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More than 35 years of experience in the study of cuprate superconductors shows that the main characteristics of

the phase diagram can only be obtained by taking into account mesoscopic static/dynamic phase inhomogeneity as

a key property of these materials. Within a minimal model for the CuO2/NiO2 planes with the on-site Hilbert space

reduced to only three effective valence centers [CuO4]
7−,6−,5− (nominally Cu1+,2+,3+) with different conventional

spin and different orbital symmetry we propose a unified non-BCS model that allows one to describe the main

features of the phase diagrams of doped cuprates within the framework of a simple effective field theory. Using

Maxwell’s construction, the global nature of the electronic phase separation in the CuO2 planes of HTSC cuprates

is established, which makes it possible to understand and explain many fundamental features of the physics

of the normal and superconducting state of cuprates, including the mechanism of formation of the HTSC and

pseudogap phase. The features of phase-inhomogeneous states and their evolution with temperature and doping

degree, including the special role of the impurity potential in cuprates/nickelates with nonisovalent substitution,

are considered for particular examples of the charge triplet model in the framework of the classical Monte Carlo

method.
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1. Introduction

Today, there is no consensus on the theoretical model

that allows one to describe the complete T−x (T−n, T−p)
phase diagram of cuprates, including the pseudogap phase,

the strange metal phase, HTSC mechanism, variety of static

and dynamic phase states. Numerous experimental data

(see, for example, paper [1]), as well as a number of theo-

retical papers (see, for example, Hirsch’s papers [2]), show
the inapplicability of the concepts of the Bardeen–Cooper–
Schrieffer (BCS) theory for HTSC cuprates. However, the

inapplicability of the BCS theory to describe HTSC does

not reduce the role of the electron-vibrational interaction

in the formation of unusual properties of cuprates. Parent

cuprates are characterized by very strong electron-lattice

relaxation effects and proximity to a
”
polarization catastro-

phe“ [3]. Direct quantum-chemical calculations [4] show

that the electron-vibrational (vibronic) interaction leads to a

significant renormalization of the adiabatic (thermal) charge

transfer gap Uth compared to the optical gap Uopt, up

to the possibility of its
”
overscreening“ with a negative

sign in parent cuprates with an ideal T ′-structure [5].
As a result, the actual situation in doped cuprates with

screened parameters of local and nonlocal correlations

supposes the formation of a
”
boson-fermion“ system of

CuO4-centers in CuO2-planes, which can be in three charge

states of different valence close in energy: [CuO4]
7−,6−,5−

(nominally Cu1+,2+,3+), differing not only in charge, but

also in an ordinary spin (s = 0 for [CuO4]
7−,5−-centers and

s = 1/2 for [CuO4]
6−-center) and by orbital state (A1g for

[CuO4]
7−,5−-centers and B1g for [CuO4]

6−-center) [6–13].
Following the spin-magnetic analogy proposed by Rice and

Sneddon [14] to describe the three charge states (Bi3+,
Bi4+, Bi5+) of bismuth ion in BaBi1−xPbxO3, charge

triplet [CuO4]
7−,6−,5− can be formally associated with

the three states of the pseudospin S = 1 (M = −1, 0,+1,

respectively), a spin-pseudospin (
”
spin-charge“) quartet of

local states |SMsµ〉 (|10 1
2
µ〉, |1−100〉, |1100]〉) can be

introduced, and traditional methods of spin algebra can

be used for
”
non-quasi-particle“ description of the system

of strongly correlated many-electron centers with mixed

valence in the
”
on-site“ (CuO4-cluster!) representation.

Superconductivity in a system of charge triplets will be

associated with the quantum transport of local composite

bosons — pairs of holes localized on the CuO4-cluster

and described by a wave function with the symmetry

(dx2−y2)2 [13].

Recent discoveries of anomalous properties of cuprates

and nickelates with the T ′-structure [5,15], i.e., without apex

oxygen, including the unexpected detection of HTSC in

parent compositions, point to the important role of apex

oxygen, but the headline is the need to refuse from the
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generally accepted idea of the parent composition as an

antiferromagnetic Mott–Hubbard insulator. Most likely,

we should introduce a more universal definition of the

”
parent“ system of planes CuO2/NiO2 with a nominal

configuration 3d9 for positions Cu/Ni, or
”
half filling“,

which, depending on the parameters of
”
out-of-plane“

potential and electron-lattice relaxation, can be in various

states, i.e., from antiferromagnetic or non-magnetic insulator,

a Fermi metal to a high-temperature superconductor.

In this paper, within the framework of the previously

proposed Hamiltonian of the charge triplet model [6–13]
and the effective field theory, we consider the phase

diagrams of CuO2/NiO2-planes, emphasizing the special

role of the effect of phase separation and the formation

of a nanoscopic phase-inhomogeneous structure. Using the

classical Monte Carlo method and computer simulation,

we discussed specific examples illustrating the structure of

the phase inhomogeneous state in cuprates/nickelates with

nonisovalent substitution.

2. Effective spin-pseudospin Hamiltonian

The spin algebra of (pseudo)spin systems with S = 1

(MS = 0,±1) includes eight independent operators (three
dipole and five quadrupole):

Sz ; S± = ∓ 1√
2

(Sx ± iSy); S2
z : T± = {Sz , S±}; S2

±.

Instead of the raising/lowering operators S± and T± chang-

ing the pseudospin projection by ±1, below we will use the

combined operators

P± =
1

2
(S± + T±); N± =

1

2
(S± − T±),

more precisely, their generalization — the Fermi-type spin-

pseudospin operators P̂ν
± and N̂ν

±, which, taking into

account the s = 1/2 spin state of [CuO4]
6−-center (|10〉)

change not only the local charge (pseudospin), but also spin

states acting as follows on the spin-pseudospin quartet

P̂ν
+

∣

∣

∣
10;

1

2
− ν

〉

= |11; 00〉; P̂ν
−|11; 00〉 =

∣

∣

∣
10;

1

2
− ν

〉

;

N̂ν
+|1− 1; 00〉 =

∣

∣

∣
10;

1

2
ν
〉

; N̂ν
−

∣

∣

∣
10;

1

2
ν
〉

= |1− 1; 00〉.

The operators P̂ν
± and N̂ν

± complying with anti-commuta-

tion relations describe the transitions [CuO4]
6− → [CuO4]

5−

and [CuO4]
6− → [CuO4]

7− respectively, and are in fact the

operators of creation/annihilation of electron/hole in the

multielectron atomic state of the
”
parent“ [CuO4]

6−-center.

Purely pseudospin raising/lowering operators S2
± change

the pseudospin projection by ±2 and describe the tran-

sitions [CuO4]
7− ↔ [CuO4]

5−, i.e., they are the cre-

ation/annihilation operators of the hole pair, or an effective

local composite boson. Average

9 = 〈S2
±〉 =

1

2

(

〈S2
x 〉 − 〈S2

y 〉 ± i〈{Sx , Sy}〉
)

can serve as a d-symmetric parameter of local supercon-

ducting order.

The complete set of local operators acting in the space

of the spin-pseudospin quartet of CuO4-center must also

include the conventional spin operator of the
”
parent“

[CuO4]
6−-center.

The effective Hamiltonian of the system of charge triplets

includes accounting of local and nonlocal correlations,

three types of correlated single-particle transport, two-

particle transport, Heisenberg spin exchange, and, generally

speaking, electron-vibrational interaction. As for ordinary

spin-magnetic systems, we can
”
integrate out“ high-energy

degrees of freedom and, after projecting onto a chosen local

quartet |SMsµ〉, taking into account spin algebra obtain the

effective spin-pseudospin Hamiltonian CuO2/NiO2-plane of

cuprate/nickelate in the form [6–13]

Ĥ = Ĥpot + Ĥ(1)
kin + Ĥ(2)

kin + Ĥex, (1)

Ĥpot =
∑

i

(1S2
iz − µSiz ) +

1

2

∑

i 6= j

Vi jSiz S jz , (2)

Ĥ(1)
kin = −

∑

i< j

∑

ν

[

t p
i j P̂

ν
i+P̂ν

j− + tn
i j N̂

ν
i+N̂ν

j−

+
1

2
t pn
i j (P̂ν

i+N̂ν
j− + P̂ν

i−N̂ν
j+) + h.c.

]

, (3)

Ĥ(2)
kin = −

∑

i< j

tb
i j(Ŝ

2
i+Ŝ2

j− + Ŝ2
i−Ŝ2

j+), (4)

Ĥex =
1

4

∑

i< j

J i jσ iσ j, (5)

where σ = 2P̂0s, P̂0 = 1− Ŝ2
z is the operator of local spin

density.

The spin-pseudospin Hamiltonian (1)−(5) contains only

terms that do not change the total charge in the system, that

is they preserve the z -component of the total pseudospin,

which in ordinary spin-magnetic system would mean the

preservation of z -component of magnetization. Naturally,

the energy parameters in such Hamiltonian are effective

variables that must be selected from comparison with ex-

periment, or on the basis of estimates within the framework

of one microscopic model or another.

The first term in (2) describes local correlation ef-

fects (21 = U), in the second term µ — chemical potential,

the last term in (2) describes nonlocal inter-site correlations.
The Hamiltonian (3) describes three types of

”
single-

particle“ correlated transport, term (4) —
”
two-particle“

transport, or the transport of composite bosons, term (5) —
the Heisenberg exchange for parent [CuO4]

6−-centers.

In the Hamiltonian (1) we actually limited ourselves

by the approximation of
”
frozen lattice“, whereas, strictly
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speaking, this Hamiltonian should include not only the

electron-vibrational interaction, but also the impurity po-

tential in cuprates/nickelates with nonisovalent substitution,

which generally plays an important role in the formation of

inhomogeneous electronic state.

Introducing the
”
Cartesian“ form of pseudospin opera-

tors [16]

Ŝ2
± =

1

2

(

(Ŝ2
x − Ŝ2

y ) ± i{Ŝx , Ŝy}
)

= B̂1 ± iB̂2;

P̂ν
± =

1

2
(P̂ν

1 ± iP̂ν
2); N̂ν

± =
1

2
(N̂ν

1 ± iN̂ν
2) (6)

with the Hermitian operators B̂1,2, P̂ν
1,2, N̂ν

1,2 we rewrite the

spin-pseudospin Hamiltonian Ĥ in the equivalent
”
vector“

form as

H = 1
∑

i

Ŝ2
z i + V

∑

〈i, j〉

Ŝz i Ŝz j + Js2
∑

〈i, j〉

σ̂ i σ̂ j

− µ
∑

i

Ŝz i −
tb

2

∑

〈i j〉

B̂iB̂ j −
tp

2

∑

〈i j〉ν

P̂ν
i P̂

ν
j

− tn

2

∑

〈i j〉ν

N̂ν
i N̂

ν
j −

tpn

4

∑

〈i j〉ν

(P̂ν
i N̂

ν
j + N̂ν

i P̂
ν
j ), (7)

where we limited ourselves considering the interaction

of the nearest neighbors, σ̂ = (σ̂x , σ̂y , σ̂z ), B̂ = (B̂1, B̂2),

P̂ν = (P̂ν
1, P̂ν

2), N̂
ν = (N̂ν

1 , N̂ν
2).

Ignoring nonlocal correlations, that is, for Vi j = 0, the

spin-pseudospin Hamiltonian of our model (1)−(5) is

formally equivalent to the sum of the Hamiltonians (7.8)
and (7.15) from N. Plakida’s book [17], written in

terms of the Hubbard X -operators, but obtained within

a rather controversial microscopic model (Ud → ∞, . . .).
The Hamiltonian of local electron-vibrational (pseudospin-
lattice) interaction with fundamental displacement modes of

cluster CuO4/NiO4 of symmetry A1g, B1g , B2g is presented

in paper [13].

3. Phase states and phase diagrams
of the charge triplet model

The rather complex structure of the local Hilbert space

(quartet!) with a large number of local order parameters

and effective spin-pseudospin Hamiltonian (1)−(5) or (7)
point to a large number of possible phase states of the

”
charge triplet“ model. One or another long-range order

in the system, which is established with temperature

decreasing, is the result of competition and evolution

of the short-range order formed by the main intercenter

interactions. Thus, in the nearest neighbors approximation

the exchange interaction is primarily responsible for the

formation of spin-antiferromagnetic dielectric phase (AFMI)
with a local parameter 〈σ 〉, nonlocal correlations (V) —
for the staggered-type charge ordering (CO, or CDW with

q = (π, π)) with local
”
pseudo-antiferromagnetic“ parame-

ter Lz = 〈Sz A〉 − 〈Sz B〉, two-particle transfer — for phase

of bosonic superconductivity (dBS) with d-symmetric order

parameter 〈S2
±〉, single-particle transfer — for two coherent

Fermi-type metallic phases, hole (P) and electron (N),
characterized by local parameters 〈Pσ

±〉 and 〈Nσ
±〉 respec-

tively [13]. Note that local average of fermionic operators of

〈Pν
±〉 and 〈Nν

±〉 types were first used in the mean field

approximation by Caron and Pratt [18]) to describe the

Hubbard model in real-space, rather than k-momentum,

as usual, representation. Metallic P- and N-states interact

and mix due to PN (NP) contributions to single-particle

transport (3), which leads to unusual properties of metal

phases of cuprates/nickelates with specific coexistence of

electron and hole carriers in cuprates with both hole and

electron doping [19,20]. Here we mentioned the simplest

”
monophases“ with a single non-zero local order parameter.

But remember that these phases of the
”
Neel“ type are

just some classical limit of the actual quantum phases of

the ground state, the manifestation of which we see, in

particular, in the effect of
”
quantum“ reduction of the

value of the local order parameter, which is well known

for quantum magnetics. However, along with semiclassical

phases of the
”
Neel“ type in the CuO2/NiO2 planes of

cuprate/nickelate it is possible to form a purely quantum

nonmagnetic dielectric phase as a system of quantum

electron-hole (EH) dimers of the Anderson RVB-phase

type, the stability of which will be maintained due to the

effects of electron-lattice relaxation [11].

The spin-pseudospin structure of the effective Hamilto-

nian makes it possible to use for the analysis of phase

states and phase diagrams of the charge triplets model

the methods well known for typical spin-magnetic systems,

primarily the effective field method, which makes it possible

to accurately consider local correlations, and all inter-site in-

teractions within the molecular field approximation (MFA)
typical for spin-magnetic systems [12,13,21]. The simple

theory of the effective or mean field in the usual real-

space representation is, as always, a good starting point for

a physically clear semiquantitative description of strongly

correlated electron systems, primarily spin or pseudospin

systems.

The semiclassical phase states of the complete model

of charge triplets in the framework of the effective field

approximation were recently analyzed in papers [12,13] with

the subsequent Maxwell’s construction, which allows one

to numerically find the boundaries of the phase separation

regions, in particular, the lines of phase transitions of the

”
third order“ and to plot phase diagrams of CuO2/NiO2-

plane (
”
2D diagrams“) for various energy parameters of the

model, at this point not considering their dependence on the

degree of doping. Fig. 1 (top panel) shows several options of

”
single-phase“ diagrams for the CuO2/NiO2 planes obtained

in the framework of the two-sublattice model with nearest

neighbors interaction. The phases corresponding to the free

energy minimum are marked with different colors.
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Figure 1. Model 2D T−n-phase diagram of cuprate/nickelate with hole doping (n = p) assuming implementation of
”
monophases“

NO, AFMI, BS, FL, CO, calculated in the effective field approximation at constant values of the Hamiltonian parameters (see text). Top
panel — phase diagrams without taking into account the possible coexistence of

”
adjacent“ phases; bottom panel — phase diagrams

considering phase separation. Black dotted and solid curves are lines of phase transitions of the first and second order, respectively, dashed

lines in the diagrams of the bottom panel indicate the boundary of regions with the same volume fraction of coexisting phases, yellow

curves indicate the lines of phase transitions of the
”
third“ order, i.e., the boundaries of areas with 100% volume fraction. The inset in the

diagram h is a typical phase diagram of a cuprate with hole doping.

The phase diagram shown in Fig. 1, a was calculated

for rather arbitrarily chosen model parameters (see inset),
whose ratio is characterized by the complete suppression of

the AFMI and CO phases in favor of the BS and FL phases,

which form the ground state of the CuO2/NiO2 planes

at 0 ≤ n ≤ 0.16 and n > 0.16, respectively. Such phase

diagrams without signs of long-range order AFMI and CO

turn out to be typical for cuprates with an ideal or almost

ideal T ′-structure [5], and, possibly, nickelates, the structure

of which also has no apex oxygen [15]. However, for the

chosen energy parameters the free energies of the phases

AFMI and BS turn out to be close, so that the exchange

integral increasing by 1% only leads to the appearance of

AFMI phase initially in a small section of the phase diagram

(Fig. 1, b), and with increasing by 3%, the AFMI phase

forms the ground state of the system in the region of low

doping concentrations (Fig. 1, c). With the local correlation

parameter decreasing by two times the system exhibits a

step-by-step AFMI-CO-BS-FL transformation of the ground

state with phase diagram typical for many hole-doped

cuprates (Fig. 1, d).
However, ordered homogeneous phases turn out to be

unstable with respect to phase separation (PS). As a

result of the numerical implementation of the Maxwell

construction [21–23] with the same parameters of the model

Hamiltonian as above, we found that phase separation is

indeed observed in the region of coexistence of phases

AFMI-FL, AFMI-BS, CO-BS, CO-FL, and BS-FL, sepa-

rated by first-order phase transition lines, but absent in the

region of coexistence of AFMI-CO phases. The coexistence

of the AFMI and CO phases means the possibility of the

formation of a homogeneous mixed phase, such as the

spin-charge (spin-pseudospin) density wave, although, most

likely, effects characteristic for the region of coexistence of

the corresponding
”
monophases“ will also be observed. The

phase diagram for our model cuprate, plotted considering

the phase separation and presented in the bottom panel of

Fig. 1, differs significantly from the
”
naive“ phase diagram

(top panel of Fig. 1), obtained without phase separation.

The lines of phase transitions of the
”
third“ order, i.e.,

the boundaries of regions with 100% volume fraction are

highlighted in yellow on the bottom panel, dashed lines

indicate the boundaries of regions with the same volume

fraction of coexisting
”
monophases“. The specific shape of

the domains in PS-state is determined, in particular, by the

long-range Coulomb interaction and the surface energy, i.e.,

the energy of the interfaces.

The conclusion about the
”
global“ nature of the electronic

phases separation in the CuO2 planes is of fundamental

importance both in general for understanding the physics of

the normal and superconducting states of cuprates, and in

particular for explaining the HTSC mechanism itself. Thus,

following the authors of paper [24], we can say that the

superconductivity of cuprates is not directly related to the

4 Physics of the Solid State, 2022, Vol. 64, No. 9
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pairing of doped holes or electrons. Doped carriers only

form a normal metallic FL-phase. The superconducting

state of cuprates with d-symmetry of the order parameter

is formed by
”
hole“ local composite bosons having d2

x2−y2

symmetry. Formally, all
”
monophases“, i.e., AFMI, CO, BS,

and FL, are possible phase states of parent cuprates; while if

for cuprates with T - structure the AFMI-phase is the ground

state, then for curpates with ideal T ′-structure the ground

state is formed by superconducting BS-phase [5,25].
The superconducting transition in the PS-state will have

a two-step nature with the formation at T > Tc of iso-

lated BS-domains without phase coherence and the subse-

quent percolation transition with phase-synchronization of

BS-domains due to the Josephson interaction at a lower

temperature Tc , when the Josephson coupling between

BS-domains is approximately equal to the thermal energy.

A tendency to phase separation as a universal feature

of doped cuprates is evidenced by a large number of

experimental facts (see, for example, papers [24,26–28]
and references therein). Thus, the coexistence of normal

phase regions with a superconducting condensate agrees

with the measurements of excess thermal conductivity and

heat capacity [20]. Unfortunately, despite these evidences,

most theoretical approaches to describing the normal and

superconducting states of cuprates are based on the assump-

tion of homogeneous phases.

All AFMI, CO, and BS
”
monophases“ characterized by

the presence of specific energy gaps, are separated from

the 100% coherent metallic Fermi-liquid FL-phase by a

phase transition line of
”
third order“ T ∗(p), which is the

main candidate for the
”
pseudogap“ temperature, which

determines the boundary of the
”
pseudogap“ phase. The

actual inhomogeneous electronic structure of the pseudogap

phase is determined by the complex competition of the

Nèel-type
”
monophases“ with non-zero local order parame-

ters and quantum phases of the type of electron-hole dimers

system [11].
The PS-model predicts the appearance of several charac-

teristic temperatures of percolation transitions inside the

pseudogap phase, which will manifest themselves in the fea-

tures of the temperature behavior of various thermodynamic

quantities [29].

4. Computer simulation of phase
heterogeneity in CuO2/NiO2 planes
of cuprates/nickelates

Maxwell’s effective field theory and construction give

only semi-quantitative information on the position of phase

separation regions and volume fractions of phases depen-

ding on the temperature and degree of doping, but they

do not provide any information on the actual structure of

the phase-inhomogeneous state, which, most likely, will

be determined by such factors as defectiveness, size and

shape of the sample. Below, for illustration, we discuss

several particular variants of the complete model of charge

triplets. The analysis of particular variants such as the

atomic limit, the limit of large negative U ,
”
spinless“ limit,

within the framework of the molecular field approximation

and the Maxwell construction, classical and quantum Monte

Carlo, allows us to demonstrate the formation and features

of phases separation, the structure of domain boundaries,

which, as a rule, are the centers of formation of new phase-

heterogeneous states.

4.1. Atomic limit

The atomic limit, in which we neglect both one- and

two-particle transport, was discussed by us in sufficient

details in a series of papers [30–35] in the framework of

a simplified two-sublattice model and the Ising exchange

interaction using the molecular field approximation, the

Bethe cluster model and the classical Monte Carlo method.

For illustration, Fig. 2 shows in the strong exchange limit

the calculated phase T−1 (Fig. 2, a) and T−n (Fig. 2,

bottom panel) diagrams, as well as the specific heat capacity

vs. temperature (Fig. 2, b). Both the molecular field

approximation and the Monte Carlo method indicate a

low-temperature phase transition of the
”
third order“ to

the PS-state with the phase separation AFMI-CO. The

bottom panel of Fig. 2 shows examples of the structure

of PS-state in the region of small (
”
CO-droplets“ in the

AFMI-matrix) and large (
”
AFMI-droplets“ in CO-matrix)

of doping concentrations obtained from the Monte Carlo

calculations.

4.2. Limit of large negative U = 21

In the limit of large negative U = 21 → −∞, the

local Hilbert space is reduced to the pseudospin doublet

MS = ±1, and the system of charge triplets is reduced to

the system of electron and hole centers, which is equivalent

to the well-known system of local (hard-core) bosons [36],
which, depending on the model parameters (tb and V ),
can be found in the ordered states CO and BS. Obviously,

the study of the competition between superconductivity

and charge ordering is of particular interest for HTSC

cuprates. We used high-performance parallel computing

on NVIDIA graphic cards using the nonlinear conjugate

gradient method and the Monte Carlo method to directly

observe the formation of the ground state configuration of a

two-dimensional system of local bosons with temperature

decreasing and its evolution with a deviation from half-

filling [37,38]. Systematic studies on large square lattices

shown that in the absence of doping (n = 0) the temper-

ature decreasing leads to the formation of both a stable

homogeneous CO-phase and a relatively stable domain

structure of CO-phase with a stripe-like domain boundaries,

oriented predominantly along the principal axes of the

lattice. Antiphase domain boundaries in the CO-phase are in

fact the regions of
”
filamentary“ superconductivity [37,38],

at that along with a simple uniform (
”
ferromagnetic“)

phase distribution of the order parameter of BS phases
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Figure 4. Illustration of the cylindrical domain formation of the superconducting BS-phase at the
”
out-of-plane“ impurity potential in the

parent cuprate/nickelate with the ground AFMI state.

at the center of the boundary they can have an unusual

multidomain topological structure with a high density of

2π-boundaries separating one-dimensional phase domains.

The evolution of both homogeneous and stripe-like configu-

rations of the ground state of the system of local bosons

under doping is shown in Fig. 3, a, b. For the initial

homogeneous state, a small deviation from half-filling at

n ≤ 0.01 practically does not lead to visible effects, slightly

breaking the residual heterogeneity. However, at n ≈ 0.01

there is a sudden formation of rather large topological

defects (droplets), which are mainly cylindrical in shape

and consist of BS-core and a ring-shaped boundary with

the
”
supersolid“ phase structure [36]. These droplets could

accommodate all the doped bosons, preserving the uniform

surrounding CO-phase. When doping increases, we come to

a well-defined phases separation with an increasing volume

fraction of large defects, with a change in their shape and

their merging up to a complete phase transition CO-BS near

the critical value ncr ≈ 0.22. The evolution of the stripe-like

CO-phase with filamentary superfluidity, when deviating

from half-filling, proceeds according to a different scenario,

since doped bosons are localized at the center of narrow

domain walls, which leads to their uniform broadening up

to the formation of BS-phase domains. It is notable that

the structure of the final BS-phase in this case depends

on the initial topological structure of the phase parameter

of BS-phase (ϕ) in one-dimensional domain boundaries.

Fig. 3, b shows the option of the initial state with two

one-dimensional domain walls with a uniform distribution

of the phase parameter of BS-phase for the bottom wall

and with 2π-domain boundary separating one-dimensional

phase domains for the top wall. The phase angle ϕ

orientation inside the domain walls is schematically shown

in Fig. 3, b for n = 0.1. Upon deviation from half-filling in

a well-defined phases separation regime, we get a system of

almost parallel domains of CO- and SF-phases separated

by domain walls with the
”
supersolid“ phase structure.

However, the regular domain structure becomes more and

more unstable up to the limiting doping concentrations with

the formation of BS-phase with topological defects. Note

that in both cases considered, the phases separation is

formed more likely according to the scenario typical for

the first-order phase transitions in systems with nuclei of

the
”
new“ phase.

4.3. Features of the formation
of phase-inhomogeneous states
in cuprates/nickelates
with nonisovalent substitution

It is obvious that both the 2D phase dia-

grams and especially the 3D diagrams of actual

bulk cuprates/nickelates with
”
nonisovalent“ substitution

(La2−xSrxCuO4, YBa2Cu3O6+x , . . .) will be significantly

modified taking into account the impurity
”
out-of-plane“

Coulomb potential as some
”
external“ initiator of electronic

inhomogeneity.

Preliminary model calculations carried out by us by

the classical Monte Carlo method on large square lattices

show the possibility of the formation of local supercon-

ductivity regions near such impurities even in the initial

antiferromagnetic dielectric matrix. Fig. 4 illustrates the

formation/destruction of the cylindrical domain of BS-phase

upon the temperature decreasing/increasing in the
”
parent“

antiferromagnetic CuO2 — plane of the model cuprate

of type La2−xSrxCuO4 taking into account the
”
out-of-

plane“ Coulomb potential created by a separate Sr2+

ion. For simplicity, we neglected single-particle transport,

assuming tp = tn = tpn = 0. The choice of the remaining

model parameters: J = 1, V = 0.1, 1 = 0.02, tb = 0.55

corresponded to the ground AFMI state of the CuO2-plane

in the absence of an impurity potential.

Nonisovalent impurities can serve as pinning centers for

various topological defects such as skyrmions or cylindrical

domains (bubbles) [8], as well as domain boundaries.

Fig. 5 illustrates the process of evolution of the branched

domain structure of the CO-phase of charge triplets system

with parameters J = 1, V = 0.3, 1 = 0.02, tb = 0.55,

tp = tn = tpn = 0 in the presence of the
”
out-of-plane“

Coulomb potential. The process of gradual
”
freezing“

of domain boundaries with temperature decreasing stops

when the nearest domain boundary is pinned at the
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Figure 5. Illustration of CO-phase domain wall pinning at the
”
out-of-plane“ impurity potential in the parent cuprate/nickelate with the

ground CO-state.

impurity potential. Note that the domain boundaries of

the CO-phase represent regions of the filamentary BS-phase

(superconductivity), and the region at the center of the

impurity potential is the cylindrical domain of the BS-phase.

5. Conclusion

We develop a scenario for the formation of the electronic

structure of HTSC of cuprates/nickelates, which is based

on the description of the charge degree of freedom of

the CuO2/NiO2-planes within the
”
non-quasiparticle“ model

of charge triplets — clusters of the type [CuO4]
7−,6−,5−

(nominally Cu1+,2+,3+-centers) in cuprates using the S = 1

pseudospin formalism. The effective spin-pseudospin Hamil-

tonian, which takes into account the main local and nonlocal

correlations, single- and two-particle transport, and spin

exchange, makes it possible to use all methods of analysis

well known for spin-magnetic systems, in particular, the

effective field theory with the exact consideration of local

correlations and the molecular field approximation to take

into account inter-site interactions.

The ground state of parent systems can be not only

an antiferromagnetic insulator (AFMI), but also a bosonic

superconductor (BS), a nonmagnetic charge-ordered insu-

lator (CO), an unusual Fermi metal, and also a quantum

insulator like a system of electron-hole dimers. The typical

state of doped cuprate/nickelate, in particular a
”
mysterious“

pseudogap phase, is the result of phases separation. The su-

perconductivity of cuprates/nickelates is not a consequence

of the pairing of doped holes or electrons, but is the result of

the condensation of hole composite bosons, while the main

features of the normal state can be associated both with the

electron-hole nature of the unusual Fermi liquid phase and

with the features of phases separation. The global nature

of the electronic phases separation in the CuO2/NiO2-

planes makes it possible to understand and explain many

fundamental features of the physics of the normal and

superconducting states of cuprates/nickelates, including the

formation mechanism of the HTS and pseudogap phase.

On a number of particular examples of the implementa-

tion of the model of charge triplets in the framework of the

classical Monte Carlo method, we considered the features

of phase inhomogeneous states and their evolution with

changes in temperature and doping degree, including the

special role of the impurity potential in cuprates/nickelates

with nonisovalent substitution.
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