � = 1, so that

|R, (10)11〉c = |R, (10)10〉a(= |151〉), (8)

|R, (11)21〉c =
1√
2

[
|R, (11)10〉a + |R, (11)01〉a

]

=
1√
2
(|351〉 + |361〉), (9)

|R, (11)11〉c =
1√
2

[
|R, (11)10〉a − |R, (11)01〉a

]

=
1√
2
(|351〉 − |361〉). (10)

In parentheses the more familiar notations for functions of

the Hund case a are given. As can be seen from formu-

las (8), (10), the diabatic basis functions with j = 1, 2,

� = 1, but different spin values do not diagonalize the spin-

orbit interaction operator, although for atoms Zn, Cd, Hg

such interaction is essential. Therefore, at the second stage,

when constructing wave functions of intermediate type of

coupling, one should go to linear combinations:

|R, j�〉S = a|R, (10) j�〉(c)
LS + b|R, (11) j�〉(c)

LS = ϕ1,

|R, j�〉T = −b|R, (10) j�〉(c)
LS + a|R, (11) j�〉(c)

LS = ϕ3,

(11)
which, for large R diagonalize the Hamiltonian of ex-

cited atom with two electrons outside the filled shells

(superscripts S, T indicate the dominant value of the spin).
The amplitudes of the intermediate type of coupling a, b
can be expressed approximately in terms of the spin-orbit

interaction constant and the Coulomb exchange integral [18],
assuming that they depend weakly on the distance, or can

be determined from experimental data on levels splitting or

transition probabilities in atoms [19]. The third function ϕ2 c

� = 1 is the same as c (9). Table 1 lists the matrix elements

in the basis of the functions ϕi (� = 1), E1 = E(1P1) ,

E2 = E(3P2), E3 = E(3P1) are atomic energy levels of

configuration s p,

1,3H5(R) = 〈1,351|ĤM∗X|1,351〉,
3H6(R) = 〈361|ĤM∗X|361〉

are molecular terms defined in (10) for the case a without

spin-orbit interaction, H̄(R) = [3H6(R) + 3H5(R)]/2. Due
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Table 1. Matrix elements H�=1
i j in the basis of coupling type functions c for � = 1 [17]

Basis ϕ1 ϕ2 ϕ3

Hi j E1 + a21Hp(R) + b2H̄(R) −(b/2)1H(R) ab[H̄(R) −1 Hp(R)]
−(b/2)1H(R) E2 + H̄(R) −(a/2)1H(R)

ab[H̄(R) −1 Hp(R)] −(a/2)1H(R) E3 + b21Hp(R) + a2H̄(R)

to the low 1H5 in estimates we can assume that 1H5 = 3H5

in matrix elements H13,33.

Diagonalization allows one to define quasimolecular

terms and adiabatic functions as linear combinations of

functions (8)−(11):

|c, � = 1〉ad =

3∑

k=1

ck(R)ϕk. (12)

To calculate the radiation characteristics, it is convenient to

return to the basis of the diabatic c-functions (8), (11):

|c, � = 1〉ad = (c1a − c3b)|R; (10)11〉(c)
LS

+ c2|R; (11)21〉(c)
LS + (c1b + c3a)|R; (11)11〉(c)

LS . (13)

Since only the singlet state |R; (1q0)111〉(c)
LS is associated

with the ground quasimolecular state X16+ by the allowed

dipole transition, then the dipole moment d(R) of the

radiative transition c−X is

d(R) = [c1(R)a − c3(R)b]〈X16+|D̂|R; (10)11〉(c)
LS , (14)

while the probability of a quasimolecular radiative transition

Ŵc−X(R) =

(
a
b

c1(R) − c3(R)

)2(
ω(R)

ω(3P1)

)3

Ŵ(3P1), (15)

where ω(R), ω(3P1) are the frequencies of quasimolecular

and atomic transitions, Ŵ(3P1) is probability of atomic

transition.

Thus, to calculate the quasimolecular terms and the prob-

abilities of spin-forbidden radiative transitions information

on the matrix elements 1,3H6,5 is required. In the spirit

of the effective Hamiltonian method, we can assume that

these terms are the matrix elements of the operator of the

interaction of atom M∗ with an atom X without taking into

account the spin-orbit interaction. Further, the calculations

can be continued in two ways, either analytically, for

example, using the asymptotic theory [12,13] in combination

with well-founded models to describe the interaction of

excited electron with a structureless atom X, or using a

semi-empirical procedure involving the use of experimental

data on the spectra of allowed quasimolecular transitions.

Both approaches will be described and implemented below.

Note that, apparently, the first determination from ex-

perimental data of the potential curves of states involved

in the asymptotically forbidden quasimolecular transition

was undertaken in [20], and the first calculation of the

corresponding terms in the quasirelativistic approach ab ini-

tio is in [21]. The mechanism for the prohibition removal

and determining the dependence of the radiative transition

probability were not considered in these papers.

1.3. Quasimolecules with light atoms of inert
gases. Fermi pseudopotential

The main difficulty in applying the effective Hamiltonian

method introduced for the problems under consideration

in Section 1.2 is associated with estimating the matrix

elements of the atoms interaction operator. To overcome

it, two approaches were proposed and implemented. One of

them is based on the use of the Fermi pseudopotential, the

original form of which considered only the short-range part

of the exchange interaction [22].
In the framework of the effective Hamiltonian method,

the operator of interaction of colliding atoms ĤM∗X without

spin-orbit interaction consideration is composed as the sum

of the Hamiltonians of free atoms:

ĤM∗X = ĤM∗ + ĤX + 2S+1Ĥ3 (16)

and the interaction 2S+1Ĥ3, which is the sum:

2S+1Ĥ3 = Û + V̂ion (17)

the effective one-electron operator of interatomic interac-

tion Û and the operator V̂ion of the interaction of the ion

core with buffer gas atom [23]. In the region of large and

medium interatomic distances, for the last operator, we can

limit ourselves to the approximate expression

Vion = − β

2R4
, (18)

where β is the dipole polarizability of the atom X.

To calculate the matrix elements of the operator of

interatomic interaction in the case of light inert gases, one

can use the Fermi pseudopotential [22], which depends on

one parameter L i.e. the scattering length of excited electron

on buffer gas atom:

Û = 2πLδ(r) + V̂ ′.

The operator Û represents the sum of two terms — short-

range exchange and polarization terms, taking into account

the screening of the interaction of the ion core M+ with

the atom X by the field of the excited electron np [24].
The matrix elements of the short-range interaction of an
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excited electron with a perturbing atom and the long-range

polarization interaction, considering the interaction of three

particles (M+, e and X), were made in papers [25–27].
Diagonal elements for 3 = 6, 5 are given in [14] for singlet
and triplet states:

2S+1I6(R) = 2S+1Uex
p6 + 2S+1Uscr

p6 , 2S+1H5(R) = 2S+!Uscr
p5 .

(19)
Here,

2S+1Uex
p6 = 2π2S+1B|Y10(R/R)|2|2S+1 f np(R)|2 (20)

is exchange interaction potential, 2S+1 f (ρ) are radial wave

functions of excited electron np (as such in [14], for

example, the atomic wave functions of the approximation

of the effective orbital quantum number [28]) are used.

The electron scattering length L is somewhat modified

depending on the range of interatomic distances, so that

2S+1B = L, at R < |1/2S+1E∗|. (21)

The expression for Uscr
p65 is given in [18].

1.4. Quasimolecules M∗
−He,Ne. Quenching rate

constant

The reason for the isolation of quasimolecules composed

of atom with two valence electrons and atom of a light

inert gas is clear from the discussion in Section 1.3. For

such quasimolecules the terms and radiation widths can be

calculated analytically using the known characteristics of

free atoms, in particular, the scattering length. For heavy

inert gases X = Ar, Kr, Xe, such approach is unacceptable,

since the significant polarizability violates the applicability

conditions for the Fermi pseudopotential [25]. Another

limitation, but already related to the excited atom, forces

us to limit ourselves in this section to M = Cd, Ba, Yb,

Hg. The reason is that for light atoms, the distance

between the levels 3P1,2 involved in the process turns

out to be comparable with the thermal energy of the

collision, so that nondiabatic transitions must also be taken

into account when analyzing radiative processes (for more

details, see Section 1.8). Considering these limitations

it is reasonable to start the discussion with Hg∗−He

quasimolecule, especially since the small potential energy

wells in the ground and excited states make it difficult

to use laser-induced fluorescence methods. Just these

methods were used to obtain the most reliable data on

the characteristics of radiating states, which are necessary

in the case of heavy inert gases (see Section 1.5 below).
In the case of Hg∗−He, the experimental spectroscopic

characteristics were obtained only for the state 0+(3P1) [29].
The results of theoretical studies based on the considerations

presented in Sections 1.2, 1.3 have already been presented

in review papers [30,31], so only some new results are

discussed below [32].
There are two related questions to the approaches of

Sections 1.2, 1.3 i.e. just how the one-configuration ap-

proximation used is justified, and whether it is possible to

4 8 12 16
V
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n
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–200
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Figure 1. Potential curve of ion-atom interaction of Hg+−He.

Solid curve is result of ab-initio calculation Vion, dashed curve is

polarization interaction Vion−p = −β/2R4.

represent the interaction of the ionic shell with a neutral

atom by a simple polarization potential (18). The answers

to these questions make it possible to refine the regions of

interatomic distances, for which, nevertheless, it is possible

to apply a simplified approach.

To study the effect of interconfigurational interaction,

it is advisable to use the analytical expressions for the

matrix elements of the interaction obtained in [26,33,34].
For the first time, such approach to studying the effect

of interconfigurational interaction was applied in [35] for

the Li∗−He quasimolecule. Comparison with multiconfigu-

ration calculations ab initio [35] showed good agreement

between the results, which made it possible to transfer

the approach [34], which combines analytical estimates

of the interaction and allowance for multiconfigurational

interaction, and to the Hg quasimolecule ∗−He.

In this approach, it was shown in [23] that for the

states 1,35 the effect of the interaction with the nearest

13 excited configurations ns, d, f at R ≤ 7a0 is not es-

sential. For configurations 1,36, the effect of interaction

between configurations turns out to be more significant,

but for thermal collisions such interaction only slightly

changes the position of the turning point on the classical

trajectory in the region R ∼ (8−9)a0. On the whole, the

results of multi-configuration calculations [34,35] allow us

to conclude that even a single-configuration approximation

gives satisfactory results at binding energies of the electron

in atom below 5 eV, and is justified for atoms with low

polarizability, i. e. for He, Ne. Less encouraging results were

obtained in [31] to describe the interaction of the ionic core

with buffer gas atom Vion. The use of a simple formula (18)
in the case of X = He is justified only for R ≥ 7a0, where

Optics and Spectroscopy, 2022, Vol. 130, No. 14



Asymptotically spin forbidden quasimolecular radiative transitions (review) 2067

Table 2. Interaction potential parameters for Hg(61,3PJ) + He

State Re, a0 De, cm
−1

Calculation options a b c a b c

0−(3P0) 8.7 10.0 12 13 3.0 1.6

0+(3P1)
d 6.2 − 11.5 58 − 1.9

1(3P1) 9.1 10.4 12.3 10.4 3.1 1.3

2(3P2) 5.8 − 7.0 108 − 29

1(3P2) 9.1 10.5 12.4 10 3.0 1.1

0−(3P2) 9.5 10.7 > 13.5 8 3.1 0.8

1(1P1) 5.8 − 7.4 131 − 20

0+(1P1) 14.0 14.4 > 14 1.3 1.3 −

Note. a is calculation results [32]; b are calculations [23] using the

polarization approximation for the potential Vion; c are calculations [34]
using the potential from [42] for states 1,36 and 1,35; d — for the

state 0+(3P1) experimental values Re, De and D0 are respectively

Re = 6.54 [43], 6.6 [44], 6.8a0 [45]; De = 28 cm−1 [43]; D0 = 28 [44],
29± 2 [45], 13± 2 cm−1 [43].

the exchange repulsion of the Hg+ ion and He atom is

insignificant. In the region of smaller distances, one should

use the ion-atom interaction potential, which is obtained by

some independent method, for example, from experimental

data or as a result of non-empirical calculation. This is

how the potential of the ion-atom interaction Hg+−He was

obtained in [32] (Fig. 1) — using the multi-reference method

of configuration interaction, taking into account single and

double excitations (MRD-CI) [36–40] combined with the

relativistic effective core potential (RECP) method [39–41].
As can be seen from Fig. 1, for R < 5.5a0 the use of

formula (18) is unacceptable. Correct consideration of the

repulsive part of the ion-atomic potential made it possible to

determine the terms in a wider range of distances (Fig 2)
compared to [23], as well as the characteristics of the

deepest potential energy wells of states 1(1P1), 2(3P2),
0+(3P1) (Table 2, where the experimental data for states 0+

are also presented). Note that the calculated value by two

times exceeds the experimental value, while the calculation

using matrix elements from paper [42] (for more details

see Section 1.5) underestimates the value De by more than

order of magnitude.

According to the term pattern (Fig. 2), due to the quasi-

molecular radiative transition 1(63P2)−0+(61S0) the decay

of the metastable state Hg(63P2) forms a band that is shifted

to the short wavelength region with respect to the frequency

of the forbidden atomic transition ω2(6
3P2−61S0). The shift

~1ωm of the emission band maximum with respect to ω2,

as well as the distribution width are comparable to kT.
The radiation quenching rate constant is of practical

interest:

K(T) =
2

5
4π

∞∫

0

Ŵ(R) exp[−U(R)kT]R2dR (22)

in the process

Hg(6s6p3P2) + He(1S0) → Hg(6s21S0) + He(1S0) + ~ω,

where Ŵ,U is the radiation width and interaction potential

of the state c1(3P2), 2/5 is a statistical factor. The

results of the calculation of K(T) in various approximations

in the temperature range from 100 to 1000 K are given

in Table 3. The constant increasing with temperature

is associated with the distance decreasing of maximum

approach of atoms and accompanying increase in the

exchange interaction. Note that the interaction of config-

urations consideration has a weak effect on K(T) value

in comparison with the effect of the polarization ion-atom

interaction [32,46].

Calculations for Yb, Ba, and Cd atoms were also

performed in the one-configuration approximation (the
inclusion of the lanthanide Yb is justified, since many Yb∗

levels can be considered in the two-electron approxi-

mation) [47]. As in the case of the mercury atom,

quasimolecular radiation forms a narrow peak in the vicinity

of the forbidden atomic transition 3P2−1S0 1000 cm−1

wide. The values of the corresponding rate constants

are given in Table 4. The calculations were carried

out according to formula (22), which, strictly speaking,

is valid only for the repulsion potential U(R), but in

the case of X = He,Ne the potential energy wells are
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Figure 2. Interaction potentials of Hg(6s6p)−He. Solid curves —
calculation [32], dashed curves – calculation [23] for states 1(3P2)
and 0+(3P1) taking into account only the polarization component

of the ion-atom interaction.
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Table 3. Rate constants Kc−X (in 10−18 cm3s−1)
of collisionally induced radiative decay

Hg(6s6p3P2) + He(1S0) → Hg(6s21S0) + He(1S0) + ~ω

T, K Kc −X

Calculation options a b c

100 0.41 0.26 0.26

200 1.0 0.87 0.82

300 1.8 1.7 1.6

400 2.6 2.8 2.6

500 3.5 4.0 3.8

600 4.4 5.2 5.1

700 5.3 6.5 6.4

800 6.2 7.9 7.8

900 7.1 9.3 9.2

1000 7.9 10.6 10.7

Note. a are calculation results [32]; b are calculations [15] taking into

account the contribution of only the polarization interaction Vion−p in

multiconfiguration calculation of terms; c — taking into account the

contribution of only the polarization interaction Vion−p in one-configuration

calculation of terms.

Table 4. Rate constants (K × 1018,

cm3s−1) of collisionally induced radiative decay

M(3P2) + X(1S0) → M(1S0) + X(1S0) + ~ω; M = Cd, Ba,

Hg, Yb; X = He, Ar, Kr, Xe

T, K MX

CdHe BaHe YbHe HgNe∗ HgAr∗ HgKr∗ HgXe∗

100 0.07 0.24 0.29 0.33 1.8 5.0 13.4

200 0.20 0.62 0.89 0.86 2.9 6.6 15.5

300 0.36 1.00 1.61 1.5 4.3 8.5∗∗ 18.5∗∗∗

400 0.53 1.37 2.40 2.3 5.7 10.5 20.5

500 0.68 1.74 3.25 3.1 7.2 12.5 23.0

600 0.87 2.12 4.12 4.0 8.6 14.6 25.9

700 1.05 2.50 5.15 4.9 10.3 16.7 28.7

800 1.22 2.90 6.27 5.9 11.9 18.8 31.5

900 1.39 3.20 7.55 8.1 13.5 21.0 34.4

1000 1.55 3.86 9.04 7.9 15.1 23.2 37.3

Note. ∗ are calculations [46]; ∗∗ are experimental values (in units

of 10−18 cm3s−1) at T = 305, 346 and 373K are 6.1, 6.9 and 7.5 [9]
respectively; ∗∗∗ are experimental values (in units of 10−18 cm3s−1)
at T = 303, 330 and 385K are respectively 130± 22, 140± 30

and 170± 20 [48] and K(293 K) = 16 [49].

De ≪ kT, so the limitation associated with the centrifugal

barrier can be neglected (for details see Section 2.5).

A feature of the calculated values of K(T) is that they

are close to the corresponding values for the case of

Hg∗−He. This is due to the fact that the decrease in

the deviation from the LS bond compared to the Hg

atom and the accompanying decrease in the probability of

a radiative atomic transition 3P1−1S0 is compensated by

a shift in the range of strong mixing of state functions

1(3P1,
3 P2) as 1 = E2 − E3 decreases into the region of

larger distances.
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Figure 3. Interaction potentials Hg(6s6p)−H2 at θ = 0 (1),
π/4 (2), π/2 (3).

The advantage of the above approach, which combines

the effective Hamiltonian and pseudopotential methods,

is that it can be relatively easily transferred to the case

of molecular buffer gases, for example, Hg∗−H2. The

quadrupole interaction of excited electron with a molecule

mixes states with different projections of the electron angu-

lar momentum on axis z, which connects the excited atom

and the center of mass of the molecule H2, and leads to

the energy of the states depending on the angle θ between

axis z and the molecular axis. As an example, Fig. 3

shows the dependence of the interaction Hg(63P0)−H2

on R and θ [31]. This calculation did not consider the

dependence of the exchange interaction of the ionic core

with the hydrogen molecule on R and θ, so that the results

are valid only in R > 6a0 region; nevertheless, the approach

used and the calculation can be used to analyze the wings

of spectral lines generated by collisions with molecules.

1.5. Quasimolecules M∗ + Ar, Kr, Xe. Quenching
rate constant

The strong polarization interaction of an excited electron

with a heavy atom of inert gas prevents the use of

the Fermi pseudopotential. Nevertheless, the approach

proposed in Section 1.2, which is based on calculating

the matrix elements of the effective Hamiltonian, makes

it possible to obtain realistic estimates of the potentials

and probabilities of radiative transitions of the involved

quasimolecular states. The estimate is based on the fact

that the distance dependences of all eight quasimolecular

states generated by the nsnpconfiguration can be expressed

in terms of four functions 1,3H6,5(R) are the interaction

potentials in the 6 and 5 states without spin-orbit splitting.
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Table 5. Matrix elements H�=1
i j in the basis of coupling type

functions c for � = 0+ [17]

Basis |R, D, 10+〉S |R, A, 10+〉T

Hi j E1 + a21H6(R) + b23Hp(R) −ab1H(R)

−ab1H(R) E3 + b21H6(R) + a23Hp(R)

43 6 8
R, Å

2 5 7

1S X1 +0

1S
D 1 +0

1P

C 11

U

6 + Rg1
1P

6 + Rg3
2P

3S

d 3 –0

c 31

3P

b 32

B 31
6 + Rg3

1P

A 3 –0

a 3 –0

6 + Rg3
0P

6 + Rg1
0S

Figure 4. Schematic pattern of quasimolecular terms

M∗(nsnp) — Ar, Kr, Xe.

Indeed, matrix elements for states with � = 1 (Table 1)
were already used in Section 1.2, and for states with � = 0+

they are given in Table 5. The diagonalization of these

matrices allows us to define, in particular, the terms A

0+(3P1) and B 1(3P1) (Fig. 4), which are involved in the

formation of the wings of the allowed transition 3P1−1S0,

red and violet, respectively. Comparing the obtained terms

with those that can be determined from the experimental

data on the wings of the spectral line, it is possible to restore

the dependences of the matrix elements 1,3H6,5(R), if we
assume that the singlet and triplet elements are the same.

The estimate of the error of such a simplification in [16]
showed that the replacement does not lead to a significant

change in the potentials.

Table 6 compiled from the data [16,51] gives the charac-

teristics of the potential state curves 1(3P2) for a number

of quasimolecules recovered within the framework of the

Table 6. Characteristics of potential energy wells of the state with

� = 1(3P2) quasimolecules Hg(63P2) [16], Cd(63P2) [51] — Ne,

Ar, Kr, Xe

Quasimolecule Re, a0 De, cm
−1 ω, cm−1

Hg-Ne 9.34 13 8.0

Hg-Ar 9.00 51 12.5

8.88∗ 61.1∗ 11∗∗

56∗∗

Hg-Kr 8.70 91

8.75∗ 103.3∗

Hg-Xe 8.83 180 12.5

Cd-Ar 9.48 57 12

Cd-Kr 9.25 108 11

Note. ∗ — according to [17], ∗∗ — according to [50].

semi-empirical approach, as well as those obtained directly

in the experiment [50]. The restored potentials are valid for

R > 7a0, and their common feature is the presence of the

well capable of maintaining several vibrational states. Here

it is appropriate to make one general remark about the semi-

empirical method of terms determination. The point is that

the terms 0+(3P1), 1(
3P1), determined from experimental

data, are used in the form of Morse potentials for restoring

the terms of configurations nsnp, strictly speaking, are valid

in the vicinity of the minima of the radiating states. In

the same region of interatomic distances, the restored terms

should also be valid. Therefore, the distance dependence

of the terms and the associated reliability of describing the

distant wings of spectral lines formed by transitions far from

the region of the minima of the radiating potentials cannot

claim greater accuracy.

Since the diagonalization of the part of the Hamiltonian

for the states � = 1 (Table 1) also determines the coef-

ficients ci in formula (13), the described procedure for

restoring the potentials allows us to determine the radiation

width of the state c 1(3P2). It is convenient to introduce the

dimensionless reduced radiation width

γc−X(R) =
Ŵc−X(R)

Ŵ(3(P1)

(
�(3P1)

�c−X(R)

)3

, (23)

which does not depend on the ground state of the quasi-

molecule and characterizes the ratio of the squared dipole

moment of the quasimolecule and the dipole moment of the

atomic transition 3P1−1S0. As an example, Fig. 5 shows

graphs of γ(R)c−X from the paper [52] of quasimolecules

Hg∗−He, Ne, Ar, Kr, Xe. The radiation width s are

characterized by a strong distance dependence, as well as

by vanishing in the vicinity of R ∼ 9−10a0. The latter

circumstance is related to the fact that in the approximation

used the dipole moment is proportional to 1H = H6 − H5,

so at large R, where the long-range interaction prevails,

1H < 0, while for small R the exchange interaction prevails,

and 1H > 0.

One remark before discussing the results on the rate

constants of radiative quenching of the metastable state
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Figure 5. Reduced radiation width s γ(c1(3P2)) depending on R:
Hg-Xe (1), Hg-Kr (2—/), Hg-Ar (3), Hg-Ne (4 ), Hg-He (5) [52].

Table 7. Rate constants Kc−X (in 10−17 cm3s−1) of collisionally

induced radiative decay of Hg(6s6p3P2) in Ne, Ar, Kr, Xe

T, K Kc−X (Ne) Kc−X (Ar) Kc−X (Kr) Kc−X (Xe)

100 0.033 0.18 0.64 1.34

200 0.086 0.29 0.89 1.55

300 0.15 0.43 1.13 1.85

400 0.23 0.57 1.35 2.05

500 0.31 0.72 1.58 2.30

600 0.40 0.86 1.79 2.59

700 0.49 1.03 2.01 2.87

800 0.59 1.19 2.22 3.15

900 0.81 1.35 3.43 3.44

1000 0.79 1.51 2.65 3.73

M∗(3P2). The existence of potential energy wells in

the term c1(3P2), comparable to kT, has already been

noted above, which leads to a limitation of the range

of impact parameters in the classical motion of atoms.

This limitation should be taken into account when we

discuss radiation induced by paired free-free and free-bound

transitions during collisions, since transitions from bound

states in the potential energy well of the excited state also

partially contribute to this region [53–55]. Table 7 shows

the results of calculating the quenching rate constants for

Hg∗−Ne, Ar, Kr, Xe quasimolecules using formula (22),
which takes into account both types of transitions from both

free and coupled states. The paper [15] also presents the

results of calculations of the quenching constant, which take

into account transitions involving free atoms only. Taking

into account the insignificant depth of the potential energy

well kT, the results of calculations in two limiting cases

coincide even for the pair Hg∗−Xe for T > 500K. For

X = He, Ne, we can assume that the interaction is repulsive.

For quasimolecules with a Cd atom the condition, under

which one can neglect nondiabatic transitions from the

state 3P2 to the nearest atomic radiant state 3P1, is met

Table 8. Probabilities A(ν ′, ν ′′) (in s−1) of transitions

ν ′1(3P2) − ν ′′0+(1S0) in Hg-Ar, Kr, Xe quasimolecules

Rg Ar

ν ′′ ν ′

0 1 2 3 4 5

0 88 277 500 673 − −
1 409 900 1157 1143 − −
2 555 635 365 123 − −
3 197 23 41 171 − −
4 0 38 97 51 − −
5 17 2 0 26 − −

Rg Kr

ν ′′ ν ′

0 1 2 3 4 5

0 16 77 210 410 660 940

1 190 700 1470 2320 3040 3520

2 820 2140 3150 3400 3010 2290

3 1670 2460 1780 700 80 44

4 1560 670 0.1 433 1080 1290

5 540 44 730 770 280 4

Rg Xe

ν ′′ ν ′

0 1 2 3 4 5

0 140 669 1765 3418 5545 7577

1 910 3090 5690 7520 7920 6970

2 2190 4500 4400 2410 530 23

3 2380 1950 190 440 2130 3240

4 1040 18 920 1850 1040 73

Table 9. Radiation times τ (ν ′) of ν ′c1(3P2) states of CdAr and

CdKr [51,64] quasimolecules

ν ′ τ (ν ′), s

CdAr CdKr

0 3.7 · 10−3 1.3 · 10−3

1 1.6 · 10−3 6.2 · 10−4

2 1.2 · 10−3 4.3 · 10−4

somewhat worse than in the case of the Hg atom, the

splitting is 1171 cm−1 versus 4631 cm−1 in the Hg atom.

Potential curves and radiation width s for Cd−Ar,Kr

quasimolecules calculated in the approach discussed above

are given in papers [56,57]. As in the case of Hg, the

potential curve c1(3P2) is characterized by the presence of

potential energy well at R ∼ 9a0 with depth ∼ 100 cm−1,

and for the width — the presence of a root in the same

range of distances.

Above, with the exception of the discussion of Hg−H2

quasimolecule in Section 1.4, it was assumed that the

buffer gas X is monatomic, structureless. The transition
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to diatomic molecules, even not considering the electronic

excitation, complicates the analysis of quasimolecular optical

transitions. Absorption in the far wing of the collision

complex Hg(1S0 → 3P2)−N2, CO was measured for the

first time in paper [57], which was accompanied not only

by the predominant population of the state Hg(3P2), but

also by the population of Hg(3P1) state, which, of course,

is absent when the molecular buffer is replaced by inert gas.

This result was explained in [57] by the excitation of the

vibrational states of the N2K, CO molecules, which makes

it possible to reduce the energy defect between the initial

and final states.

A few remarks at the end of this Section. The results

presented were based on the development of a semi-

empirical method for calculating terms and radiation widths.

In essence, this approach continues the semi-empirical

approach to the analysis of atomic terms described in [58],
where terms of the same configuration are expressed in

terms of several parameters, which, in turn, are determined

by comparison with experimental data for radiating states.

Another important point is construction of atomic wave

functions of intermediate coupling type in the basis of LS-
coupling functions, which could be called the basis of zero-

order functions [15–17,59].
Pay attention to the fact that the dipole moment of the

optical transition changes sign, i. e., changes orientation to

the opposite, approximately at the boundary of the region

of dominance of long-range or exchange forces. Here

the situation also resembles the vanishing of the dipole

moment known in the physics of the atomic photoelectric

effect [60,61], but at a certain absorption frequency. The

presence of zeros of the dipole moment depending on

the distance between nuclei with charges Z1,2 was also

established in the exact calculation of the moments in the

one-electron problem [62].

1.6. Lifetimes of vibrational states in the potential
c1(3P2)

The calculation results presented in Section 1.5 predict

the presence of potential energy wells De ∼ 100 cm−1 at

Re ∼ 9a0 for Hg, Cd−Ar,Kr, Xe quasimolecules. In [50] the
first direct experimental observation of a bound-bound tran-

sition c−X is reported. The optical excitation of vibrational

states in the c1(3P2) potential for Hg−Ar was monitored

by subsequent excitation to the overlying state E. The

position of 7 vibrational levels was determined, which made

it possible to plot the Birge-Sponer graphic and determine

De = 56 cm−1 and ωr = 11 cm−1 (approximation by Morse

potential) in accordance with the data of Table 6.

The next question, which is related to vibrational states

and may be of interest for the physics of laser media, is

the estimate of the probabilities of radiative transitions ν ′,

which, according to Section 1.2, (17), is defined as

A(ν ′, ν ′′) =
ω(3P)2)

ω(3P1)
Ŵ(3P1)

∣∣∣∣
〈
ν ′

∣∣∣
ac1
b

− c3

∣∣∣ν ′′
〉∣∣∣∣

2

, (24)
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U∗(c1(3P2)), and ground U0 states, positions of energy levels

of vibrational states, and probability density distributions (solid
lines), probability of quasimolecular radiative transitions (dashed
line) [65].

where |ν ′, ν ′′〉 are wave functions of vibrational states in the

excited term c1(3P2) and the ground term X(1S0), as well
as an estimate of the state lifetime

τ −1(ν ′) = 〈ν ′|Ŵ(1(3P2), R)|ν ′〉. (25)

Both characteristics were calculated in paper [63] for

the Hg−Rg quasimolecule and in [51,64] for Cd−Rg. In

these papers, for the ground state potentials the data of

papers [65] for Hg and [66] for Cd were used. As an

example, Table 8 gives data on the transition probabilities

for quasimolecules with Hg atom, and Table 9 — data on

lifetimes for quasimolecules with Cd atom. It is appropriate

to mention here that the lifetimes of atomic metastable states

are equal to τm = 6.5 s (Hg(63P2)), 130 s (Cd(53P2)) [67].

On the whole, the transition probabilities vary over a wide

range, which is due to the effect of the strong dependence

of the transition dipole moment on the interatomic distance

and the degree of overlap of the vibrational functions of

the initial and final states (Fig. 6) [64]. For the lower

levels (ν ′ < 3), the decrease in lifetime with ν ′ increasing

is due to the abrupt increasing of the radiation width with

decreasing of interatomic distance. A further increasing

of vibrational excitation is accompanied by a decreasing

of the functions overlap and shift of the transition to

the region of medium distances, where the width now

changes insignificantly, so that the upper vibrational states

remain long-lived. Nevertheless, note that the interaction,

for example, with the Kr atom reduces the lifetime of

Hg, Cd−Kr excimer by 104−105 times as compared to the

isolated atomic state 3P2.
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1.7. Spectrum of radiative transitions involving

c1(3P2) state in quasistatic approximation

The forms of the absorption/emission spectra for

Hg, Cd−Ar,Kr, Xe quasimolecules are discussed below. For

these pairs, the available experimental data on the shapes

of the spectra of asymptotically allowed transitions make it

possible, using a semi-empirical procedure, to reconstruct

the potential state curve c1(3P2) and the radiation width

. Another feature of the chosen quasimolecules is the

possibility of neglecting nonadiabatic transitions between

states during thermal collisions, which at large R degenerate

into atomic 1P1,
{3}P2. In this case, the radiative transition

can be described as transition between two states with

energies U0 + ~ω and U∗(c1(3P2)).
The fundamental basis of the quantum description of

radiative processes in collisions of atoms under such

conditions is provided mainly in the papers [68–71], for

further development see [72]. In this approach, called the

quasistatic theory, it is assumed that the radiative transition

between two electronic states in a quasimolecule occurs in

the vicinity of the Condon point Rc, which is determined
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Figure 8. Quasimolecular radiative transitions Hg(63P2)−Ar:

(a) radiation at T = 292K, referred to the maximum in the band,

points — experiment [59], 1 — calculation [75], 2 — asymptotic

estimate [4]; (b) absorption, also referred to the maximum [17],
the experimental and calculated data coincide on the graph scale.

by the condition that the photon energy and the difference

potential are equal, i. e.

1U(R = Rc) = U∗ −U0 = ~ω. (26)

Using the semiclassical approximation for the trajectory of

atoms allows us to write a simple formula for the shape

of the spectrum. It turns out [73] that, as in the case of

an isolated atom, it is sufficient to calculate the Fourier

component of the matrix element of the dipole moment D,

but which is now calculated on the time-dependent wave

functions of the quasimolecule. For example, the amplitude
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of photon emission has the form

b(ω) = −i
∫ √

2(αω3)

3πg
D(t) exp

[
−i

∫
[1U − ω]dt′

]
dt,

(27)
where the square of the pre-exponential factor is, up to

2π, the Einstein coefficient (or the radiation width Ŵ)
for the radiation of the quasimolecule at time t, α is

the fine structure constant. After summing over the

impact parameters and averaging over the Maxwellian

velocity distribution, formula (27) leads to the well-known

expression for the spectral line wing in radiation in the

quasi-static approximation:

K(ω, T) = 4πR2
c

Ŵ(Rc)

| d
dR1U(Rc)|

exp

[
−U∗(Rc)

kT

]
(28)

and to the absorption coefficient

γ(ω, T) = πλ2R2
c

Ŵ(Rc)

| d
dR1U(Rc)|

exp

[
−U0(Rc)

kT

]
. (29)

The last two formulas, after multiplying (28) by 2/5, were

used to calculate the short-wavelength wings of the spectra

of c−X quasimolecular transitions in collisions of Hg, Cd

atoms with atoms of inert gases in the ground state [74,75].
In the calculation, we used the terms and radiation width

s obtained using the pseudopotential method, Section 1.4,

and also in the case of Ne, using the semi-empirical method.

A detailed discussion of the terms and comparison of

non-empirical results with semi-empirical results for these

pairs is given in [14,32], and the results for emission and

absorption contours for various gas cell temperatures in

the case of Hg−Ne [75] are shown in Fig. 7. They are

characterized by two features, which are due to the nature

of the dependence of terms and radiation width on the

interatomic distance. The absorption maximum is shifted

to the short-wavelength region compared to radiation, since

the repulsion of the excited electron by He, Ne atoms

is observed at larger distances compared to the repulsion

by a normal shell ns2, so the transitions are concentrated

in the region where the radiation width is small. For

the same reason, there are no transitions in the long-

wavelength region of the spectrum ω < ω0 (3P2 ↔ 1S0).
Another feature is a noticeable absorption increasing with

temperature rise, since this leads to the distance decreasing

of closest approach of atoms and the transition probability

increasing. The possible effect of transitions from bound

and quasi-bound states is discussed below.

Let’s now review transitions in the quasimolecules

Hg−Rg, Rg=Ar, Kr, Xe. For the Ar case calculations

for emission and absorption were made in [75], and the

temperature dependence of the shape of the emission

spectrum was calculated and compared with experimental

data in [65] (Fig. 8, a). In [17] the absorption was

controlled by the subsequent transition 63P2 → 73S1, and

the experimental results were compared with calculations
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2 — difference potential 1U , 3 — ground state poten-

tial U0;(b) radiation width related to the width of the atomic state

Xe(5p6s3P2). Solid and dashed lines correspond to two different

sets of experimental data for radiating quasimolecular states [77].

in the approach described in Sections 1.2, 1.3, using

experimental data on Hg(3P1−1S0)−Ar transitions [76]
(Fig. 8, b). Both calculations and experimental data not only

for Hg−Ar, but also for Hg−Kr, Xe [77] confirm the main

conclusions obtained from the consideration of Hg−He, Ne

quasimolecules. Quasimolecular transitions during pair

collisions form a satellite located in the short-wavelength

region with respect to the atomic transition Hg(3P2−1S0),
the position of the maximum of which shifts towards higher

frequencies with temperature rise. The difference in the

positions of the absorption and emission maximums relates

to the nature of the nature of distance dependence of the

terms of the ground and excited states and the radiation

width (Fig. 9). Since these dependences were constructed

in [16,52] on the basis of various experimental studies,

Fig. 9 also allows one to judge about
”
stability“ of the semi-

empirical method for determining terms and widths.

Quasimolecules with atoms of heavy inert gases

X = Ar,Kr, Xe are characterized by the presence of a
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minimum in the term c1(3P2) at R ∼ 10a0 with depth

De ∼ kT (Table 6). Therefore, in contrast to X = He,Ne,

the question arises of how transitions involving vibrational

states ν, ν ′ of the excited and ground states affect the shape

of the spectrum. Considering such states instead of (1),
one should write the processes of emission and absorption

under the conditions of gas cell as

M(3P2) + Rg, MRg(c11P2, ν) ↔ M(1S0)

+ Rg + ~ω, MRg(X1S0, ν) + ~ω. (30)

In he approximation of paired collisions and for classical

trajectories this question is solved when calculating the

shape of the spectrum based on formula (28) by limiting

the upper boundary of the region of integration with

respect to the impact parameters by the value of the

orbiting parameter [53,55]. For experiments under gas cell

conditions, the contour, obtained in this way, in radiation

corresponds to the low density limit. In the high-density

limit, conversion with increasing of the inert gas density

and three-particle collisions lead to a thermodynamically

equilibrium population of vibrational states in c1(3P2) term.

So in this limit, when

κτp[N] > 1 (31)

(κ — rate constant of vibrational relaxation, τp — char-

acteristic radiative lifetime of the state, [N] — density of

atoms), the formula again turns out to be valid (28) [54].
As shown in [46], the orbiting leads to decreased fraction of

transitions in radiation with a slight shift from the position

of the forbidden atomic transition. The effect of orbiting

on the shape of the radiation spectrum of Hg−Kr, Xe is

considered in [77]. Apparently, the effect of orbiting on

absorption was not considered, although in this case the

effect should be more significant, considering the greater

depth of the potential energy well in the ground state. The

effect of deviation from thermodynamic equilibrium on the

profile of spectral line wing was considered in [78]. As

follows from the results of this paper, under the conditions

of experiments in gas cell based on emission of vibrational

states in the term c1(3P2) we can assume that the excited

molecules are in a thermodynamically equilibrium state.

As noted in Section 1.5, for Cd-Rg quasimolecules the

presentation of c1(3P2) state, which is not associated with

nonadiabatic interaction with other states, is no longer

justified. Therefore, in [54] the spectral profiles induced

by Cd(53P2) collisions with Ar, Kr atoms are calculated

for T = 300 and 700K. As in the case of Hg, the

emission spectrum is a continuous band shifted to the short

wavelength region compared to the position of the forbidden

atomic line Cd(51S0−53P2). Since the depth of the potential

energy well of the initial state is less than kT (Table 6),
the band is formed mainly by transitions in two-particle

collisions in the vicinity of the turning point in the classical

motion of atoms, and the position of the radiation maximum

depends weakly on temperature, its magnitude decreases

with temperature rise. Absorption also forms a continuous

band in the short-wavelength region, which leads to selective

population of the 53P2 state of atoms with a kinetic energy

exceeding the thermal energy.

1.8. Effect of nonadiabatic transitions on the
shape of the spectrum of quasimolecules

In the previous Section the spectra were calculated

using the quasistatic approximation formulas (28), (29),
which are very clear — they are simply the probabilities

of emission/absorption of photon by pair of atoms at

distance R. The derivation of such formulas is based on the

estimation of the integral (27) by the saddle point method.

The disadvantages of the formulas are related to the fact

that they do not consider the possibility of the extremum

existence in the difference potential 1U(t), which, for

example, necessarily takes place in the vicinity of the turning

point of the classical trajectory and leads to the appearance

of
”
rainbow“ [79]. In the paper [80] a formula was

obtained that considers interference effects in the presence

of extremum in the difference potential, if the extremum is

located far from the turning point of the classical trajectory

of atoms. Using the quadratic approximation 1U(t) in the

vicinity of the Condon point, we can express in [79,80]
the transition amplitude in terms of the Airy function. The

disadvantage of the used approximation is obvious; it is valid

for transitions in the vicinity of the extremum only. A more

general description based on the 1U(t) approximation of

the Morse functions and the exponential dependence of the

radiation width is proposed in [81,82]. In this approximation

the amplitude is expressed in terms of a parabolic cylinder

function with a complex exponent, which made it possible

to describe in a unified way the Lorentz line center, line

wings, and also the satellite generated by the extremum of

the difference potential [83]. The use of this formula led to

good agreement with the experimental data on absorption

for the asymptotically forbidden transition

Ca(4s21S0) + He + ~ω → Ca(4s3d1D2) + He

in [84]. Finally, in [85,86] a uniform quasiclassical descrip-

tion of the general case of a radiative transition between

two exponential terms and a radiation width that depends

exponentially on distance is obtained. The transition to

quasiclassical theory made it possible, in particular, to

describe the shape of the emission band [87] in the reaction

Ar(3p54s3P2) + He → Ar(3p61S0) + He + ~ω

at collision energies ∼ 100 cm−1.

Another limitation of the quasistatic approximation used

in Section 1.7 relates to the assumption that the state

of c1(3P2) quasimolecule is sufficiently isolated so that

nonadiabatic transitions to other states can be neglected, and

this is well justified for the experimental data obtained in gas

cells. But when passing, for example, to quasimolecules,

including atoms of the main subgroup II the group of
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elements of the Periodic Table, especially light alkaline earth

elements, then such assumption will no longer be valid.

Indeed, for example, the splitting 1ε(3P2−3P1) = 106 (Ca),
41 (Mg) cm−1 ≤ kT, which should be considered when

calculating the spectral profiles.

Further, when analyzing the process, it should be con-

sidered that radiative transitions occur at all interatomic

distances at which the dipole moment is nonzero, while

the nonadiabatic transition is localized in the vicinity of

some R0, the center of the limited transition region. Before

reaching this region during the collision and after it, the

system develops adiabatically, so that the spectrum can be

described on the basis of formula (27). Of course, the

distance dependences of both terms and dipole moments

in these two regions will be different. Another important

difference between the radiative transitions of the outer

shells of atom — they are proportional to α3, and can

be considered in the framework of perturbation theory.

Thus, the effect of nonadiabaticity on the shape of the

spectrum can be considered in the following way — first,

the problem of nonadiabatic transitions is solved, and then

the spectrum is calculated with the obtained wave functions,

which depend on R. The theory of non-adiabatic transitions

in pair collisions of atoms was developed in sufficient

details [88]. The only complication in calculating the shape

of the spectrum is that in contrast to the collision theory, it

is now necessary to know the corresponding wave function

for all R, but not only in the asymptotic regions of large and

small R.
As can be seen from Fig. 2, 4, that the terms of nsnpcon-

figuration are characterized by a relatively weak dependence

on distance at large R (the terms are almost horizontal) and
a fast rearrangement in the range of averages ∼ (7−8)a0,

i. e. situation qualitatively corresponding to Demkov model

of nonadiabatic transitions [89]. Within this model, the band

profile is determined by two parameters [90]:

ξ∗ =
π1ε

2α
√

2kT
µ

, � =
2(ω − ε0)

1ε
. (32)

The first of them is the Massey parameter (µ is the

reduced mass of colliding atoms), which determines the

probability of transition between states, and the second is

the optical transition energy in units of 1ε — splittings of

atomic terms 3P2,1, so energies of atomic levels in this scale

are � = ±1. Figure 10 shows the emission band profile for

the case under discussion, i.e., it is assumed that two states

interact, radiating and metastable, and initially before the

collision only the metastable state is populated. The spectral

profile consists of two contours. This is Lorentz contour

with a center located at the place of the allowed transition

� = −1, and its intensity is determined by the probability of

a nonadiabatic transition from the metastable to the radiating

state. The second contour, a quasimolecular one, which

can be called a satellite, is formed by radiative transitions

at R < R0 and ω ∼ 1 from a state that was metastable at

large R, but the interaction in the region of small distances
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led to partial transfer of the dipole moment of the radiating

state. In the framework of the Demkov model for the

interaction V = V0 exp(−αR), such a rearrangement of the

radiation width is described by the formula

Ŵqm(R) = Ŵat sin
2
θ(R), θ(R) =

1

2
arctg

(
V0

1ε
e−αR

)
(33)
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from paper [90], Ŵat,qm are radiation widths of atomic

diabatic and quasimolecular adiabatic states.

According to the basic idea of the theory of nona-

diabatic transitions, collisions with ξ∗ ≥ 1 correspond to

the adiabatic development of the system, so the spectral

profiles under such conditions should be described by

formulas (28), (29). Divergent adiabatic terms should be

used as the excited state term in these formulas, and the

adiabatic width should be used as the radiation width

(Fig. 12, b, dashed curve). The dependence of the satellite

intensity maximum and the position of its center � on ξ∗

can be traced quantitatively in Fig. 11. It can be seen that for

ξ∗ > 1 the satellite profile is satisfactorily described by the

formulas of the quasistatic approximation (27)−(29). Since,
in the general case the satellite is formed during collision of

atoms, in [90] it is called dynamic, in contrast to satellites

in the line wings, which are associated with features, for

example, extrema, depending on the terms U∗,U0 from R.
Let’s consider as an example the quasimolecules

Ca,Mg−He. The terms and radiation width s of interest for

radiative processes are calculated in the one-configuration

approximation using the approach discussed in Sections 1.2,

1.3, and also in [18]. Comparison with multi-configuration

calculations in [91] showed that in the cases under con-

sideration one can limit to single-configuration calculations.

The insignificance of the deviation from the Lande interval

rule — 2.03 suggests that for the description of the

collision process and the spectral profile by the interaction

of only two nearest diabatic states ϕ2,3 (Table 1) with the

momentum projection � = 1. Since the diabatic terms are

parallel, the process of states interaction can be described in

terms of Demkov model [90]. In Fig. 12 from the paper [92]
the dashed curve marks the results of calculations of terms

and radiation widths in the two-level approximation in the

accepted model. As can be concluded from Fig. 12, for

R > 6.5a0 the use of the Demkov model is quite justified,

and the quasistatic approximation is inapplicable, since

ξ∗ = 0.8 (Ca) and ξ∗ = 0.22 (Mg) for T = 1000K.

Figure 13 shows the spectrum formed during

Ca(43P2) + He collisions [92]. As a result of the collision,

the allowed atomic transition 43P1−41S0 with a red wing

appears. This wing is formed by transitions in the region

R < R0 = 8.8a0, the intensity of which is proportional to

the probability of nonadiabatic transition and depends on

the frequency as (ω0 − ω)−1. The satellite is formed in

the violet wing, the maximum of which, according to the

calculation within the framework of the Demkov model, is

shifted to the violet region by 21 cm−1 from the position

of Ca(43P2atomiclevel). As follows from the discussion

above, the reason for the maximum appearance is associated

with a sharp increase from zero to ∼ Ŵat/2 of the radiation

width when passing through the region of diabatic (atomic)
functions rearrangement into quasimolecular ones. The

refined calculation, which takes into account the interaction

with 41P1 atomic state (solid curves in Fig. 12, b), increases
the shift by another 75 cm−1. The calculation of the spectral

profile in the case of Mg−He quasimolecule basically

reproduces the already described characteristics of the

spectrum for the Ca−He case, however, the probability

increasing of nonadibatic transition with the splitting of

atomic levels decreasing leads to the fact that the dynamic

satellite does not appear against the background of the violet

wing.

It is important to note that the spectrum description for

the values of the Massey parameter ξ∗ < 1 is possible only

considering the interaction of states, while the summation of

the spectra calculated in the quasistatic approximation, the

intensities of which are even
”
corrected“ considering the

probability of nonadiabatic transition, does not reproduce

the shape of the resulting spectrum. Another feature — the

shape of the spectrum depends on which atomic state was

originally populated, 43P1 or 43P2 [90,92,93].

2. Quasimolecules
Rg(np5(n + 1)s) − Rg′(1S0)

2.1. Introduction

Theoretical approaches related to the description of radia-

tive transitions in asymmetric quasimolecules of inert gases,

including such transitions that are forbidden in the limit of

large interatomic distances, were already discussed in review

papers [94,95] He−Ne quasimolecule in different electronic

states, which is interesting for laser physics, is reviewed

in [96]. Experimental results of radiative transitions in

asymmetric quasimolecules are collected and commented

on in the Gerasimov’s review [97]. Therefore, below we

consider individual works carried out after the publication

of the cited reviews.

The choice of the electronic configuration indicated in

the header is not accidental. As above, an essentially two-

particle problem will be considered — one electron and

one hole, i. e. still 4 atomic states, but in reversed order. (Of
course, in the case of the configuration Rg(np5n′l , l > 0),
this analogy disappears.) The appearance of the state

radiation width � = 1 is also due to interaction of three

states, the terms of which go into atomic 3P2,1 and 1P1 (or
into s5,4,2 in Paschen notations) for large R.
For s-electron in inert gas atom, the effective charge

is ∼ 1, and for p-electrons ∼ 4 [58]. The small bond

energy of the excited electron justifies the well-known

analogy Rg(np5(n + 1)s) with alkali metal atom following

Rg(1S0 atom in the Periodic Table, and allows us to use

reliably established terms of the alkali metal−inert gas

atom quasimolecules in the semiempirical procedure for

restoration of the terms of Section 2.5. It is also qualitatively

clear that the effect of the exchange interaction of the ionic

core with the buffer gas atom will be more significant than

the exchange interaction involving excited electron.

2.2. Quasimolecules of light inert gases

The paper [98] presents the results of the first multi-

configuration calculation (MRD-CI) of the excited states of
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Ne−He quasimolecule, which at large R correspond to the

states Ne(2p5ns, n′p, n′′d)−He(1s2), n = 3, 4, 5, n′ = 3, 4,

n′′ = 3 and Ne(2p6)−He(1s2s1,3S). The calculations

confirmed the correctness of the conclusion made in [99]
for n = 3 — the region of strong bond of states 1(3P2) and

1(3P1) is not reached in thermal collisions, which makes

it possible, in particular, to safely neglect the contribution

of radiative quenching of the atomic state 3P2 compared to

nonadiabatic transition to the nearest state 3P1. The calcu-

lations in [99] were carried out within the framework of the

pseudopotential method and were essentially asymptotic,

valid for R > 5a0, while in [98] it was possible to move into

R > 2.5a0 region, where a potential energy well (R ∼ 3a0)
with depth of about 500 cm−1 was found, exceeding the

level energy 3P2 to ∼ 500 cm−1. Similar features were

established in calculations involving the pseudopotential for

terms generated by states with n = 4.5, which is related to

the behavior of the s-function of an excited electron [96].

Calculation of terms and dipole moments of the lower

excited configuration Ar(3p54s1,3P)−Ne using the MRD-

CI method with relativistic core potentials (RECP) [100]
allowed us to make an interesting comparison with the

results of calculations using the pseudopotential [101] and

the model potential [102]. For 1s5 state the calculation [100]
showed the presence of potential energy well with a

depth of 793 cm−1 at Rm = 7.796a0, the calculation using

the pseudopotential gave 40 cm−1, Rm = 8.5a0, and the

calculation within the framework of the model potential

did not reveal a minimum in the potential curve. Further,

according to the results [100], the lifetime of ν = 0 state

in the well is 8.3µs, while according to [101] the value is

1/Ŵ⌊1(s5), R ≈ 7.3a0⌋ = 2 ns. Apparently, it holds true to

assume that most of the results obtained in the analytical

approach using the pseudopotential and presented in [94–
96] correctly reflect the essence of numerous processes

involving excited atoms of inert gases, in particular, the
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Figure 13. Ca-He quasimolecule. Spectral intensity vs.

frequency [92]. Solid vertical lines mark the positions of atomic

levels 3P1,2 . Dashed curve — quasimolecular transition (� = 1,

4s4p3P2) → (� = 0+, 4s{2}1S0) in the quasistatic approxima-

tion (28). The vertical arrow marks the shift of the maximum

when the interaction with 1P1 state is considered. Solid line —
calculation within the framework of the Demkov model for the

initial population of state 3P2 .

cause of the occurrence of the dipole moment of transition

1(3P2) ↔ 0+(1S0). As for the reliable quantitative results

for individual quasimolecules then the advantage of different

options of ab initio calculations is indisputable.

2.3. Quasimolecules of heavy gases

The calculation of the terms of asymmetric quasi-

molecules formed by atoms of heavy inert gases in semiem-

pirical approach similar to that described in Sections 1.2, 1.5

was already commented in detail in [95,94]. Table 10 shows

the parameters of potential energy wells calculated in this
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Table 10. Equilibrium internuclear distances and depths Um of

potential energy wells for 1(s5) state of quasimolecules Xe∗+Ar,

Xe∗+Kr and Kr∗+Ar [103]

Parameter Xe∗+Ar Xe∗+Kr Kr∗+Ar

Rm, a0 7.75 6.50 6.00

7.75∗ 6.15∗ 6.05∗

5.89∗∗

Um, cm
−1 438.9 1119 526.7

307.3∗ 1119∗ 855.9∗

51∗∗

Note. ∗ — experimental data [105], ∗∗ — calculation [104].

approach for some quasimolecules [103]. As can be seen,

heavy quasimolecules are characterized by the presence

of potential energy wells that are much larger than kT.
In empirical approach, one can also calculate the widths

of radiative transitions in the same way as described in

Section 1.6. Here it is appropriate to refer to the remark

at the end of the previous Section. In [104] the states

Xe(3P1,2)−Kr are calculated in the ab initio approach,

taking into account relativistic corrections and correlation

electrons. Despite the coincidence of the structure of the

terms and the position of the minima in the region of mean

distances R < 10a0, the values of the potential minima

diverge (Table 10).

For quasimolecules of inert gases, the main difference

from the results of Section 1 is that the determining interac-

tion for the rearrangement of atomic diabatic functions will

now be the distance-dependent splitting V6,5 of the terms

of the molecular ionic core, which in the region of mean

distances exceeds the interaction of an excited electron with

the core. It is clear that the rearrangement affects both

the formation of potential energy wells and the formation

of the maximum of the dipole moment of the transition to

the ground state, and, as a consequence, the lifetimes of

vibrational states τv . Therefore, the value τv turns out to

be very sensitive to the mutual arrangement of the potential

energy well and the dipole moment dependence on R in

this region.

In this paper [106] τv is calculated for excimers XeKr,

XeAr, KrAr in the 1(3P2) state. For the considered

pairs Rm ∼ (6−7)a0, the position of the radiation width

maximum either coincides or is somewhat less than Rm,

so the value of the integral τ −1
v ∼ 〈v|Ŵ|v〉 is defined by a

region R where the width decreases rapidly with increasing

distance. As a result, τv increases with vibrational excitation

increasing, while in the symmetric case Ar2 [107] the

dependence is opposite, since Rm for the symmetrical case

is smaller and is located to the left of the position of the

width maximum. Despite the fact that the lifetime is an

integral characteristic, it turned out to be sensitive to the

details of the interaction of atoms in the state 1(3P2) or A1u.

In the paper [108], in particular, the effect of the

difference of the potentials of the quasimolecular states and

the radiation width on the averaged spectral profile was

studied. The use of analytical approach made it possible

to make the following observation. When analyzing the

profiles of spectral lines by varying the dependences of the

potentials and widths, good agreement is often achieved

between the experimental and calculated data. But as it

was demonstrated in [108], for asymptotically forbidden

transitions, one must be careful with this approach. Different

sets of terms for the ground and excited states can

generate similar profiles, but in this case, due to the strong

dependence of the radiation width on R, they give radiative

quenching constants that differ by an order of magnitude.

In such cases, analytical approaches to the determination of

terms and widths can help to avoid errors in determining

distance regions, transitions in which a decisive contribution

to the integral and differential characteristics of radiative

transitions are made.

2.4. Towards the full experience

Despite the fact that the use of experimental data in

the foregoing was low and unsystematic, it is obvious that

the discussed calculations were focused on experiments

under gas cell conditions. Although the vast majority of

experimental data on absorption or emission were obtained

precisely under such conditions, double averaging (for
example, over the impact parameters in the semiclassical

approximation and the Maxwell distribution), which must

be performed in calculations for subsequent comparison,

masks the effect of the details of the behavior of the

potential curves and dipole moments of the transition.

Therefore, the study of differential cross sections for low-

energy scattering with the recording of optical spectra and

analysis of polarization could contribute to the understand-

ing of radiative processes in the interaction of colliding

atoms. A uniform quasiclassical approach can be useful

here, it does not use known models of atomic collisions with

a specific dependence of quasimolecular terms on distance

and explicitly includes the dependence on the orbital

angular momentum. The latter circumstance is important,

since the orbital momentum increasing is accompanied by

a qualitative change in the pattern of the optical spectrum

formation.

Calculation examples are presented in papers [87], where

the uniform semiclassical formula is used, in particular, to

describe radiation at differential scattering Ar(3P2) + He

at collision energies 100, 200 and 1000 cm−1, and [109],
in which the first calculation was made for single-photon

absorption in He(11S) + Ne + ~ω → He(21S) + Ne with

energy 219 cm−1. In the last paper the dependence of the

total and differential cross sections on the mutual orientation

of the polarization vectors of the incident radiation and the

initial relative velocity, as well as the detuning frequency on

the atomic transition was established. It would be interesting

to perform a similar calculation for the selective production

of Rg(3P2) atoms also.
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3. Conclusion

The analytical approaches described above made it pos-

sible to discuss various radiative processes in pair collisions

involving a rather wide range of atoms. Of course, such

approaches cannot claim the accuracy achievable in ab initio

approaches, but they provide the possibility of understanding

the general regularities of various radiative processes during

collisions. For applications, such approaches can also be

useful, since they make it possible to relatively easily

estimate the contributions of various processes to the

population and decay of metastable states. Promising is

the development of analytical approaches for the analysis of

differential cross sections, in particular, with the participation

of polarized atoms. Certain steps in this direction were

already made in papers [110,111].
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