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1. Introduction

Exciton states in semiconductor layered heterostructures,

such as quantum wells (QW), have been widely studied by

now by optical spectroscopy methods [1–3]. The influence

of QW layer thickness on exciton states manifests itself

in size quantization of exciton energy. If QW width is

by an order greater than the exciton Bohr radius (the so-

called wide wells), size quantization of exciton motion as

a unity takes places [4–13]. If QW width is comparable

to or less than the Bohr radius (the so-called narrow

wells), a restriction of well sizes has an impact on the

relative motion of the electron and hole in the exciton,

see, e.g., [14–17].

External fields applied to a QW lead to additional

effects. For instance, uniaxial pressure in narrow and

wide QWs leads to a monotonous increase of exciton bond

energy [18], to an energy shift of levels of exciton size

quantization [19,20], effect of approach of masses of heavy

and light hole excitons and phase inversion of excitonic

peculiarities in optical spectra [21,22]. A magnetic field

applied in the Vogt geometry causes an effective increase

of the exciton mass [23–30]. In the Faraday geometry, an

effect of dependence of the excitonic g-factor on the exciton

wave vector is observed [31–35].

The present paper is dedicated to studying the influence

of an electric field on the states of electron and hole relative

motion in thick GaAs layers. Most earlier papers are

devoted to studying the influence of an electric field more

detailed field on the exciton in narrow QWs. An electric

field in such wells leads to the Stark quantum effect, see, e.

g., [36–44]. The influence of an electric field on the exciton

in wide QWs has also been studied in recent years. It was

shown in [45] that an electric field causes a modification of

the wave function of the electron and hole relative motion

inside the exciton. Paper [46] analyzed the influence of an

electric field on light-excitonic interaction in a wide QW.

Papers [47–49] are dedicated to studying the effect of phase

inversion of exciton spectral oscillations in a wide QW under

the action of an electric field.

As already stated, optical spectroscopy methods usually

reveal peculiarities (resonances), related to size quantization

of exciton motion, in wide QWs. However, the wider the

QW, the lower the amplitude of the observed resonances,

and they cannot be distinguished on the background of

spectral noises in case of sufficiently large thickness of the

QW layer. Optical spectra of such thick layers have only

a resonance whose energy is close to the energy of the

main excitonic transition in a bulk material. The motional

energy of excitons, which correspond to this resonance, is

low as compared to its bond energy and that’s why it need

not be considered. In the present paper we will restrict

ourselves to a consideration of only such exciton states.

The layers where only the main excitonic resonance is seen

will be hereinafter called semiconductor plates. As far as

the authors of the present paper know, the first attempt

at a theoretical description of the influence of an electric

field on the states of electron and hole relative motion in

a semiconductor plate was made in paper [50]. It was

devoted to studying the influence of thickness of a gallium

arsenide layer, containing an exciton, on the dependence of

light-excitonic interaction on the applied electric field. It

was shown that this influence is most vivid for GaAs layer

thicknesses over 1000 nm, that is, in the layers designated

above as semiconductor flat plates. In the present paper we

consider the influence of the semiconductor plate thickness

on the energy of electron and hole relative motion in

the exciton.
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2. Exciton Hamiltonian in a perfect
semiconductor plate in an external
homogeneous electric field

We will consider an exciton in a wide plane GaAs layer.

We assume that the layer boundaries are perpendicular

to the z axis, the direction of which coincides with the

crystallographic axis [001]. We assume that the interfaces

are impermeable for electrons and holes, that is, a plate

is a potential well with infinitely high walls. The electric

field vector F is assumed to be also directed along the

z axis, that is, F = Fz , Fx = Fy = 0. The x and y coordinate

axes are directed along the tetragonal axes [100] and [010],
respectively. The exciton states, observed in an optical

experiment in a cubic crystal, are formed by the states

of a doubly degenerate conduction band of symmetry Ŵ6

and a fourfold degenerate valence band of symmetry Ŵ8.

The exciton Hamiltonian is formed by Hamiltonians of free

electrons and holes (Hc and Hν) in these bands, their

Coulomb interaction and the external field potential energy:

ĤX = Eg + Ĥc + Ĥν −
e2

ε0r
− eFz . (1)

Here Eg is the semiconductor band gap, e is the electron

charge, ε0 is the semiconductor background permittivity,

r = |re−rh| is the distance between electron and hole

(re, rh are radius-vectors of electron and hole), and value

z = z e−z h is the projection of this distance onto the z axis.

The Hamiltonians of free electrons and holes in the cubic-

lattice crystal have the form [51,52]:

Ĥe(k̂e) =
~
2k̂2

e

2me
, (2)

Ĥh(k̂h) =

(

~
2

2m0

)[

γ1Ik̂
2
h − 2γ2

∑

α=x ,y,z

J2
α

(

k̂2
hα −

k̂2
h

3

)

− 4γ3
∑

α 6=β

{Jα, Jβ}k̂hα k̂hβ

]

. (3)

Here the indices α and β take on values x , y, z ;
dimensionless constants γ1, γ2 and γ3 are the Luttinger

parameters; me is the effective electron mass in the

conduction band; m0 is the electron mass in vacuum.

Matrices Jα describe the hole spin states in the valence

band.

It should be noted that the optical spectroscopy methods

for high-quality GaAs/AlGaAs heterostructures make it

possible to observe the spectral peculiarities related to

size quantization of exciton motion, in the layers having a

thickness up to 1000 nm [9]. However, in the present paper

we restrict ourselves to an analysis of the exciton ground

state only (its motion as a unity is neglected) and study

the influence of the layer boundaries only on the states

of relative motion of the electron and hole which make

up the exciton. Therefore we do not consider the kinetic

energy of exciton motion. Operators of the wave vector of

a free electron and a hole can be expressed in this case via

operators of relative motion in an exciton using the formulas

k̂hα = −1

~
p̂α, k̂eα =

1

~
p̂α . (4)

Here p̂α = −i~∂/∂α is the operator of the relative motion

momentum where α = x e−xh, y e−yh, z e−z h are coor-

dinates of electron and hole relative motion; x e, y e, z e

and xh, yh, z h are coordinates of the free electron and hole.

By substituting expressions (4) in exciton Hamiltonian (1)
with account of (2) and (3), we can obtain the exciton

Hamiltonian in the notation of relative motion coordinates.

It follows from expression (3) that the tensor of effective

hole mass for a semiconductor with a degenerate valence

band, such as GaAs, is anisotropic [52], and the heavy

and light exciton states cannot be considered independently.

The exciton state energy in such cases is calculated by the

perturbation theory method, see, for instance, [53]. A zero-

order Hamiltonian is chosen so that its intrinsic energies

are identical for states of heavy and light excitons. This

is achieved by including a spherically symmetrical part of

the Luttinger Hamiltonian, which is common for a heavy

hole and a light hole, into the excitonic Hamiltonian in the

zero approximation. The first addend in expression (3) is

usually chosen as such a spherically symmetrical part of a

hole Hamiltonian. All the other operators of the Luttinger

Hamiltonian are considered as perturbations, see [53].
It will be demonstrated below that in our paper the zero-

order Hamiltonian of the exciton includes, in addition to the

other operators, the term −eFz from expression (1). Our

analysis shows that the inclusion of only the first addend of

the Luttinger Hamiltonian into the zero-order Hamiltonian

provides an incorrect result in this case. It arises during

calculation of the contribution to the energy from the

perturbation, which is obtained from second term (3) after

substitution of (4) in it and has the form

V̂ = −2γ2

(

1

2m0

)[

J2
z
2

3
− J2

x
1

3
− J2

y
1

3

]

p̂2
z . (5)

An analysis shows that the absolute magnitudes of the

matrix elements of such a perturbation at a sufficiently large

preset external field increase proportionally to the increase

of plate width L. Upon a transition to the bulk crystal

L → ∞, consequently, the matrix element of operator (5)
must also tend to infinity.

Such non-physical behavior of perturbation matrix ele-

ment (5) is due to the fact that it is a correction for the

kinetic energy of electron and hole relative motion along the

field direction. The kinetic energy of this motion changes

due to the corresponding change in potential energy. That’s

why if the zero-order Hamiltonian includes −eFz , all

the operators in expression (5) must also be included in

this Hamiltonian. Otherwise, the energy will have the

above-mentioned non-physical dependence on plate width.

Obviously, all the terms included in (5) cannot be included
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in the zero-order Hamiltonian simultaneously for light and

heavy excitons. To do this for a heavy exciton only,

the following value should be chosen in the zero-order

approximation as a spherically symmetrical hole mass which

is identical for heavy and light holes

mh =
m0

γ1 − 2γ
. (6)

Then, after substituting expressions (2) and (3) into ex-

pression (1) with account of (4), the zero-order Hamiltonian

both the for the heavy and for the light excitons is as follows:

Ĥ(0)
X = Eg +

p̂2

2µ
− e2

ε0r
− eFz . (7)

Here µ = memh/(me + mh) is the reduced mass in which

mh is spherically symmetrical hole mass (6). Thereat, the

complete exciton Hamiltonian will be represented as

ĤX = Eg + Ĥ(0)
X + V̂1 + V̄2. (8)

The third term in the right member of this expression is

the combination of the terms, obtained from the second sum

in (3), which are not included in zero-order Hamiltonian (7).
The matrix operator of this perturbation is:

V̂1 =
γ2

m0









1

2









3 0 −
√
3 0

0 1 0 −
√
3

−
√
3 0 1 0

0 −
√
3 0 3









p̂2
x

+
1

2









3 0
√
3 0

0 1 0
√
3√

3 0 1 0

0
√
3 0 3









p̂2
y +









0 0 0 0

0 2 0 0

0 0 2 0

0 0 0 0









p̂2
z









.

(9)
The upper and lower lines of these matrices describe

heavy excitons, and the other lines describe the states of

light excitons.

The fourth term in expression (8) is obtained from the

third sum in expression (3) after substitution of (4) in it

and has the form

V̂2 = −2
γ3

m0

(

∑

α 6=β

{Jα, Jβ} p̂α p̂β

)

. (10)

Perturbations (9) and (10) are calculated on the eigen

functions of zero-order Hamiltonian (7). In order to

find them, it is convenient to change over to parabolic

coordinates, as was done in papers [54,55]:

ζ = r + z , η = r − z , ϕ = arctan(x/y). (11)

An equation for eigen values and eigen functions of

Hamiltonian (7) is broken down into two independent

differential equations which have the form [54,55]:

1

η

d
dη

(

η
d f ν(η)

dη

)

+

(

− m2

4η2
− ν ′

η
+

µR
2~2

− µeFη

4~2

)

f ν(η)=0,

1

ζ

d
dζ

(

ζ
dgν(ζ )

dζ

)

+

(

− m2

4ζ 2
+
ν ′

ζ
+
µR
2~2

+
µeFζ

4~2

)

gν(ζ )=0.

(12)

In the equations, R is the exciton energy minus Eg ,

while ν and ν ′ are the parameters of separation of variables.

The exciton wave function can be written down as

φ = A f ν(η)g
′
ν(ζ )e±imϕ, ν ′ = ν + µe2/(ε0~

2), (13)

where A is the normalization constant. It should be noted

that our consideration is limited only to the states which

most efficiently interact with light. In case of GaAs these

are the states with m = 0. Therefore we will omit in

Hamiltonian (12) the term, which contains m, and the

exponent in (13).
An analysis shows that function f ν quickly decreases

with an increase of η. Then a sufficiently large value

of ηmax, for which f ν(ηmax) ≈ 0, can be chosen for this

decaying part of the wave function. If thickness L of the

semiconductor layer, where an exciton is located, exceeds

the value ηmax, then this layer can be considered infinite for

this decaying part of the wave function [50]. An analysis

shows that the following can be chosen for GaAs

ηmax = 120 nm. (14)

At the same time, the function gν(ζ ) at a sufficiently

large value of F has a long oscillating
”
tail“, the amplitude

of which remains finite at any finite value of ζ , see pa-

pers [46,50]. This means that the oscillating part of wave

function (13) in a perfect semiconductor plane layer must

become zero only on the layer boundary. It follows from

expressions (11) that this point corresponds to the values

ζmax = 2L + ηmax. (15)

Thus, the eigen value problem (12) for an exciton in a

perfect QW or a semiconductor plate in an external electric

field must be solved with the boundary conditions

f ν(ηmax) = 0, (16)

g ′
ν(ζmax) = 0,

where ηmax and ζmax are described by expres-

sions (14) and (15).
Fig. 1 schematically shows the profiles of potential energy

in the space of relative motion of an electron-hole pair along

the coordinate z = z e−z h in fields F = 0 and F = 1 kV/cm.

The central region highlighted in the figure approximately

corresponds to a Coulombic well of mutual attraction

between an electron and a hole. In the absence of a field, the

potential profile for the wave function of electron and hole

relative motion is a symmetrical infinitely deep potential

well, tunneling outside which is virtually impossible. An

external field leads to a skew of the Coulomb potential.

Thereat, the potential barrier in the right part of the figure

lowers down, and the Coulombic well potential barrier

becomes tunneling-transparent for an electron and a hole

along the coordinate z = z e−z h. In the coordinates which

describe the electron and hole position, z e and z h, this

means that these particles may go beyond the Coulombic
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Figure 1. Potential profile of a plate with the thickness of

L = 100 nm along the coordinate z = z e−z h of electron and hole

relative motion. The region highlighted by vertical dashed straight

lines approximately corresponds to a Coulombic potential well of

mutual attraction between an electron and a hole. The thin dashed-

and-dotted line schematically shows the oscillating wave function

of electron and hole relative motion at F = 1 kV/cm.

well and go away from it in opposite directions. However,

the electron and hole which left the Coulombic well of

their mutual attraction under the action of an external field,

always return to it due to reflection from potential barriers

on the plate boundaries. In other words, the states of

electron and hole relative motion in a layer with an infinitely

high potential barrier on the boundaries are stationary in

case of any field.

Having calculated the eigen wave functions of zero-

order Hamiltonian (7), let us consider matrix elements (9)
and (10). An analysis shows that the matrix ele-

ments of the operators of squared momentum components

p2
x = 〈φ|p̂2

x |φ〉 and p2
y = 〈φ|p̂2

y |φ〉, calculated on wave

functions (13), are equal to each other. Due to this

reason, the non-diagonal elements of matrix operator (9) are
mutually canceled out and do not contribute to the exciton

energy. The calculations of the matrix elements of operators

p̂α p̂β , included in (10), on ground state wave function (13)
result in 〈φ|p̂x p̂y |φ〉 = 〈φ|p̂x p̂z |φ〉 = 〈φ|p̂y p̂z |φ〉 = 0. From

this it follows that operator (10) in the first approximation

of the perturbation theory does not contribute to exciton

energy. Thus, all the non-diagonal matrix elements of

complete Hamiltonian (8), which describe the mixing of

the heavy and light exciton states, turn out to be equal

to zero. This makes it possible to further consider the

heavy and light excitons independently from each other

in the first approximation. We will restrict ourselves to

consideration of a heavy exciton only, because this type of

states manifests itself most vividly in optical experiments,

see, e.g. [4–12].

It should be noted that the third term in perturbation (9)
contains some operators from (5), which are not included

in zero-order Hamiltonian (7). This term leads to the above-

mentioned non-physical dependence of energy on plate

width for a light-hole exciton only, because all its matrix

elements, which describe the heavy-hole exciton states,

are zero. More specifically, the non-physical dependence

of energy on layer width for a light-hole exciton can be

also eliminated by choosing a spherically symmetrical mass

of a hole in the zero approximation. To do so, the

value mh = m0/(γ1 + 2γ2) should be substituted instead

of value (6) as the hole mass included in quantity µ

in expression (7). Thereat, the problem of non-physical

behavior of energy from L arises for the states of a heavy-

hole exciton in this case.

It is also necessary to consider the contribution to the

heavy-hole exciton energy made by the diagonal matrix

elements of the first two terms in expression (9). After

omitting the light-hole exciton from consideration, this

perturbation for a heavy-hole exciton can be written down

in the one-dimensional form

V̂1 =
3γ2

2µ
(p̂2

x + p̂2
y ). (17)

An analysis shows that the energy correction, described

by this perturbation, does not depend on the applied field

and plate width. It reduces the absolute magnitude of

energy of the ground excitonic state by a constant magnitude

equal approximately to 20% of the value of its bond energy

in the absence of a field. Since this correction does not

have a direct impact on the effects discussed here, we do

not consider it below.

3. Results and discussions

We have calculated the energies of relative motion of

the electron and hole of the heavy exciton ground state in

electric fields from 0.5 to 4 kV/cm in plane semiconductor

GaAs layers from 200 to 4000 nm. The following values

of the constitutive parameters were used in the calcu-

lations: me = 0.067m0, γ1 = 6.8, γ = γ2 = 2.3 [52] and

ε0 = 12.56 [56]. The results are shown in Fig. 2. The figure

shows that exciton energy R in fields F ≥ 0.5 kV/cm

decreases in case of field increase, due to the Stark effect

in the exciton. Moreover, as can be seen in the figure,

the exciton energy depends not only on the applied field,

but also on the plate thickness. The greater the plate

thickness L, the less steeper is the dependence of excitonic

state energy on F .

The dependences shown in Fig. 2 can be approximated

by functions which have the form

R = A(L)F2 + B(L)|F | + C(L). (18)

All three coefficients A, B,C here depend on the semi-

conductor layer thickness. Their dependences are shown

in Fig. 3.
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Figure 2. Dependence of exciton energy R on electric field for

fields of 0.5 ≤ F ≤ 4 kV/cm in plates L = 200, 300, 600, 1000,

1500, 2500 and 4000 nm thick.
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Figure 3. Dependences of coefficients a) A and b) B and C in

expression (18) on plate thickness L. The horizontal arrows in

panel b show the axes to which the corresponding curves pertain;

the dependences of coefficients B and C are shown by rhombic

and round empty points, respectively. The smooth curves were

plotted using formulas (19).

The dependences on L for the coefficients in expres-

sion (18) can be also approximated by the following

expressions:

A =
αA

L1/6
+ βA,

B =
αB

L1/6
+ βB ,

C =
αC

L1/3
+ βC . (19)

Here

αA =0.38meV · cm13/6/kV2, βA =−0.087meV · cm2/kV2,

αB = −3.73meV · cm7/6/kV, βA = −0.85meV · cm/kV

and

αC = 3.16meV · cm1/3, βC = −5.26meV.

Thus, numerical modeling provides expressions which can

be used to describe the exciton energy in GaAs plates in

the field of F ≥ 0.5 kV/cm.

To analyze the nature of flattening of the R(F) depen-

dences in case of plate thickness increase (see Fig. 2),
we calculated the matrix elements from the last three

operators in Hamiltonian (7) separately for the field of

F = 4 kV/cm and different values of L. Let us introduce

the following notations:

T =

〈

φ

∣

∣

∣

∣

p̂2

2µh

∣

∣

∣

∣

φ

〉

,

UQ =

〈

φ

∣

∣

∣

∣

e2

ε0r

∣

∣

∣

∣

φ

〉

,

UF = 〈φ|eFz |φ〉. (20)

Exciton energy is the sum of these matrix elements

R = T + UQ + UF. (21)

The dependences of T,UQ,UF and R on plate thickness L
are shown in Fig. 4. Contributions of kinetic energy of elec-

tron and hole relative motion T and external field potential

energy UF greatly depend on L, approximately according

to the linear law. But these two contributions are opposite

in signs, close in absolute magnitude and to a great degree

compensate each other. This is an expected result since

the kinetic energy of relative motion outside a Coulombic

hole increases chiefly due to a decrease of the electron-hole

pair potential energy in an external field. However, mutual
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Figure 4. a) Dependences of matrix elements T (black squares)
and UF (black circles) on plate thickness L for the field of

F = 4 kV/cm. b) Similar dependences of the contribution to

energy UQ (black rhombi), sum T + UF (black triangles) and

exciton energy R(L) (hollow circles).
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compensation is not complete, so that their sum T + UF < 0

makes a non-zero contribution to exciton energy. The

difference of sum T + UF from zero is conditioned by the

fact that energy T also increases due to a decrease of

potential energy of the Coulombic interaction between the

electron and hole UQ. The contribution to the Coulomb

potential energy decreases in modulus with an increase of L,
as shown in Fig. 4, b. Consequently, the kinetic energy of

electron and hole relative motion T must be decreased by

the same value. Therefore the total negative contribution to

exciton energy T + UF increases in absolute magnitude with

an increase of the plate thickness, as shown in Fig. 4, b.

A decrease of the contribution of UQ with an increase of L
is due to the fact that the wave function of electron and hole

relative motion (13) in a strong field is weakly localized in a

Coulombic well, see Fig. 1. The greater the plate thickness,

the longer the oscillating tails of the wave function and

the weaker such localization. Consequently, an increase

of L reduces the contribution of the Coulombic interaction

between the electron and hole UQ into the exciton energy,

as shown in Fig. 4, b.

Since the decrease of the contribution of UQ in modulus

is greater than the increase of the contribution of T + UF

in modulus, their total sum R < 0, according to expres-

sion (21), must decrease in absolute magnitude with an

increase of L under a fixed field. This is observed as a

flattening of the R(F) dependences with a plate thickness

increase, see Fig. 2.

It should be noted that our results seemingly contradict

the previous calculations of exciton bond energy in a

bulk material. According to [55], the absolute magnitude

of negative energy of exciton bond in a bulk crystal in

weak fields increases proportionally to the squared F in

compliance with the Stark effect theory. However, the

negative value of energy of electron and hole relative motion

in strong fields must decrease in modulus and become zero

at a certain moment. This occurs because the electric

field separates the electron and hole, due to which the

average distance between them increases. This weakens

their Coulombic interaction and, consequently, the modulus

of exciton bond energy decreases and becomes equal to

zero at F ≈ 4.2 kV/cm [55]. This corresponds to exciton

ionization under which the electron and hole, which have

left the Coulombic well of their attraction, cannot return to

it anymore. Nothing of the kind takes place in our model.

To explain this discrepancy between our results and

the results obtained in [55], it is to be recalled that we

consider an exciton in a wide plate. The electron and

hole, which have left the Coulombic well, will always

return to it due to reflection from the plate boundaries.

Exciton ionization does not occur under any field due to the

presence of boundaries having an infinitely high potential.

As a consequence, an irreversible breakdown of the exciton

into an electron and a hole, accompanied with a decrease of

the modulus of energy R with field strengthening, does not

occur in a perfect plate. On the other hand, a limiting

transition to the case of a non-stationary problem must

occur at L → ∞ [55]. Let us briefly discuss this transition.

An electron and a hole in a real crystal have a finite

mean free path length lm f p due to the presence of scattering

centers and scattering by phonons. As discussed in [50], the
value of lm f p can be less than L for a thick semiconductor

layer. An irreversible breakdown of the excitonic state will

occur as a result of electron and hole scattering outside

the Coulombic well, see, e.g., [57,58]. The presence of

exciton decomposition makes the problem non-stationary,

because the exciton lifetime is limited by the processes of

electron and hole scattering. Therefore, the results of solving

of stationary problem (12) with boundary conditions (16)
become incorrect at L ≫ lm f p . In our calculations, it is

assumed that the following condition is met for the largest

considered layers

L ≤ lm f p. (22)

If it is met, the problem of an exciton in an electric

field in a semiconductor plate can be considered stationary

with a good accuracy. It should be noted that the value

of lm f p in the simplest model does not depend on the

applied field [59]. The mean free path length in high-

quality GaAs-based heterostructures can reach 3µm at low

temperatures [60]. The value is slightly greater for a plate

having the maximum considered thickness L = 4000 nm,

but it can be taken approximately equal to 3µm. Therefore

all the considered values of L meet condition (22). On

the other hand, there is a fundamental process of charge

carrier scattering related to phonon emission [3]. This

scattering channel cannot be eliminated either by improving

the plate quality or by reducing the sample temperature.

It is assumed within our model that this fundamental

scattering process can be neglected.

When criterion (22) is violated, the exciton states become

non-stationary, and our approach cannot be used. A non-

stationary approach should be used at L ≫ lm f p, e.g., as

described in [55].

It should be noted that the dependence of Stark shift

magnitude was previously discussed for narrow wells having

a width approximately equal to or less than the exciton

Bohr radius in a bulk crystal [39–41]. Our results mean that

such a dependence occurs even for semiconductor plates the

thickness of which exceeds the exciton Bohr radius by two

decimal orders. However, this dependence in narrow wells

is opposite to the one described here, namely, the Stark

shift in narrow QWs increases quickly with an increase of L,
see [39–41]. The physical sense of an increase of the Stark

shift value is that the average distance between an electron

and a hole in an exciton in narrow wells is smaller than in

a bulk crystal, because it is limited by potential barriers of

the QW. Thanks to this limitation, the narrower the well, the

stronger the Coulombic interaction between an electron and

a hole in an exciton. That’s why an exciton in narrow QWs

is more resistant to the action of an external electric field

than an exciton in a bulk material. An increase of the width
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of a narrow well causes a decrease of the Coulombic inter-

action between an electron and a hole and, consequently,

a stronger Stark effect under the application of an electric

field. Such behavior of the Stark effect will be observed

until the exciton bond energy in the absence of an external

field depends on QW width. As demonstrated in [6,9], the
well sizes do not affect the energy value if the QW width is

by an order greater than the exciton Bohr radius in a bulk

crystal, aB . Therefore, our model is applicable only to wells

having a width which meets the condition

L ≥ 10aB . (23)

Expression (23) is another criterion of applicability of our

model.

4. Conclusion

Influence of GaAs plate thickness on the energy of an

exciton in an external electric field was analyzed. It is shown

that energy in relatively strong fields must depend not only

on the applied electric field, but also on the thickness of the

semiconductor plate where the exciton is being considered.

This effect must be observed in plates having a thickness

which is by two decimal orders greater than the value of the

exciton Bohr radius in bulk GaAs. Thereat, the dependence

on the field is the weaker, the greater the semiconductor

plate thickness. A comparison with the case of an exciton in

an electric field in a bulk crystal was performed. A criterion

for a limiting transition from the case of a thicker plate to

the case of an exciton in a bulk semiconductor is given.
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