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Photovoltaic effect in a ferromagnet with spin-orbit coupling
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The effect of the appearance of an electric current induced by the electromagnetic radiation at the interface of

a ferromagnet and a non-magnetic material is calculated theoretically, taking into account the Rashba spin-orbit

coupling. It is shown that the electric dipole transitions between the spin subbands of the conduction electrons of

a ferromagnet due to the Rashba interaction lead to a photocurrent. This current has a resonance at a frequency

corresponding to the energy of the exchange splitting of spin subbands. The resonance width is determined by

the spin-orbit interaction constant. The estimates show the possibility of experimental observation of this effect in

specially prepared multilayer systems.
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1. Introduction

The coupling of spin and orbital degrees of freedom in

ferromagnets leads to a number of unusual and interesting

phenomena in optics and transport. In non-collinear

ferromagnets, such phenomena as non-reciprocal light scat-

tering [1.2] and signal generation at double frequency [3],
electromagnetic wave absorption and radiation due to

conductivity electrons transitions between spin subbands

occur [4–8]. In non-coplanar magnetic systems there is

a topological Hall effect [9–11], a rectification effect for

neutrons [12–14] and electrons [15–17]. At the junction of

the optical and transport phenomena there is a photovoltaic

effect [18], close to the straightening effect of the alternating

electric field in the non-coplanar ferromagnet [15]. This

effect, like the absorption of electromagnetic radiation, is

due to the conductivity electron transitions between the

spin subbands of the ferromagnet under the action of the

electromagnetic electric field. The non-complanarity of the

magnetic moment makes it possible to couple the spin state

with the movement along the allocated axis and results in

the optical transitions being accompanied by the flow of

electric current. This is possible due to spatially non-uniform

magnetization. In the present work, a similar photovoltaic

effect is calculated in a homogeneous ferromagnet in which

electrodipole transitions are allowed by the Rashba spin-

orbital interaction.

Optical effects were previously studied in with spin-orbit

interaction semiconductors placed in an external magnetic

field [19]. The system considered in these works differs

significantly from the ferromagnetic system considered in

this paper, however, the physical essence of phenomena is

close. The influence of spin-orbit interaction on electron

transport in various, including ferromagnetic, systems was

also investigated. The presence of persistent spin [20] and

electric [21] currents in mesoscopic rings with spin-orbit

interaction, as well as in the ring with the Rashba interac-

tion, which was theoretically predicted is connected to the

ferromagnet [22]. Work [23] considers photodetectors based

on the two-dimensional MoS2, which is a semiconductor

and has an internal spin-orbit interaction. In work [24]
in numerical calculations based on the method of non-

equilibrium Green functions the effect of photoinduced

voltage arising in zigzag-shaped nanoribbons from two-

dimensional MoS2 having spontaneous magnetic moment

was considered.

The photovoltaic effect caused by conductivity electron

transitions between spin subbands under the action of the

electric wave field at the boundary of the ferromagnet and

heavy metal is considered in the present paper. Such sys-

tems have recently been extensively investigated due to the

presence of the Dzyaloshinsky–Moriya interaction [25–28],

which may, inter alia, appear because of the spin-orbital

Rashba interaction [29,30]. The effect considered in the

present work has a resonance at the rate of exchange

splitting of the spin subbands and is therefore strong

enough. It could be used to study the properties of

ferromagnets and their boundaries with other substances.

In particular, by observing the effect, it is possible to

determine the exchange constant between the conductiv-

ity electrons and the localized electrons responsible for

magnetization, to estimate the relaxation time of the

electron momentum and to determine the value of the spin-

orbital interaction at the boundary of the ferromagnet with

heavy metal.
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2. Theoretical model

In order to solve the problem of rectifying electromag-

netic radiation at the boundary between the ferromagnet

and the non-magnetic material, the following model has

been considered. The electrons of ferromagnet responsible

for conductivity rectification are considered free. Their

exchange interaction with the electrons responsible for

the magnetization are described in the framework of the

Vonsovskii s -d model. Spin-orbital interaction is considered

in the form of the Rashba interaction. Thus, the Hamiltonian

of conductivity electrons has the form

Ĥ =
~
2p̂2

2me
+ J
(

σ̂ · M̂
)

−

(

αR

~
· [p̂× σ̂ ]

)

, (1)

where p̂ = −i~∇ — momentum operator, σ̂ —- vector of

the Pauli matrices, M — magnetization vector (normalized

per unit), J — exchange constant, αR — Rashba vector.

In the framework of current study, we suppose that the

magnetization vector in a ferromagnet is parallel to the

Cartesian axis z : M = ez (see Fig. 1). The most interesting

case that we consider below is realized when the Rashba

vector is directed perpendicular to the magnetization vector.

This is due to the fact that the Hamiltonian of the

Rashba spin-orbit interaction (see (1)) gives a non-zero

energy contribution for the mean spin polarization directed

perpendicularly to the αR vector. One can choose the

Cartesian coordinate system in such a way that αR ||ex , as

shown in Fig. 1. In the absence of the Rashba interaction,

the conductivity electron energy spectrum consists of two

spin subbands split into 2J :

ε
(0)
± =

~
2k2

2me
± J, (2)

ψ
(0)
+ =

(

1

0

)

exp(ikr), ψ
(0)
− =

(

0

1

)

exp(ikr) (3)

up to the normalization factor [31]. Here k — the electron

wave vector, r — radius-vector, me — electron mass.

Accounting for the Rashba interaction in a linear order of

αR results in a mixing of the spin states and correction of

the spectrum dependent on electron quasimomentum

ε± =
~
2k2

1me
± (J − αRky), (4)

ψ+ =
(

1

iαRkz
/

2J

)

exp

(

ikr− i
ε+

~
t

)

,

ψ− =
(iαRkz

/

2J
1

)

exp

(

ikr− i
ε−

~
t

)

. (5)

Let us calculate the equilibrium electric current within

this simple model in the absence of an electromagnetic

wave. When calculating the
”
normal“ current flowing in

the system

jn = −i
e~

2me

(

(∇ψ)+ψ − ψ+∇ψ
)

, (6)

x
y

z

jphoto

E

M

aRa

Figure 1. Schematic representation of the examined system.

where the e — electron charge, it turns out to be different

from zero and in the least order by the Rashba interaction

has the form

jn = −
e
~

4π

3
k3
F

(

(

1 +
1

εF

)3/2

−

(

1−
J
εF

)3/2
)

[αR ×M],

(7)
where kF and εF – Fermi energy and momentum. Its phe-

nomenological form is — f (αR)[αR ×M], where f (αR) —
some Rashba vector module function (not dependent on

its direction). This
”
normal“ current can be interpreted

as follows. It is known that in a system of free electrons

with Rashba interaction, a spin current arises, which

has the form JS
i j = ei jkαRk , where ei jk — antisymmetric

Levy−Civita tensor, i and j — spatial and spin coordinates

respectively. When accounting for the exchange interaction,

such spin current is converted to an electric current of the

type JS
i jM j . In addition to

”
normal“ current, the system has

anomalous current associated with conductivity electrons

having anomalous correction to speed. It is connected with

the fact that the current operator has a correction due to the

Hamiltonian of the Rashba spin-orbit interaction, which is

determined by the formula

jR = −
e
~
[αR × ψ+

σ̂ψ]. (8)

This anomalous current turns out to be exactly equal to the

”
normal“ one taken with minus sign. Therefore, the total

electric current of j6 = jn + jR in equilibrium is zero, and

there are no persistent currents in this system.

3. Interaction of ferromagnet
with electromagnetic wave

The interaction of the medium with the electromagnetic

wave is considered within the framework of the calibration

of ϕ = 0, then the vector-potential of the wave has the form

A = −
ic
2ω

(E + c.c.), (9)

where ω — wave frequency, E = E0 exp(−iωt) — wave

electric field vector (as seen from this expression, we ignore

the wave vector, i.e., only consider transitions between spin
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subbands within the electrodipole approximation) c.c. —
complex conjugate value. To obtain the operator of

electrons interaction with an electromagnetic wave, it is

necessary to modify the momentum (minimal coupling).
Without the Rashba interaction (in a purely exchange

approximation) the interaction operator has the form

Ĥ(1)
em = −

e
2mec

(p̂A + Ap̂) (10)

(here c — speed of light in vacuum) and such transitions

are prohibited. Given the Rashba interaction, the Ĥ(1)
em

operator still does not give electron transitions between spin

subbands. This is due to the fact that the wave functions of

type (5), containing corrections due to Rashba interaction,

have the form of

ψ+ ∼

(

1

ib

)

, ψ− ∼

(

ib
1

)

, (11)

where b depends on kz . When calculating the matrix

element of transitions between spin subbands under the

action of operator (10), in which the vector potential is

determined (9) and does not depend on spatial coordinates,

we get

ψ+
+Ĥ(1)

emψ− ∼ (1− ib)(Ek)

(

ib
1

)

= 0, (12)

where k-quasi-momentum of electron as before. Note that

this statement is true not only in the linear order the

Rashba interaction, but also in general. The reason for

this is that the wave functions of electrons of form (5) are

eigenfunctions of the momentum operator, although they

contain spin proportional to kz . The wave functions remain

orthogonal, the average spin of electrons with a certain

quasi-momentum rotates around the axis x (Rashba vector)
at some angle relative to magnetization, depending on the

quasi-momentum; at that, this angle is the same for both

spin subbands and is independent of spatial coordinates.

This means that with the chosen quasi-momentum one can

switch to another spin coordinate system, in which the wave

functions will be of form (3); the transition operator itself

will depend on the quasi-momentum. Therefore, opera-

tor (10), which is actually proportional to the momentum

operator and does not contain a spin operator, cannot cause

electron transitions between states.

At the same time, the correction to the momentum in the

Rashba Hamiltonian gives the interaction operator [8]:

Ĥ(2)
em =

e
~c

(

αR[A× σ̂ ]
)

. (13)

This operator removes the ban on electron transitions

between spin subbands for the case considered in the

present paper when the Rashba vector αR is perpendicular

to magnetization M (Fig. 1).
Since the Rashba constant is usually small, one can limit

the probability of transitions to the lower order of αR . The

probability of transitions is determined in the lowest order

by the Rashba vector as follows

W±
kk′

=
2π

~

(

αReEz

2~ω

)2

δ(k− k′)δ(1ε − ~ω) (14)

and has a second order in αR . Here 1ε = 2J−2kyαR —
electron energy gap between spin subbands (without the

Rashba interaction it is equal to 2J). It is worth noting,

that the contribution to the transitions is given only by the

component of the electric field of the wave, directed along

the axis z parallel magnetization.

The calculated transition to probability determines the

photoinduced current in the considered system. Calculating,

similarly to [18], the corrections f (1)± to the electron

velocity distribution function f ± = f (0)± + f (1)±, related

to electromagnetic wave effects on electrons, by formula

−
f (1)±

τ
=

∫

d3k ′W±
kk′

( f (0)± − f (0)∓), (15)

where τ — relaxation time, we get a photocurrent in the

form

jphoto = π2

(

αReEz

~ω

)2 eme

~3

1

~/τ

αR

|αR |
ey

×



























2J, |θ| < 2kF−|αR |
(

εF + J − θ2

8α2
Rme/~2

)

,

2kF−|αR | < |θ| < 2kF+|αR |

0, |θ| > 2kF+|αR |

, (16)

where θ = ~ω−2J,

kF± =

√

2me

~2
(εF ± J)

—, Fermi momentum for two spin subbands (εF — Fermi

energy). Photocurrent (16) can be described by the

phenomenological expression g(αR)[αR ×M](EM)2, where

g(αR) — function of the Rasba vector module. Such current

is caused by a wave and flows in an nonequilibrium system,

and therefore is not prohibited.

To plot the characteristic dependence of the photocurrent

on frequency it is necessary to estimate the constant of

spin-orbit interaction αR . This can be done from the

surface-induced Dzyaloshinsky−Moriya interaction constant

for the ferromagnet and non-magnetic material [30]. It

is known, for example, that at the boundary of Co/Pt

(boundary of the ferromagnet/heavy metal, on which

relatively strong — for magnetic materials — spin orbit

interaction is realized) the constant of this interaction

is D ≈ 0.4 erg/cm2 [28]. Knowing the cobalt exchange

hardness constant A = 3 · 10−6 erg/cm2, we get an estimate

of αR ∼ 10−10 eV · cm. Then for realistic parameters

current (14) takes the form shown in Fig. 2. Current is

different from zero in a limited frequency range. For typical
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Figure 2. Resonant dependence of the calculated photocurrent on

dimensionless frequency of electromagnetic wave. The parameters

taken for calculation are shown in the figure.

ferromagnetic metal parameters, the center of this range cor-

responds to values 2J in the range of approximately from 0.3

to 2 eV, while the width of 2(kF+ + kF−)|αR | ≈ 4|αR |kF

range is tens of millielectronvolts. It is possible to take

into account the relaxation of the nonequilibrium spin of

electrons, for example, by scattering on impurities. In this

case the delta function of (14) is replaced by the Lorentz

curve; this will cause the current to be different from

zero for any frequency, with a pronounced resonance at

a frequency of 2J . The resonance width will also increase.

To estimate the absolute value of current in a resonance

we take the characteristic time of relaxation τ = 10−13 s [4].
Then for a wave field electric in the magnetization

direction Ez = 1V/cm we have an induced current of

Jphoto ∼ 10−8 A/cm2. However, this value quadratically de-

pends on the amplitude of the electric field (for estimations

we take a small value, very far from the record), as well as
on the Rashba constant. From the literature the following

characteristic values of the latter for different materials

are known. The greatest value of the Rashba interaction

is achieved in metal heterostructures with heavy metals.

When considering single surfaces, it turns out that on the

surface of gold αR = 0.33 · 10−8 eV · cm, and on the surface

of bismuth — 0.56 · 10−8 eV · cm [32]. At the interface

of bismuth and silver, the constant is about an order of

magnitude larger and is αR = 3.05 · 10−8 eV · cm [32,33].
In the literature there is also information that in ferro-

magnets the Rashba interaction is suppressed and therefore

the interaction constant in such a system is smaller. As

mentioned above, estimating the Rashba constant for the

cobalt and platinum boundaries by the Dzyaloshinsky–
Moriya interaction yields αR ∼ 10−10 eV · cm. This value is

two orders of magnitude less than even the Rashba constant

on the boundaries of nonmagnetic metals. The dimension-

less value of meαR/~
2kF, which determines the magnitude

of the straightening effect considered here and is included in

the second-degree response, is about 2.4 · 10−3 and is very

small. To enhance interband spin-orbit effects, a three-layer

system such as NiFe/Ag/Bi [33] with a very thin bismuth

interlayer is possible. In this case the dimensionless value

of meαR/~
2kF can be determined by the Bi/Ag interface

and is of order 0.75. For the electric field Ez = 1V/cm, this

spin-orbit interaction constant yields jphoto ∼ 10−3 A/cm2.

When localizing this current on a scale of 1 Å near the

boundary and the width of the sample of the order 1 cm for

the field strength Ez = 300V/cm have current of I ∼ 1µA.

Therefore, it is possible to experimentally observe the

rectification effect at the boundary between the ferromagnet

and the heavy metal with some system complexity and the

use of a three-layer sample.

4. Conclusion

In this paper, the photovoltaic effect is predicted to

occur at the boundary between a ferromagnet and non-

magnetic material due to the presence of the Rashba spin-

orbit interaction at this boundary and connected with the

conductivity electron transitions between the spin subbands

under the action of the electromagnetic wave electric field.

This effect is resonant with a resonance at a frequency

corresponding to the exchange splitting of the couductivity

electron subbands of the ferromagnet, and a resonance line

width determined by the product of the Rashba interaction

constant αR and the Fermi wave number kF. In proposed

three-layer system in which the ferromagnet is separated

from the interface with a strong Rashba interaction by a

thin layer of silver, it has been shown that it is possible

to count on experimental observation of the photocurrent

when it is exposed to electromagnetic radiation of sufficient

intensity. The effect considered in this paper could find

application in the study of the properties of ferromagnets

and their boundaries with other materials. In particular, by

observing the effect, it is possible to determine the exchange

constant between the ferromagnet conductivity electrons

and the localized electrons responsible for magnetization, to

estimate the relaxation time of the electron momentum and

to determine the value of the Rashba spin-orbit interaction

at the boundary under study.
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D. Pacilé, P. Bruno, K. Kern, M. Grioni, Phys. Rev. Lett.

98, 186807 (2007).
[33] J.C. Rojas Sánchez, L. Vila, G. Desfonds, S. Gambarelli,
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