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Recombination in gapless HgTe/CdHgTe quantum well heterostructure
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1. Introduction

Gapless quantum wells (with zero energy gap) can be
used to build up detectors, mixers and to generate mid
and far infrared radiation. Many suggestions were made
to use graphene for these purposes (see, for example [1]).
However, despite the successes in demonstration of am-
plification [2,3] and detection (see. for example, [4–6])
of terahertz radiation in graphene-based structures, these
works did not result in creation of commercial devices. Pre-
sumably, it is related to fact that today there is no technology
to produce high-quality graphene suitable to build such
devices. However, gapless quantum wells can be created on
the basis of HgTe/CdHgTe heterostructures as well [7], for
which there are well-established production technologies [8].
Important for work of both detectors/mixers and radiation
sources is the property of material known as lifetime
of nonequilibrium carriers. The issue of lifetimes for
graphene was studied many times experimentally (see, for
example, [9] and references in it) and theoretically [10–13].
On the contrary, for gapless HgTe/CdHgTe quantum wells
by now this characteristic remains almost unstudied.
The purpose of this study consists in theoretical study

of recombination mechanisms and calculation of lifetime
of nonequilibrium carriers in gapless HgTe/Cd0.7Hg0.3Te
quantum well. Three recombination mechanisms are con-
sidered: the recombination on optical phonons in HgTe, the
recombination on plasmon-phonon modes, and the radiative
recombination.

2. Electron spectrum of a gapless
structure

Let us consider a HgTe quantum well with a thickness
of 6.2 nm surrounded by barriers of Cd0.7Hg0.3Te. Let

us assume, that it is grown on the (013) plane, because

this plane is preferable for growing by the method of

molecular-beam epitaxy [8]. Figure 1 shows the electron

spectrum in this quantum well calculated using four-band

Kane model taking into account strain effects. For details

of the calculation see [14]. The lattice temperature was

assumed equal to 4.2K. For the sake of simplicity, the

calculations did not take into account spin splittings of

electron subbands due to the decrease in symmetry on the

heterointerface and absence of center of symmetry [15],
which has little to no effect on the rates of the recombination

mechanisms in question.

It can be seen from Fig. 1, that at such thickness of the

quantum well the structure under consideration is really

a gapless structure, and the second electron band E2 is
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Figure 1. Electron spectrum in HgTe/Cd0.7Hg0.3Te(013) quantum
well with a thickness of 6.2 nm.
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located 0.321 eV above the first subband E1 in the point

of k = 0. Since the consideration of recombination of

thenonequilibrium carriers excited by the radiation quanta

of far and long-wave part of mid infrared radiation with

considerably lower energies is of the most interest, in the

following we restrict ourselves to the the consideration of

recombination processes of the E1 subband electrons and

HH1 subband holes (the probability of transitions to lower

hole subbands is significantly lower).

3. Recombination with involvement
of bulk optical phonons in HgTe

It is well known (see, for example, [16]) that optical

phonons in quantum wells can be divided into two groups:

bulklike and surface phonons. In the case under consid-

eration surface phonons are hybridized with oscillations

of electron density in the quantum well — by two-

dimensional plasmons. The recombination with involvement

of such hybrid modes is considered in the following section.

In bulklike modes the electric potential of phonons can be

written as follows:

ϕ(ρ, z ) =
(

aq exp(iqr) + a∗
q exp(−iqr)

)

θ(dQW/2− |z |)

×
{

cos(πnz/dQW ), n = 1, 3 . . .

sin(πnz/dQW ), n = 2, 4 . . .
, (1)

where q — wave vector of phonon in the plane of the

quantum well, dQW — width of the quantum well (the well

occupies the region of |z | < dQW/2), aq — characterizes

the potential, θ(z ) — Heaviside function. By performing

the procedure of secondary quantization of the optical

phonons field (see Appendix), the following expression for

the operator of electric potential can be derived:

ϕ(ρ, z ) = − A
(

cq exp(iqr)+c+
q exp(−iqr)

)

θ

(

dQW

2
−|z |

)

×
{

cos(πnz/dQW ), n = 1, 3 . . .

sin(πnz/dQW ), n = 2, 4 . . .
, (2)

where c+
q , cq — creation and annihilation operators of the

optical phonon,

A =

√

√

√

√

4π~ωL

κ̄SdQW

(

q2 +
(

πn
dQW

)2)
,

ωL — angular frequency of the longitudinal optical phonon,

S — area of the quantum well, κ̄−1 = κ−1
∞ − κ−1

0 , κ∞
and κ0 — high-frequency and low-frequency dielectric

permittivity values of the quantum well material.

Electron states in the quantum well are completely

defined by setting the wave vector k and s index that

includes the number of subband and the spin state. Thus,

the electron wave function can be represented as follows:

9s ,k(r) = S−1/2 exp(ikr)ψs ,k(z ). (3)

Using (2), the following expression can be derived for the

recombination probability of a hole with wave vector −k

and index s ′ (the electron transits from k + q, s ′ to k, s
state):

ws ,s ′(k) =
2ωLe2

κ̄dQW

∫

d2qδ
(

εs ′(k + q) − εs (k) − ~ωL

)

× f s ′(k + q)
∑

n

|gs ′,s (q, k, n)|2
(

q2 +
(

πn
dQW

)2)
, (4)

where −e — electron charge, εs (k) — energy of electron

in the s -th state with wave vector k, f s(k) — electron

distribution function,

gs ′,s (q, k, n) =

dQW /2
∫

−dQW /2

dzψ+
s ′,k+q(z )ψs ,k(z )

×
{

cos(πnz/dQW ), n = 1, 3 . . .

sin(πnz/dQW ), n = 2, 4 . . .
(5)

Full rate of recombination can be written as follows:

R =
∑

s ,s ′

1

(2π)2

∫

d2kws ′,s (k)
[

1− f s (k)
]

, (6)

where s index ranges over states of the conduction band,

and s ′ index ranges over the valence band. Note, that (6)
describes full rate of recombination. The observed rate of

recombination is equal to the difference between the full

rate of recombination and the rate of thermal generation of

carriers. We consider the case when the concentration of

nonequilibrium carriers is much greater than the concen-

tration of equilibrium carriers. In this case the thermal

generation can be neglected and the ensemble-averaged

probability of carrier recombination can be introduced as

follows: W = R/n, where n = p is the concentration of

nonequilibrium carriers.

Figure 2 shows the results of calculations of W as a

function of carriers concentration. In the calculations the

concentrations of holes and electrons were assumed equal

to each other, distribution functions of electrons and holes

were described by Fermi-Dirac distribution with an effective

electron temperature of Te , that could be 4.2, 40, and 77K.

It can be clearly seen in the figure that there is a peak of

the dependence of W on the concentration, which becomes

lower and shifts to the region of high concentrations with

increase in the effective temperature of nonequilibrium

carriers. The decrease in W with exceedance of the

concentration that corresponds to the W peak is caused by

the impossibility to participate in the recombination for the

electrons and holes that have kinetic energy greater than

the energy of the longitudinal optical phonon. When the

concentration corresponding to the peak is exceeded, the

part of these carriers increases and, therefore, W decreases.

The decrease in W with the decrease in concentration
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Figure 2. The ensemble-averaged probability of hole recombina-

tion on a bulklike phonon as a function of carriers concentration

for three effective temperatures of nonequilibrium carriers.

of carriers in the region where the concentration is less

than that corresponding to the W peak is related to the

decrease in the number of electron-hole pairs involved in

the recombination, when the difference of Fermi energies

of electrons and holes becomes less than the energy of the

optical phonon. It should be noted, that for an electron-hole

pair which kinetic energy is less than the energy of optical

phonon, the recombination process in question is prohibited

by the energy conservation law.

4. Recombination with involvement
of the plasmon-phonon mode

Nonequilibrium carriers in gapless HgTe quantum wells

can recombine with emission of two-dimensional plas-

mons. In [17] the recombination with involvement of two-

dimensional plasmons in a narrow-gap quantum well was

studied, however, the case of gapless quantum well was not

considered.

The interaction of two-dimensional plasmons with optical

phonons of barrier layers (it is assumed that quantum well

width is much less than the wave length of plasmon) results
in formation of high-frequency and low-frequency plasmon-

phonon modes, in a similar way as it takes place in a

bulk semiconductor [18]. Frequency of the high-frequency

mode exceeds the frequency of longitudinal optical phonon

in the barrier, and frequency of the low-frequency mode

is less than the frequency of transverse optical phonon

in the barrier. The plasmon-phonon modes like these are

surface optical oscillations of the lattice concentrated near

the boundaries of the quantum well.

Figure 3 shows dependencies of plasmon-phonon excita-

tion energy on the wave vector at different concentrations

of carriers. To determine the dependency of plasmon-

phonon modes frequency on the wave vector, the technique

was used, which detailed description can be found in [19].
The

”
end“ points of dispersion laws of plasmon-phonon

modes are caused by
”
switching on“ of the Landau

damping, that makes these modes poorly defined due to

large losses. In the conditions of Landau damping, the

imaginary component of the plasmon frequency becomes of

the order of magnitude of its real component, and damping

time of these plasmons becomes much less that the typical

recombination time. Thus, in the conditions of Landau

damping the contribution of plasmons in the recombination

is insignificant. Therefore, only the contribution of plasmons

in the recombination was taken into account, which have no

Landau damping.

The effective temperature of electron and hole gas in the

calculations had three values: 4.2, 40, and 77K. Note, that

increase in the effective temperature of charge carriers has

little effect on the dispersion law of the plasmons under

consideration [19], however, it decreases the wave vector at

which the Landau damping becomes significant.

Electric field of a plasmon has two components: one

of them is directed along the wave vector, and another is

normal to the quantum well (along the z axis). The

component that is directed along the wave vector is an even

function of z , if the point of origin is selected in the middle

of the quantum well. Since the typical scale of its variation

in the direction of z is 1/q, and width of the quantum

well is assumed much less than 1/q, this component can

be considered constant within the quantum well. Another

component of electric field is an odd function of z . At

the boundaries of the quantum well these component are

nearly equal to each other in magnitude. Therefore, the

probability of electron transition from the conduction band

to the valence band of the quantum well under the action

of the plasmon electric field is higher for the component of

0 0.1 0.2
0

50

100

P
la

sm
o
n
 e

n
er

g
y,

 m
eV

q, nm–1

n p= = 4 10 cm11· –2

= = 10 cmn p 11 –2

= = 10 cmn p 10 –2

Figure 3. Quantum energies of plasmon-phonon modes as func-

tions of the wave vector for three concentrations of nonequilibrium

carriers. Te = 4.2K.
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Figure 4. The probability of recombination with plasmon-phonon

mode quantum emission as a function of nonequilibrium carriers

concentration (solid lines). Dashed lines represent the probability

of recombination with emission of low-frequency plasmon-phonon

mode quantum. Figures 1, 2, 3 correspond to Te = 4.2K,

Te = 40K and Te = 77K.

the electric field laying in the plane of the quantum well. To

determine the probability of these transitions, we can use

the operator of vector-potential component directed along

the wave vector, as presented in [17]:

A‖ = −c
∑

q, j

q

ω

√

2~

Sq2

(

∂χ(q, ω)

∂ω

)−1

×
(

dq, j exp(iqr− iωt) + d+
q, j exp(−iqr + iωt)

)

, (7)

where χ(q, ω) — polarizability of electron-hole two-

dimensional gas (the expression to calculate the χ(q, ω)
can be found in [17]), d+

q and dq — operators of creation

and annihilation of plasmon-phonon mode quantum, j index
is introduced to denote high-frequency and low-frequency

mode. With the use of (7), the following expression for

the rate of recombination with plasmon emission can be

derived:

R =
2

(2π)3

∑

j,s ,s ′

∫

d2kd2q
|vs ,k;s ′,k+qq|2

q2ω2
j (q)

(

∂χ(q, ω j)

∂ω j

)−1

× δ
(

εs (k) − εs ′(k + q) − ~ω j(q)
)(

1− f s ′(k + q)
)

f s (k),
(8)

where vs ,k;s ′,k+q — matrix element of the speed operator, s
index ranges over states of the conduction band, while

s ′ index ranges over states of the valence band.

Figure 4 shows dependencies of the ensemble-averaged

probability of recombination with emission of plasmon-

phonon mode quanta W = R/n. Solid lines represent the

sum recombination including emission of quanta of high-

frequency and low-frequency modes. Dashed lines represent

emission of low-frequency mode quanta only. It can be

seen from the figure, that the main role if the recombination

mechanism under consideration is played by the processes

with emission of high-frequency mode quanta. An exception

from this statement is the case when Te = 4.2K and

the concentration of nonequilibrium carriers is less than

2 · 1010 cm−2. It can be clearly seen from the figure,

that the probability of recombination is a nonmonotone

function of the concentration of nonequilibrium carriers and

that its magnitude decreases with increase in the effective

temperature of carriers.

5. Radiative recombination

This mechanism is the slowest among the recombination

mechanisms under consideration, and it is considered here

mainly for illustration and comparison purposes. It should

be noted, that the radiative recombination in the solid

solution of CdxHg1−xTe was studied in [20].
The probability of spontaneous electron transition with

a wave vector of k with emission of photon from the

conduction band state s to unoccupied state of the valence

band s ′ is equal to:

ws ′,s (k) =
4
√
κe2ω

3~c3
|vs ′,s (k)|2, (9)

where vs ′,s (k) = vs ,k;s ′,k . A reciprocal of radiative time

of recombination (frequency of radiative recombination)
is equal to the ratio between the radiative recombination

rate and the concentration of minority carriers. For n-type
semiconductor or in the case of n = p, it can be written as

follows [21]:

W =

∑

s ,s ′

∫

d2kws ,s ′(k) f s (k)
(

1− f s ′(k)
)

∑

s

∫

d2k f s (k)
. (10)

Figure 5 shows calculated dependencies w(n) for three

effective temperatures of nonequilibrium carriers.

It can be seen from the figure, that there is a peak of

W (n) dependence at Te = 4.2K, which is caused by filling

of side extremums by holes (see Fig. 1) with increase in

concentration of nonequilibrium carriers. Holes in the side

extremums are not involved in the radiative recombination,

because there are no electrons in the conduction band

with wave vectors corresponding to the side extremums.

By comparing Figures 2, 4, and 5, it can be seen that

the radiative recombination is the slowest among the

recombination mechanisms under consideration.

6. Conclusion

In the conclusion the main results of the study are

described. Dependencies of recombination probability on

concentration of nonequilibrium carriers in the gapless

HgTe quantum well are calculated for three mechanisms

of recombination: the recombination with emission of
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Figure 5. Dependence of W(n) for radiative recombination for

three effective temperatures.

optical phonons, the recombination with emission of two-

dimensional plasmons, and the radiative recombination. It

is shown that the most effective recombination mechanisms

are the recombination with emission of optical phonons and

the recombination with emission of two-dimensional plas-

mons. Maximum probabilities of recombination for these

two mechanisms have an order of magnitude of 1013 s−1.

Such short times of radiationless mechanisms of recombina-

tion of nonequilibrium carriers indicate non-prospectivity of

the use of gapless quantum wells to generate photons and

perhaps plasmons. For these purposes, more prospective are

quantum wells with a gap greater than the energy of optical

phonon.

Appendix

Quantization of optical phonons in a quantum well

The energy of longitudinal oscillations of the lattice can

be written as follows:

∑

j

M̄r2j/2 + M̄ω2
Lr

2
j/2

=
M̄
2a3

∫

dz
∫

dxdy
(

vr2(x , y, z ) + ω2
Lr

2(x , y, z )
)

, (1A)

where r j — relative displacement of atoms in the j-th unit

cell, M̄ — reduced mass of the unit cell, a3 — volume

of the unit cell. Since the wave length of optical phonons

under consideration is much greater than the lattice spacing,

then instead of r j we can introduce the r(x , y, z ) function,

that can be considered as a function of continuous argument.

In longitudinal oscillations the displacement vector is related

to the electric field acting on the ion [18]:

r =
e∗E

M̄(ω2
T − ω2

L)
, (2A)

ωT — angular frequency of optical oscillations, e∗ —
effective charge of ion [18]:

e∗ = κ∞ωL

√

M̄a3

4πκ̄
. (3A)

Using (1) to determine the electric field and (2A), we can

derive expressions for components of the vector r laying in

the plane of the quantum well and z -component

(r‖(ρ, z ) = − iq
(

bq exp(iqr− iωt)

− b∗
q exp(−iqr + iωt)

)

θ(dQW/2− |z |)

×
{

cos(πnz/dQW ), n = 1, 3 . . .

sin(πnz/dQW ), n = 2, 4 . . .
(4A)

r z (ρ, z ) =
πn

dQW

(

bq exp(iqr− iωt)

+ b∗
q exp(−iqr + iωt)

)

θ(dQW /2− |z |)

×
{

− sin(πnz/dQW ), n = 1, 3 . . .

cos(πnz/dQW ), n = 2, 4 . . .
(5A)

where

bq = − aq

ωL

√

a3κ̄

4πM
. (6A)

Using (4A) and (5A), from (2A) we get an expression for

the full energy of oscillations with different values of q:

M
a3

ω2
LSdQW

∑

q

bqb∗
q

(

q2 +

(

πn
dQW

)2)

. (7A)

Let us introduce canonical variables of field:

Qq =
√

A(bq + b∗
q), Pq = −iω

√
A(bq − b∗

q), (8A)

where

A =
1

2

M̄
�

SdQW

(

q2 +

(

πn
dQW

)2)

.

In this case (7A) can be written as: 1
2

∑

q
P2
q + ω2

LQ2
q.

Following the standard procedure, let us introduce operators

for creation and annihilation of phonon:

c+
q =

√

ω

2~

(

Qq −
iPq

ω

)

, cq =

√

ω

2~

(

Qq +
iPq

ω

)

. (9A)

Using (1), (6A), (8A), and (9A), we get an expression for

operator (2).
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