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Today, the efficient generation of squeezed states of light seems to be a significant practical problem for various

quantum-optical and information applications. In this paper, we investigate the possibility of increasing the efficiency

of the generation of states based on the Laguerre-Gaussian light modes in the parametric down conversion due to

the optimal choice of the cavity configuration. Analyzing the Heisenberg-Langevin equations for the eigenmodes

of the system, we estimate the influence of the geometric parameters of the pump beam and the idler and signal

beams on the efficiency of generation of squeezed states and on the degree of squeezing. The calculation for a finite

number of modes has shown that the highest theoretically possible degree of squeezing in the system is 15.85 dB.
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1. Introduction

Currently quantum squeezed states [1] proved to be an

important resource for many areas of quantum optics and

quantum informatics [2,3], the importance of these states

for metrology and quantum computing cannot be overes-

timated [4,5]. The use of quantum squeezed states is of

particular interest in the building of many-particle entangled

(cluster) systems for carrying out one-way calculations in

continuous variables [6,7]. To build continuous cluster

quantum systems the physical objects of various nature are

used. For example, cluster states on spin waves inside an

ensemble of atoms [8,9], in optomechanical systems [10],
etc. were studied. At the same time, the light cluster

states are of particular interest, for example, states based

on sequences of light pulses from an optical parametric

generator [11], or obtained during the generation of an

optical frequency combo [12]. Light quantum systems are

attractive primarily because they are highly resistant to

decoherence. An essential factor is also the presence of

a developed element base for such states control for the

implementation of logical transformations.

Having quantum squeezed states as a resource, one

can build a cluster state and, accordingly, perform an

arbitrary Gaussian transformation to continuous variables

using only linear optics [13]. However, the requirements

for the compression level are quite high: in the pa-

per [14] it is shown that in order to plot error-resistant

schemes of quantum computing, the compression of the

initial oscillators used to build clusters must reach 20.5 dB.

Unfortunately, this level of squeezing is currently not

achievable by experiments. Without using the procedure

of results post-selection (transforming conversions from

deterministic to probabilistic), by now it is experimentally

possible to achieve a squeeze of 15 dB [15]. Therefore,

the study of the properties of the generation of light

squeezed states in terms of the possibility of obtaining high

degrees of squeeze remains an urgent challenge for quantum

optics.

One promising way to obtain a set of squeezed states is

to use Laguerre-Gaussian modes, which have orbital angular

momentum (OAM) [16,17]. Pairs of photons formed as a

result of spontaneous parametric downconversion (SPDC)

are entangled in their OAM projection [18,19], which is

determined by the OAM conservation law. The OAM

projection can take any integer values, which makes it

possible to work in a high-dimensional Hilbert space. All

these characteristic properties of many-particle states of light

based on Laguerre-Gaussian modes make them an attractive

basis for use in information and computer applications.

In our paper we are based on the results obtained in

the paper [20], where the problem of generation of many-

particle quantum states of light was considered under two-

component pumping of a parametric crystal in a resonator.

As in the previous paper we study the scheme for generating

a many-particle entangled state in a spontaneous parametric

downconversion scheme. All analysis is carried out in

the supermode language proposed in [21]. However, our

approach differs from the work [20] in that we study

the features of the quantum properties of multimode light

depending on the change in the resonator configuration.

We analyze how the control of the ratio between the

overdraw width of the generated signal mode and the pump

mode affects the efficiency of generation of many-particle

entangled state, and also obtain the optimal parameters
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Figure 1. Crystal with quadratic nonlinearity, which provides I -
type phase synchronism, is placed in the resonator with spherical

mirrors. The resonator pumping consists of two spatial LG modes

with OAM equal to +1 and −1. A field with a rich mode structure

is generated in the resonator according to the values of the OAM

projections, but at one frequency ωp.

of the resonator configuration for generating the squeezed

states.

2. Optical parametric transformation of
Laguerre-Gauss modes below the
generation threshold

2.1. Theoretical model

Let’s briefly formulate the statement of the problem under

consideration. A thin crystal with quadratic susceptibility

χ(2), which provides I -type synchronism, is placed in the

resonator with spherical mirrors (Fig. 1). The eigenmodes of

the spherical resonator are the set of Laguerre-Gauss (LG)
modes [22]. Recall that the choice of spatial LG modes is

dictated by OAM presence of such modes, which makes it

possible to single out an infinite number of quantum degrees

of freedom corresponding to different numbers of the orbital

momentum. The system is pumped with two LG beams

ULG
1 and ULG

−1 with OAM projections equal to +1 and −1

respectively, which propagate in direction z at frequency

ωp. The spatial profile of such modes is determined by the

equality:

ULG
l ∝

( ρ
√
2

w(z)

)|l |
exp

(

− ρ2

w2(z)

)

× exp
(

i (kpz − ωpt)
)

exp(i lϕ), l = ±1, (1)

where ρ, ϕ, z is cylindrical coordinates, the integer in-

dex l = ±1 is responsible for the projection of the or-

bital angular momentum onto the wave propagation axis,

w(z) = w(0)
√

1 + (z/zR)2 is overdraw width of the trans-

verse field distribution inside the resonator, w(0) is beam

overdraw width in the plane z = 0, zR is Rayleigh radius.

Within the framework of this problem, we will consider

the case of a collinear degenerate in frequency but nonde-

generate in OAM process under conditions of ideal phase

synchronism.

In this paper, we will be interested in the subthreshold

operation of an optical parametric of generator. Such

operation mode makes it possible to neglect the process of

pump depletion in the theoretical description of spontaneous

parametric scattering. Then the interaction Hamiltonian

describing the process of parametric generation has the

following form:

ĤI = i~
∑

l

(χl ,1−l B1â
†
l â†

1−l

+ χl ,−1−l B−1â
†
l â†

−1−l) + H.c., (2)

where B±1 are the numerical amplitudes of the classical

pump wave and â†
l (l = 0,±1,±2, . . .) is photon creation

operators in the idler and signal modes of the LG, indexed

by index l , which comply with the canonical commutation

rules:

[âl , â†
l ′ ] = δl ,l ′ . (3)

The effective coupling constants χl ,±1−l are proportional

to the overlap integral between the spatial profiles of three

modes: the pump mode (with index +1 and −1), the signal
mode (with index l) and idle mode (with index ±1− l). We

will discuss in detail the properties of the χl ,±1−l coupling

constants and explore their effect on the optimal choice of

system configuration in Sections 2.2 and 2.4.

To construct the Heisenberg equations and study the

degree of squeezing of various modes, we will use the

approach proposed in the paper [21] to describe the

optical frequency comb in a synchronously pumped optical

parametric oscillator (SPOPO). We write the interaction

Hamiltonian in matrix form:

ĤI = i~
∑

i ,s

M i ,sâ†
i â†

s + H.c., i + s = ±1, (4)

where the coupling matrix M has the following form:

M =















0 2χ0,1B1 2χ0,1B−1 0 . . .

2χ0,1B1 0 0 0 . . .

2χ0,1B−1 0 0 2χ1,−2B1 . . .

0 0 2χ1,−2B1 0 . . .

. . . . . . . . . . . .
. . .















.

(5)
The matrix elements M i ,s contain both information about

the correlation between two modes âi and âs, and infor-

mation about the geometry of the modes, expressed in

coupling constants χl ,±1−l , and also carry a dependence on

the classical pump amplitude B±1.

The paper [23] shown, that it is convenient to analyze

a many-particle entangled quantum state in the resonator

in the language of the system’s eigenmodes, called by the

authors as supermodes. The quantum states of these modes

turn out to be uncorrelated squeezed states.

Let?s represent the Hamiltonian (4) in diagonal form,

i. e., in terms of uncorrelated squeezed eigenmodes of the

Hamiltonian ŝn:

ĤI = i~
∑

n

3n(ŝ
†
n)

2 + H.c., (6)
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ŝ†n =
∑

i

mn,i â
†
i , (7)

where 3n are eigenvalues, and mn,i is the n-th element of the

i -th eigenvector of the coupling matrix M . The 3n spectrum

determines the number of uncorrelated degrees of freedom

and gives information about the degree of squeeze in ŝn

modes.

In the paper [21] the authors considered a multimode

system based on a frequency comb consisting of 106 modes,

i. e. analyzed the quasi-continuous spectrum. At the same

time, numerical analysis and experimental results showed

that out of the entire continuum of SPOPO radiation modes,

effective squeeze was detected only in the first six of

them [23]. In our problem, we want to investigate the

properties of quantum modes analytically. Therefore, we

will confine ourselves to discussing of only five highest

modes ŝi (i = 1, . . . , 5). In terms of the theoretical

description this means that we need to cut off the infinite

coupling matrix M, limiting ourselves to only first five rows

and columns. The theoretical justification of this approach

is given in [20]. From the experimental point of view, this

can be realized using special holograms that allow selective

screening of the mode with a certain OAM [24,25].
Later in Section 2.3 we will analyze the features of the

system of Heisenberg-Langevin equations for supermodes

ŝn.

2.2. Effective constants of interaction between
modes

The overlapping of the transverse profiles naturally de-

pends both on the overdraw width w(z) of these profiles

and on the values l of the OAM projections of three

waves: the pump beam, the signal beam, and the idler

beam. The OAM conservation law imposes a relation on

the projections l . This leaves only two degrees of freedom

to vary. We will be interested in the possibility to control

effective coupling constants by changing the geometry of

the fields. We will examine how a change in the beam

overdraw ratio affects the efficiency of generation of a many-

particle entangled state. Paper [26] shown that by choosing

the resonator circuit it is possible to ensure the equality of

the overdraw of the idler and signal modes w i (0) = ws(0).
For simplicity, we choose just such configuration of the

resonator.

We define the effective coupling constants χl ,±1−l as

χl ,±1−l =

∫

d3rULG
±1 (r)U

LG∗
l (r)ULG∗

±1−l(r)

= glλ
2
( 1

2 + λ2

)

2+|l|+|1−l|
2

, (8)

where the control parameter λ = w i (0)/w p(0) is deter-

mined by the ratio of the overdraw width of detected idler

mode w i (0) to the overdraw width of pump mode w p(0) in
the plane z = 0. In the coefficients gl we included all other

constants that do not depend on the control parameter λ.
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Figure 2. Normalized coupling constants χl ,±1−l vs. parameter λ.

On the graph: coefficient χ(2) is non-linear susceptibility.

Efficient signal detection during spontaneous parametric

scattering is directly related to the geometric relationship

between the pump mode and the generated mode. For any

given set of generation parameters the detecting device is

prepared in such a way that the overdraw width of detected

mode cannot exceed the overdraw mode of pump mode,

hence parameter λ ≥ 1.

Note that the coupling constants determine the efficiency

of the spontaneous parametric process. Therefore, when

constructing a many-particle entangled state, the coefficients

χl ,±1−l will determine the efficiency of generation of

squeezed states and the correlation properties of the system.

Further we will study the effect of the coefficients χl ,±1−l

upon varying the parameter λ on the limit squeeze ratio for

the system under consideration.

Fig. 2 shows the dependences of the normalized coupling

constants on the λ parameter for the pump wave indices

l = ±1. As can be seen from Fig. 2, for different projections

l the maxima of the coupling constants χl ,±1−l do not

coincide, but do not exceed the value 1. For example,

note that the coupling constant χ0,1 reaches its maximum

at λ =
√
2, while the constant χ1,−2 is for λ = 1. Studies

of the system parameters for two values λ =
√
2 and λ = 1

were done in paper [20].

2.3. Heisenberg-Langevin equations
for supermodes in subthreshold mode

The Hamiltonian (6) allows us to construct an infinite

system of independent Heisenberg-Langevin differential

equations for modes ŝn:

˙̂sn = −γ ŝn − 23nŝ†n + f̂ ŝn. (9)

Here γ is the relaxation rate of field modes in the resonator,

which is chosen to be the same for all considered modes,

f̂ ŝ j is Langevin stochastic sources determined by zero mean

values and non-zero second-order correlation functions of

the following form:

〈 f̂ ŝn(t) f̂ ŝn(t
′)〉 = 23nδ(t − t′). (10)
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For five considered supermodes ŝi (i = 1, . . . , 5) the sys-
tem of equations is solved analytically and the eigenvalues

3i have the form

31 = 0, 32 = −γξ

2
= −33,

34 = −γ
√

2µ2 + ξ2

2
= −35. (11)

Here, the parameters µ and ξ were introduced, which are

responsible for the generation threshold of modes with

different indices:

µ = α · χ0,1

χ0,1(λ1)
, α =

2χ0,1(λ1)B1

γ
, (12)

ξ = β · χ1,−2

χ1,−2(λ2)
, β =

2χ1,−2(λ2)B1

γ
, (13)

where λ1 =
√
2 and λ2 = 1 are the values for which the cou-

pling constants χ0,1(λ1) and χ1,−2(λ2) reach their maximum.

This form of recording of the threshold parameters µ and

ξ makes it possible to separate various factors affecting the

efficiency of mode generation. For simplicity, we assume

that the pump wave amplitudes B1 and B−1 are real and

equal to each other, B−1 = B1.

Introducing the threshold parameters µ and ξ as two

cofactors, we wanted to emphasize the effect of two

different factors on the generation efficiency of many-

particle state: the generation threshold and the magnitude

of supermode fluctuations. The coefficients α and β

characterize the threshold values of the resonator system.

Factors written as fractions can be considered as geometric

factors of the resonator system that affect the efficiency of

parametric interaction and, as a consequence, the magnitude

of supermode quadrature fluctuations. Note (Fig. 2) that the
parameters α and β are interrelated by a numerical factor:

β = 16/(9
√
3)α.

Eigenvalues 31, . . . , 35 eigenmodes ŝ1,. . . ,ŝ{5} uniquely

characterize the quantum properties of Gaussian modes.

From the fact that the eigenvalue 31 = 0, it can be said

that the mode ŝ1 unlike the others remains in the vacuum

state during the evolution of the system. Along with

this, the eigenvalues of the supermodes pair ŝ2 and ŝ3,
and the pair ŝ4 and ŝ5 are equal in absolute value and

opposite in sign: 32 = −33, 34 = −35. Therefore, the

quadratures of the modes ŝ2 and ŝ3, as well as the modes

ŝ4 and ŝ5 respectively will be equally squeezed or stretched.

Therefore, further we will discuss in detail the analysis of

one supermode from each pair (ŝ2 and ŝ4).
From the form of the Heisenberg-Langevin equations (9)

one can obtain preliminary information about the generation

threshold. The generation threshold for the given mode

is characterized by the ratio of the effective pumping of a

given mode to the relaxation of field from the resonator (the
same for all modes). Studying the near-threshold region of

resonator generation, we note that the eigenvalues of 32 and

34 turn out to be different, i. e., we can state that the modes
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Figure 3. Generation threshold vs. λ parameter for modes

ŝ2,3 (a) and ŝ4,5 (b). It is shown that for the supermodes ŝ2,3 (a)
and ŝ4,5 (b) this dependence is monotonic.

ŝ2 and ŝ4 will reach the generation threshold at different

intensities of effective pumping.

Let’s go to the quadrature components of the supermodes

ŝ = x̂ + i ŷ, as well as to the quadrature components of the

Langevin noises f̂ ŝ j = f̂
′

ŝ j
+ i f̂

′′

ŝ j
for j = 1, . . . , 5. The

Heisenberg-Langevin equations for quadrature supermode

components are first-order differential equations. Using

the Fourier transforms, go from the system of differential

equations to the system of linear algebraic equations for the

Fourier transforms.

The measured values in the study of squeeze are the

power spectra of quadrature fluctuations, which can be

found from the solutions of these equations. We confine

ourselves to the case of analyzing solutions at zero fre-

quency, which corresponds to stationary laser generation.

Since this problem is considered in the subthreshold mode,

the average values of the field operators inside the resonator

are equal to zero. Let?s denote the intracavity normally

ordered averages of squares of fluctuations of the quadrature

components at zero frequencies as 〈: |δx̂0
j |2 :〉, 〈: |δŷ0

j |2 :〉.
Then, using the known input-output relation, they can

easily be related to the corresponding averages outside the

resonator 〈|δX̂0
j |2〉, 〈|δŶ0

j |2〉:
(

〈|δX̂0
j |2〉

〈|δŶ0
j |2〉

)

=
1

4
+ 2γ

(

〈: |δx̂0
j |2 :〉

〈: |δŷ0
j |2 :〉

)

, j = 1, . . . , 5.

(14)

The formulas obtained above make it possible to write

analytical expressions for the spectral powers of quadrature

fluctuations of supermodes outside the resonator:

〈|δX̂0
1 |2〉 = 〈|δŶ0

1 |2〉 =
1

4
, (15)

〈|δX̂0
2 |2〉 =

(ξ − 1)2

4(ξ + 1)2
= 〈|δŶ0

3 |2〉, (16)
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Figure 4. Sum of the quadrature power spectrum

〈|δX̂0
2 |

2〉 + 〈|δX̂0
4 |

2〉 when approaching the generation threshold vs.

λ parameter and α threshold parameter. The generation threshold

boundary is shown. It is found that the power spectrum of

quadratures monotonically depends on the parameter λ and on

the threshold parameter α.

〈|δX̂0
4 |2〉 =

(
√

2µ2 + ξ2 − 1)2

4(
√

2µ2 + ξ2 + 1)2
= 〈|δŶ0

5 |2〉. (17)

Expression (15) confirms the earlier conclusion that the

first mode is in a vacuum state, regardless of the system

parameters. When constructing multimode states of light

from modes with OAM, the first eigenmode should be

excluded so as not to impair squeeze in the system. As

can be seen, the third and fifth modes are squeezed in

the Y-quadrature, while the second and fourth modes are

squeezed in the X-quadrature.

To generate a five-mode field, the resonator gen-

eration threshold will be determined by the relation

2µ2 + ξ2 = 1 [20]. Analyzing expression (17), one can see

that the numerator of the corresponding power spectrum

tends to zero when approaching the generation threshold.

That is, when approaching the threshold, the vacuum

fluctuations in the fourth and fifth modes are compensated

in maximum degree, and the oscillators themselves tend

to ideally squeezed state. On the other hand, the second

and third modes do not achieve ideal squeeze at the

threshold. As follows from expression (16), for ideal

squeeze of the second and third modes, the condition

ξ = 1 shall be met. But already at ξ2 > 1− 2µ2 the

system cannot be described by subthreshold Heisenberg-

Langevin equations (9), it is necessary to consider pumping

depletion and to describe the problem in terms of the above-

threshold mode. Thus, when approaching the threshold

part of the modes of multimode system will always remain

finitely squeezed, and this fact must be taken into account

when choosing the operating parameters in a multimode

configuration.

2.4. Analysis of the power of quadrature

fluctuations of supermodes

To analyze the quantum properties of the system, it is

necessary to determine the limits of applicability of our

solutions and explore the most interesting i.e. near-threshold

region.

The purpose of the analysis is to find the geometric

parameters of the resonator system (namely, the control

parameter λ) that provide the maximum possible squeeze

of all considered modes. As we saw above, the magnitude

of quadrature fluctuations is determined by the proximity of

each of the independent supermodes of multimode state to

the common generation threshold of this state. In its turn,

the value of the generation threshold itself is determined by

the parameter λ.

Since the threshold constraints for the ŝ2,3 and ŝ4,5
supermodes are different, the degree of squeeze for these

modes is also different. We want to get the highest

possible squeeze level in as many modes as possible.

Therefore, of greatest interest is the situation when the

generation thresholds for two modes approach each other.

Behavior of the generation threshold depending on the

λ parameter for modes ŝ2,3 (a) and ŝ4,5 (b) is shown

in Fig. 3. The Figure shows that as the values of

λ decrease, the curves approach each other, i.e. the

threshold values for different modes become close to each

other. At the same time, as λ increases, the values

of the threshold parameters increase, but at different

rates. Accordingly, work in the region of large λ is

inefficient.

At the generation threshold the power spectra of quadra-

ture fluctuations reach the corresponding minima, which

characterizes the limiting degree of mode squeeze. To study

the convergence of the generation thresholds of ŝ2,3 and

ŝ4,5 supermodes, it is necessary to analyze the minimum

of the corresponding quadrature power spectrum sum

〈|δX̂0
2 |2〉 + 〈|δX̂0

4 |2〉 considered with equal weights. As it

was demonstrated above, two factors affect the compression

squeeze of the multimode system: the threshold value

(determined by the parameter α (12)) and the control

geometric parameter λ. Fig. 4 shows the behavior of

the minimum of sum of the generation power spectrum

〈|δX̂0
2 |2〉 + 〈|δX̂0

4 |2〉 (at the generation threshold) depending
on the parameters α and λ. It is shown that the

minimum values of the sum of fluctuations of power

spectra are reached in the limit λ → 1. Just in this

region the generation thresholds of modes ŝ2,3 and ŝ4,5
mode closer, and, consequently, this is the region with

the maximum effective degree of squeeze of supermode

quadratures. We found that the ultimate squeeze at λ → 1

is 15.85 dB.

In the paper [20] a cluster state was constructed and

studied based on the Lugger-Gauss modes at λ = 1. The

results of our paper make it possible to state that specifically

this configuration of a linear cluster state consisting of four

Optics and Spectroscopy, 2022, Vol. 130, No. 14
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nodes is optimal from the point of view of unidirectional

quantum calculations.

3. Conclusion

In this paper, we analyze the quantum features of

multimode field with orbital angular momentum generated

in the process of spontaneous parametric downconversion

under complex two-component pumping and varying field

geometries.

Our goal was to build a recipe for generating a maximum

squeezed multimode state based on Laguerre-Gaussian

modes. This article does not discuss the issue of stability

of beams with OAM, since it is discussed in detail in

papers [27,28]. However, note that the presence in the

spatial profile of beams with l exceeding 2 in absolute

value, of phase singularity points can lead to instability of

such vortex systems. This instability can be compensated by

introducing l -selective losses [29]. In this case, by choosing

sufficiently large transverse dimensions of the resonator, it

is possible to ensure stationary generation of beams with an

arbitrarily large OAM value. Note also that the presence of

a nonlinear crystal in the resonator system under study can

in itself be a stabilizing factor. The paper [30] shows that

the stability of structures with high values of topological

charge can be ensured by the presence of a nonlinear

medium.

It was shown that in order to construct a protocol of

generation the maximum squeezed state it is necessary to

use the basis of supermodes, since these modes will have

limit quantum properties. From the constructed Heisenberg-

Langevin equations for eigenmodes the power spectra

of quadrature fluctuations of supermodes are obtained.

It is shown that the threshold constraints for ŝ2,3 and

ŝ4,5 supermodes are different. Besides, out of the five

considered modes only four modes turned out to be

squeezed; the highest mode is in a vacuum state. Thus,

the considered system has four true quantum degrees of

freedom.

It is found that the generation threshold and the value

of supermode quadrature fluctuations depend on both

the control geometric parameter λ, and on the threshold

parameter α. It is shown that the minimum values of the

power spectrum of fluctuations are reached in the limit of

λ → 1, in this region the theoretically possible squeeze level

is 15.85 dB. Thus, we can state that the most efficient region

for the generation of squeezed states is a configuration with

the same values of the overdraw of the pump mode and the

generated resonator modes.

The construction carried out permits generalization to any

given number of modes in a multimode state. However,

it can be assumed that the number of modes increasing

will worsen the quadrature squeeze of the supermodes,

since different modes will be subject to different threshold

constraints.
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