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The ion−solid interaction potential determination from the backscattered

particles spectra
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The values of the atomic particle−solid potential were obtained for the first time from experimental data on the

energy spectra and angular dependences of backscattered particles. The proposed procedure for determining

the potential has never been applied previously. It is shown that the obtained data do not depend on the

potential approximation used. The ion−solid interaction potential differs markedly from the potential describing

collisions in the gas phase. The screening constant increases by 10−15%. The increase in screening is due

to an increase in the density of the electron gas in the region between the incident particle and scattering

center.
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Data on the potential decisively affect the results of

modeling such processes as particle reflection from the

surface and passage through thin films, as well of modeling

particle ranges, sputtering, and energy release. It is

important to consider these processes in defining the plasma

particles interaction with the Tokamak reactor first wall,

in modeling ion implantation, and in analyzing the results

of determining the near−surface layer characteristics based

on ion and atom scattering. Data on potentials directly

define nuclear stopping during the atomic particle beams

transmission through matter.

In modeling collisions between atomic particles and

solids, screened Coulomb potentials are used most often:

Moliere potential [1], ZBL (Ziegler−Biersack−Littmark)
potential [2], Lenz−Jensen potential [3,4], and Kr−C

potential [5]. Paper [6] has proposed a potential that at

present describes the experiments on gas−phase particle

scattering best of all. In [7], calculations obtained in the

density functional (DFT) approximation by using the Dmol

code for choosing the wave function basis were compared

with the experimental potential data. A good agreement

between the theory and experiment was gained. DFT poten-

tials corrected for experimental data on the potential−well

parameters were successfully used in modeling coefficients

of particle reflection from different targets [8] and calculating

nuclear stopping power [9]. Some authors try to account

for the influence of particle−solid interaction peculiarities

in developing potentials to be used in calculations by the

molecular dynamics method [10–12].

It was noticed that, in modeling energy spectra of

scattered particles using computer codes, it is necessary

to correct the screening constant in the potential so as

to ensure better agreement with experiments [13]. In

our work [14] devoted to studying the effect of rainbow

scattering of atoms from metal crystal surfaces, we have

derived from experimental data interaction potentials for a

great number of systems; those potentials significantly differ

from potentials commonly used to describe gas−phase

scattering. This effect was explained by the influence of

a charge induced in metal by the projectile atom [14].
Similar influence was revealed also in [15] in describing

semi−channeling of N+
2 ions on a copper crystal. Contrary

to the case of gas phase, deriving the potential from

the experiment on collisions in solids is hindered by the

influence of multiple scattering and stopping of particles and

also by changes in particle charges in passing through solids.

Earlier no attempts have been made to acquire information

on the potential by simulating energy and angular spectra of

backscattered particles.

To describe particles scattering during bombardment of

a solid, we used our own program code based on the

Monte−Carlo method and binary collision approximation.

The target was described via the microcrystalline model [16]
that accounts for correlation in the arrangement of nearest

neighbors by considering an atomic cluster one lattice

constant in size. Position of the first atom and cluster

orientation were chosen randomly. After the collision, a next

cluster was created, which was arbitrary oriented in space.

In our code, energy losses connected with scattering from

target atoms were calculated exactly for the used interaction

potential. Stopping on electrons was described by using the

paper [17] data; correction for inelastic losses in collisions

was calculated as a product of stopping power at the

considered collision energy and the length of inter−collision

trajectory. Thermal vibrations of the target atoms were

taken into account.

Experimental data on the hydrogen ion scattering from

gold were taken from [18]. The distinctive feature of that
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Table 1. Parameters of the Zinoviev potential

Energy, keV c1 c2 c3 Error, %

5 1.954 1.120 0.017 6.8

8 1.875 1.123 0 8.5

Table 2. Parameters of the Moliere potential

Energy, keV c1 d1 c2 d2 Error, %

5 0.462 0.427 0.5775 1.431 6.9

8 0.455 0.480 0.5775 1.536 8.9

experiment consisted in detecting all the scattered particles,

both charged and neutral ones. This allowed elimination

of the error arising due to an uncertainty in the fraction

of charged particles in the total flux of scattered particles.

The authors measured energy spectra in a sufficiently wide

range of scattered particle energies at two initial energies

of projectile ions: E0 = 5 and 8 keV. Energy spectra were

measured at the angle β values ranging from 25 to 85◦

with the step of 10◦ . The angles were counted from to the

surface normal. The spectrometer energy resolution was

1E/E = 0.019.

To determine the potential parameters, the Zinoviev po-

tential [6] and Moliere potential [1] with varying parameters

were used. Finally, the best agreement with experiment was

reached at a specific collision energy simultaneously for the

entire set of experimental data.

The Zinoviev potential is defined as

U(R) =
Z1Z2e2

R
exp{−B(x)x},

B(x) =
c1

1 + c2x1/2 + c3x
, x =

R
a f

.

Here Z1 and Z2 are the charges of colliding particles insert a

space and remove the sign above the letter n nuclei, R is the

internuclear distance. As screening length a f , the parameter

suggested by Firsov in [19] was used:

a f = 0.88534aB

(

Z1/2
1 + Z1/2

2

)

−2/3
, aB = 0.529 Å,

where aB is the Bohr radius. .

The Moliere potential used in this study had the following

form:

U(R) =
Z1Z2e2

R

3
∑

i=1

c i exp

(

−di
R
a f

)

.

Parameters ensuring the best fit to experiment are listed

in Tables 1 and 2. In the case of the Moliere potential,

parameters c3 and d3 did not affect the result because they

describe interaction with the target K-shell, while distances

relevant to this case were not achieved in the experiment

under discussion.
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Figure 1. Intensities of scattered particles at collision energies

E0 = 5 (a) and 8 keV (b). Points represent experimental data

from [18], lines demonstrate our calculations. β is the emission

angle relative to the surface normal.

Fig. 1 illustrates the comparison between experimental

and calculated spectra for different scattering angles and

collision energies. For more clarity, the data are given only

for a part of angles.

Potentials reconstructed from experimental data are pre-

sented in Fig. 2, a. As Fig. 2, a shows, the obtained values

slightly depend on the used potential form, which confirms

the method’s remove the sign above the letter s reliability.

We assumed that, when protons are scattered in a solid,

an equilibrium beam distribution with respect to particle

charges will be achieved, but it may be different at different

initial energies. This is why the potential parameters at

different energies were determined independently. One can

see in Fig. 2, a that data obtained for different energies are

close to each other, which once more confirms stability

of the procedure for determining the potential parameters.

Fig. 2, a demonstrates also the potential for gas−phase
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collisions obtained by using the DFT method. One can

see that the solid−phase collision potentials obtained in this

study are considerably different from it.

Fig. 2, b presents screening function B(R) for the cases

shown in Fig. 2, a:

B(R) = − ln

[

U(R)R
Z1Z2e2

]

a f

R
.

Fig. 2, b shows that the obtained potentials are charac-

terized by the screening function increase (with decreasing

screening length) by 10−15% as compared with potentials

that are used for gas−phase collisions. To our mind,

this effect is caused by projectile−induced perturbations

of electron gas density in metal. The increase in the

electron gas density in the region between the projectile

and scattering center causes enhancement of the interac-
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Figure 2. a — interatomic interaction potentials reconstructed

from experimental data for different collision energies by using

different potential formulae. The potential data are presented

for the ranges of scattered atom energies observed in the

experiment [18]. The DFT potential was calculated for gas−phase

collisions. b — screening function B(R) for the cases presented in

panel a . The bold line represents the DFT potential for gas−phase

collisions.
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Figure 3. Angular distribution of backscattered hydrogen atoms

with initial energies E0 = 5 and 8 keV. Points are experimental

data, lines are calculations.

tion potential screening. Values of the gas−phase and

solid−phase potentials become closer to each other with

decreasing internuclear distance.

One more criterion for properly choosing the interaction

potential during computer simulation is coincidence of an-

gular dependences of scattered particles with experimental

data. Fig. 3 presents the angular distribution of backscattered

hydrogen atoms integrated over all the output energies for

initial energies E0 = 5 and 8 keV. The ordinate axis presents

function G(β) defined as the number of reflected particles

per incident proton and emission angle interval 1β = 5◦:

G(β) = 4π sin

(

1β

2

)

sin β

E0
∫

0

F(E, β)dE.

Thus, in this study parameters of the potential for the

ion−solid system were obtained from experimental data for

the first time (using as an example experimental data on

energy and angular distributions of backscattered particles

during the golden target bombardment with protons). The

obtained potential considerably differs from those used to

describe gas−phase scattering and is characterized by a

remarkable increase in the screening constant.
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