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The effect of the triexciton state on the absorption of exciton-polaritons is studied under conditions when two

high-power laser radiation pulses interacting with biexcitons and triexcitons and a probe pulse at the frequency of

the exciton transition are incident on the medium. It is shown that even at low triexciton binding energies under

the action of two high-power pulses, the exciton state splits into three quasi-levels, and the Autler–Townes effect

(optical Stark effect) is observed. It turned out that the position of the quasi-levels depends on the detuning of the

resonance of the pump pulses and their intensities, which makes it possible to identify them. These circumstances

make it possible to diagnose the triexciton state in semiconductors with a higher degree of probability not by

studying the absorption spectral line of the biexciton–triexciton transition, but by the effect of the triexciton state

on absorption in the region of the exciton transition.
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1. Introduction

The presence of exciton, biexciton, triexciton, and

multiexciton states [1,2] and the possibility to selectively

control their properties under coherent laser radiation

determine to a significant extent optical characteristics of

semiconductor structures and, as a consequence, stimulate

the development of advanced research activities in many

fields: quantum information processing, creation of energy-

efficient electronic devices, confocal microscopy [3], po-

lariton generation, Bose-Einstein condensation of exciton-

polaritons [4], polariton superfluidity. The discovery of

excitons with large quantum numbers [5], that are analogues

of the Rydberg atoms, allows studying new effects, that were

not observed in the physics of atoms, because bond energies

of the Rydberg states of the exciton are small and excitons

are more sensitive to the impact of external electric and

magnetic fields, therefore with changing intensity of external

field a variety of shifts and crossings of absorption levels can

be observed.

A number of works study the potential possibilities

to increase the generation of quantum-correlated photons

radiated by quantum dots using high order excitons, i.e.,

triexcitons [6,7], and the thin structure of triexciton states

in quantum dots [8–11]. One of the most studied issues

in quantum optics is the interaction of multiexcitons with

electromagnetic field in the mode of strong bond at

changing the Rabi frequencies [12]. In [13] the electron

structure of multiexcitons with limited quantization in

colloidal quantum dots of CdSe is studied experimen-

tally. It is shown that depending on the excitation

energy and intensity, a biexciton and triexciton can be

observed that demonstrate bright bound states, which are

a result of exciton-exciton interaction. Studying of such

effects is important for many applications of quantum

information in quantum networks [14], implementation

of quantum memory cells [15,16], quantum operations

with qubits using cold atoms of Rb in quantum infor-

matics [17].

These effects are studied in different modes of exci-

tation by electromagnetic field of polaritons in semicon-

ductor and atomic structures, i.e., taking into account

one-photon [18], two-photon [19–22], three-photon [23]
transitions or simultaneously taking into account one-

photon and multi-photon transitions and their impact on

the absorption. The possibility to control the absorption

spectrum by changing intensities of fields and detuning

resonance in multilevel systems is described in [24–27].
From the analysis of experimental studies a conclusion can

be made that observation of triexciton and multiexciton

luminescence lines requires special conditions and is a

complex task. In addition, since the bond energy of a

triexciton is small as compared with bond energies of

exciton and biexciton states, the absorption is small as

well. On the other hand, as it follows from [28,29], we

know that absorption in the exciton region of spectrum

changes if biexciton recombination processes are taken into

account, the Autler-Townes type splitting of exciton state

is observed [30], the presence of power-, polarization- and

detuning- dependent resonance of the Autler-Townes type

splitting of autolocalized exciton state is shown [31]. In the

system of InAs/GaAs AlAs/GaAs the effect of frequency

difference of the resonator and natural frequencies, as well
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as field intensity on the position of absorption levels is

studied [32,33]. It is reasonable to expect that taking into

account triexciton state will result in additional changes in

the reconstruction of the energy spectrum in the exciton

region due to successive recombination of triexcitons into

the exciton state.

2. Problem formulation

Let a semiconductor is exposed to three ultrashort pulses

of resonance laser radiation with frequencies of ω1, ω2,

and ω3, respectively (Fig. 1). The first pulse with a

frequency of ω1 excites excitons from the ground state

of the crystal, the second pulse with a frequency of

ω2 converts these excitons to biexcitons, the third pulse

transforms biexcitons to triexcitons. Studying a system in

the pump-probe mode, that was theoretically studied for the

system of excitons and biexcitons in [21–23,29], we assume,

that pulses acting in the region of exciton–biexciton and

biexciton–triexciton transitions are powerful as compared

with the pulses that excite excitons from the ground state of

the crystal.

Also, another problem formulation is possible. A semi-

conductor is placed in a microresonator with a natural

frequency coinciding with the bond energy of a biexciton

or triexciton, with the third pulse sounding the exciton

state. The media placed in the microresonator can be

semiconductor structures of InAs/GaAs AlAs/GaAs, that

have proved themselves to be good for the studying of

biexciton states impact on the position of the exciton level,

or CuCl-type crystals that are characterized by relatively

high bond energy of the biexciton 32meV [34,35].
At the same time, in the energy diagram the constructive

two-photon transitions are taken into account. We assume

that pulse length is much less than the relaxation times

of particles. In this case the relaxation processes can

be ignored, because they have no time to act during the

pulse duration (relaxation times for the above-mentioned

semiconductors are about 1−10 ps).
The Hamiltonian of pulse interaction with medium can

be written as follows

Hint = − ~g(â+ĉ1 + ĉ+
1 â) − ~σ (â+ĉ+

2 b̂ + b̂+ĉ2â)

− ~κ(b̂+ĉ+
3 p̂ + p̂+ĉ3b̂) − ~µ12(b̂

+ĉ1ĉ2 + b̂ĉ+
1 ĉ+

2 )

− ~µ23(p̂+ĉ2ĉ3â + p̂ĉ+
2 ĉ+

3 â+), (1)

where g — constant of exciton–photon interaction, σ —
constant of optical exciton-biexciton conversion, κ —
constant of biexciton-triexciton conversion, µ12, µ23 —
constants of two-photon generation of biexcitons from

the ground state of the crystal and triexcitons from the

exciton state. It is worth noting, that processes of optical

exciton-biexciton conversion and two-photon excitation of

biexcitons described by σ and µ12 constants are character-

ized by giant oscillator forces [18,19]. â, b̂, p̂, ĉ1, ĉ2, ĉ3,

с1
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с3с3
+

с2
+

Wp

W0
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Figure 1. Energy diagram of semiconductor.

(â+, b̂+, p̂+, ĉ+
1 , ĉ+

2 , ĉ+
3 ) operators are annihilation (cre-

ation) operators for excitons, biexcitons, triexcitons, and

photons, respectively. Using Hamiltonian (1), it is easy to

obtain a system of the Heisenberg material equations for â ,
b̂, p̂, ĉ1, ĉ2, ĉ3 operators. In the mean field approximation,

after averaging the Heisenberg equations for operators

we obtain a system of non-linear differential equations

for amplitudes: a = 〈â〉, b = 〈b̂〉, p = 〈p̂〉, c1 = 〈ĉ1〉,
c2 = 〈ĉ2〉, c3 = 〈ĉ3〉:

i ȧ = ω0a − gc1 − σ bc∗
2 − µ23pc∗

2c∗
3 ,

i ḃ = �0b − σ ac2 − µ12c1c2 − κpc∗
3 ,

i ṗ = �p p − κbc3 − µ23c2c3a,

i ċ1 = ω1c1 − ga − µ12bc∗
2 ,

i ċ2 = ω2c2 − σ a∗b − µ12bc∗
1 ,

i ċ3 = ω3c3 − κb∗p − µ23pc∗
2 , (2)

where ω0, �0, �p — natural frequencies of excitons,

biexcitons, and triexcitons, respectively. At the same

time, photon densities of power pump pulses are much

higher than the density of quasi-particles and photons of

the weak pulse acting in the region of exciton transition:

c2, c3 ≫ c1, a, b, p. It can be seen from (2), that equations
for a and c1 include terms proportional to bc∗

2 and pc∗
2c∗

3 .

Their respective b̂ĉ+
2 and pc+

2 c+
3 operators describe the

states with energies of ~(�0 − ω2) and ~(�p − ω2 − ω3),
that coincide with the energy of exciton state formation,

~ω0, and are a consequence of the double Autler–Townes

effect. Hence, the exciton level and replicas of biexciton

and triexciton states, shifted downwards by an energy of

photons, ~ω2 and ~(ω2 + ω3), are energy degenerated.

Using (2), it is easy to obtain equations of motion for bc∗
2

and pc∗
2c∗

3 expressions:

i(bc∗
2)

• = (�0 − ω2)bc∗
2 − f 20(σ a + µ12c1) − κpc∗

2c∗
3 ,

i(pc∗
2c∗

3)
• = (�p − ω2 − ω3)pc∗

2c∗
3

− κc∗
2b f 30 − µ23a f 20 f 30, (3)

where f 20 and f 30 — photon densities of the second and

the third pulses, respectively.
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Within the limit of pre-defined fields of the second

and the third pulses c2 = c20 = const, c3 = c30 = const,

system (3) can be written as follows

i(bc∗
20)

• = (�0 − ω2)bc∗
20 − f 20(σ a + µ12c1) − κpc∗

20c
∗
30,

i(pc∗
20c

∗
30)

• = (�p − ω2 − ω3)pc∗
20c

∗
30

− κc∗
20b f 30 − µ23a f 20 f 30. (4)

Equations (4), that control the time evolution of bc∗
20

and pc∗
2c∗

3 relationships, are linear in the above-mentioned

approximations. In combination with equations for a and

c1 from (2) they form a system of four linear equations

for amplitudes of quasi-particles with the same energy

~ω ≈ ~ω1 ≈ ~(�0 − ω2) ≈ ~(�p − ω2 − ω3):

i ȧ = ω0a − gc1 − σ (bc∗
20) − µ23(pc∗

20c
∗
30),

i ċ1 = ω1c1 − ga − µ12(bc∗
20),

i(bc∗
20)

•=(�0 − ω2)(bc∗
20)− f 20(σ a + µ12c1)−κ(pc∗

2c∗
3),

i(pc∗
20c

∗
30)

• = (�p − ω2 − ω3)(pc∗
20c

∗
30)

− κ(bc∗
20) f 30 − µ23a f 20 f 30. (5)

We shall search for a solution to system (5) in the form

of a, c1, bc∗
20, pc∗

20c
∗
30 ∼ exp(−iωt), where ω is natural

frequency of new polaritons in the exciton region of the

spectrum. In steady-state mode we get the following

determinant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω − ω0 g σ µ23

g ω − ω1 µ12 0

σ f 20 µ12 f 20 ω − (�0 − ω2) κ

µ23 f20 f30 0 κ f30 ω−(�p−ω2−ω3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

By equating the determinant to zero we obtain a quartic

equation.

If we introduce all Rabi frequencies

�2
σ = σ 2 f 20, �2

µ12 = µ2
12 f 20, �2

ex = g2,

�2
κ = κ2 f 30, �2

µ23 = µ2
23 f 20 f 30, (6)

then this equation can be written as follows

(ω − ω0)(ω − ω1)(ω − ω̄2)(ω − ω̄3) + I1 + I2 = 0, (7)

I1 = − (ω − ω̄2)(ω − ω̄3)�
2
ex − (ω − ω1)(ω − ω̄3)�

2
σ

− (ω − ω1)(ω − ω0)�
2
κ −�2

µ12(ω − ω0)(ω − ω̄3)

−�2
µ23(ω − ω1)(ω − ω̄2),

I2 = 2(ω − ω1)�κ�σ�µ23 + 2(ω − ω̄3)�ex�µ12�σ

+ �2
ex�

2
κ + �2

µ23�
2
µ12 − 2�ex�κ�µ12�µ23.

In (7) there are six terms of sum, each containing a square

of appropriate constant of interaction, i.e. these terms

describe the contribution of each individual process. In

addition, in (7) there are interference terms of sum of

different degrees.

By expressing from (7) the wave vector k1 of weak pulse

photon, we can represent in an explicit form its dependence

on ω:

ck1 ≡ ω1 = ω + ch/z n, (8)

where

ch = − (ω − ω̄2)(ω − ω̄3)�
2
ex −�2

µ12(ω − ω0)(ω − ω̄3)

+ �2
ex�

2
κ + �2

µ23�
2
µ12 + 2(ω − ω̄3)�ex�µ12�σ

+ 2�ex�κ�µ12�µ23, (9)

z n = (ω − ω0)(ω − ω̄2)(ω − ω̄3) −�2
σ (ω − ω̄3)

−�2
κ(ω − ω0) −�2

µ23(ω − ω̄2) + 2�κ�σ�µ23. (10)

Roots of equation (10) determine frequencies of quasi-

levels that depend on the Rabi frequencies, that is on

densities of pump pulses.

Thus, the conclusion can be made that action of

two pump pulses in the regions of exciton-biexciton and

biexciton-triexciton conversions results in a strongly pro-

nounced double Autler–Townes effect. The exciton level

splits into three quasi-levels, which positions are determined

by resonance detunings.

By equating (10) to zero, we study the obtained equation.

Let us assume, that the Rabi frequencies are infinitely low

�κ, �σ , �µ23 ≪ 1. In this case (10) can be written as

(ω − ω0)(ω − ω̄2)(ω − ω̄3) = 0. Hence, the position of

quasi-levels is determined by frequencies of ω0, ω̄2, ω̄3, i.e.,

natural frequency of the exciton transition and two replicas

of biexciton and triexciton states. For this reason, in the

following discussion we define quasi-levels as triexciton,

biexciton, and exciton levels in accordance with the mech-

anism resulted in the emergence of the quasi-level. Since

frequencies of ω̄2 = �0 − ω2 and ω̄3 = �p − ω2 − ω3 are

determined by pulse frequencies, then, by varying their

intensity, the position of quasi-levels can be controlled.

Let us consider the conditions of equality for frequencies:

ω̄2 = ω0, ω̄3 = ω0, ω̄3 = ω̄2. In this case a degeneration

of quasi-energy states can be observed. Frequencies of

incident pulses in this case should be equal to each

other: ω2 = �0 − ω0, ω2 + ω3 = �p − ω0, ω3 = �p −�0.

Hence, the degeneration of quasi-energy states at low Rabi

frequencies �κ , �σ , �µ23 ≪ 1 is observed at the condition

when power pump pulses act in conditions of precise

resonance with a frequency of exciton transition or when

pump pulse resonance detunings compensate each other.

Lett us consider successively the impact of �κ , �σ , �µ23

Rabi frequencies on positions of quasi-levels. Let us assume

that Rabi frequency �σ ≫ �κ, �µ23, then (10) can be

transformed as follows

(ω − ω0)(ω − ω̄2)(ω − ω̄3) −�2
σ (ω − ω̄3) = 0. (11)
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Figure 2. Dependencies δ(ωσ ), that determine the position of normalized frequencies of absorption for quasi-levels of (a, b, d, e) and

energy diagrams (c, f) at different parameters: a — δ2 = 0, δ3 = 0, ωµ23 = 0; b — δ2 = 0, δ3 = 0, ωµ23 = 0.5; d — δ2 = 0, δ3 = 1,

ωµ23 = 0; e — δ2 = 0, δ3 = 1, ωµ23 = 0.5 and µκ equal to 0.1 (solid lines), 0.5 (dashed lines), 1.0 (dash-dotted lines).

Solution to equation (11) will be as follows

ω̃3 = ω̄3, ω̃0,2 = (ω0 + ω̄2 ±
√

(ω0 − ω̄3)2 + 4�2
σ )/2,

(12)

where ω̃0,2,3 are new frequencies of shifted quasi-levels sub-

ject to �σ ≫ �κ, �µ23. With �κ ≫ �σ , �µ23 frequencies

of quasi-levels are determined by the following relationship

ω̃0 = ω0, ω̃2,3 = (ω̄3 + ω̄2 ±
√

(ω̄2 − ω̄3)2 + 4�2
κ)/2.

(13)

With �µ23 ≫ �σ , �κ frequencies of quasi-levels are deter-

mined by the following relationships

ω̃2 = ω̄3, ω̃0,3 = (ω0 + ω̄3 ±
√

(ω0 − ω̄3)2 + 4�2
µ23)/2.

(14)

In addition to the above-mentioned terms, (10) includes the

term of 2�κ�σ�µ23, which is a consequence of quantum

interference of the Rabi frequencies and taking which into

account affects the position of quasi-levels as well.

The analysis of (12) shows that when measuring �σ ,

the frequency of triexciton quasi-level remains unchanged

as compared with frequencies of two other quasi-levels.

It can be seen from (13)−(14), that the position of

exciton and biexciton quasi-levels with changing �κ and

�µ23 remains unchanged. These circumstances make it

possible to conditionally identify quasi-levels in the case

when detunings of resonance of the incident pump pulses

equal to zero. Thus, the position of quasi-levels depends on

the intensity and frequencies of ω2, ω3 of pump pulses.

Let us introduce detunings of resonance, ω − ω0 = 1,

ω̄2 − ω0 = 12, ω̄3 − ω0 = 13 + 12, of incident pulses and

normalize the detunings of resonance and Rabi frequencies

at the exciton-photon interaction frequency �g . In this case

equation (10) can be written as follows

δ(δ + δ2)(δ + δ2 + δ3) − ω2
σ (δ + δ2 + δ3)

− ω2
κδ − ω2

µ23(δ + δ2) + 2ωκωσωµ23 = 0. (15)

3. Discussion of results

Solutions to equation (15) describe the position of ab-

sorption frequencies of quasi-levels depending on detunings

of resonance and Rabi frequencies. Fig. 2−4 shows

dependencies δ(ωσ ), that determine the position of quasi-

levels depending on the Rabi frequency ωσ at different

sets of parameters and energy diagrams that demonstrate

the processes that take place. δ̃0, δ̃2, δ̃3 symbols used

below define the values of absorption frequencies of exciton,

biexciton, and triexciton quasi-levels.

Fig. 2, a−c shows the case of precise resonance of pump

pulses δ2 = δ3 = 0. In this case equation (15) can be
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Figure 3. Dependencies δ(ωσ ), that determine the position of normalized frequencies of absorption for quasi-levels of (a, b, d, e) and

energy diagrams (c, f) at different parameters: a — δ2 = 0, δ3 = 0, ωµ23 = 0; b — δ2 = 0, δ3 = 0, ωµ23 = 0.5; d — δ2 = 0, δ3 = 1,

ωµ23 = 0; e — δ2 = 0, δ3 = 1, ωµ23 = 0.5 and µκ equal to 0.1 (solid lines), 0.5 (dashed lines), 1.0 (dash-dotted lines).

written as follows:

δ3 − (ω2
σ + ω2

κ + ω2
µ23)δ + 2ωκωσωµ23 = 0. (16)

As it was shown before, in this case ω̄3 = ω̄2 = ω0,

therefore, the impact of one or another transition on the

position of quasi-levels can not be identified unambiguously.

The triexciton quasi-level can be identified conditionally

since its position does not change with a change in ωσ

and is determined by (12).
Let us consider the case of weak impact of two-photon

interaction with triexcitons ωµ23 ≪ 1 (Fig. 2, a). In this case

the position of absorption bands is determined by relation-

ships for normalized absorption frequencies of quasi-levels

δ̃3 = 0, (frequency of triexciton quasi-level coincides with

the frequency of exciton state) and δ̃0,2 = ±
√

ω2
σ + ω2

κ .

With these conditions three absorption frequencies are

observed, two of which linearly move off the central band as

ω0 grows. With ωσ ≪ 1 position of absorption frequencies

will be determined by the following relationships: δ̃3 = 0,

δ̃0,2 ≈ ±ω2
κ . Solid lines shows the case of ωκ = 0.1. As ωκ

increases, the distance between frequencies becomes larger.

Fig. 2, b shows the case of ωµ23 6= 0. With ωσ ≪ 1

position of absorption frequencies will be determined by the

following relationships: δ̃3 = 0, δ̃0,2 ≈ ±
√

(ω2
µ23 + ω2

κ). An

increase in ωκ and ωµ23 results in approaching of absorption

frequencies of quasi-levels to each other in the short-wave

region of the spectrum. The energy state degenerates

despite the non-zero Rabi frequencies. With certain values

of parameters there are only two absorption frequencies

(dashed lines in Fig. 2, b), frequency coincidence takes place

when (ω2
σ + ω2

κ + ω2
µ23)

2/27 = (ωκωσωµ23)
2, which is only

met when ωκ = ωσ = ωµ23. In this case frequencies of

quasi-levels are determined by the following relationships:

δ̃0,3 = ωσ , δ̃2 = −2ωσ . Further increase in ωκ results

in the repeated emergence of three quasi-levels and an

increase in distance between them. Thus, taking into

account the term ωκωσωµ23 in (15), that is responsible for

quantum interference, results in approaching of absorption

frequencies of quasi-levels to each other and degeneration

of energy states at equal Rabi frequencies.

Fig. 2, d−f shows the case of δ2 = 0, δ3 > 0. With these

conditions equation (15) can be written as follows:

δ2(δ + δ3) − (ω2
κ + ω2

µ23)δ − (δ + δ3)ω
2
σ + 2ωκωσωµ23 = 0.

Solid lines in Fig. 2, d show the case of ωκ ≈ 0. Position of

shifted absorption frequencies of quasi-levels is determined

by the following relationships: δ̃3 = δ3, δ̃0,2 = ±ωσ . Quasi-

level that emerges in the region of negative resonance

detunings, is a triexciton level, because its position

does not change with an increase in ωσ . Taking into

account that with an increase in ωκ at ωσ = 0 (Fig. 2, d)
the absorption frequency of the middle quasi-level is

almost unchanged (13), therefore, we shall consider it as

exciton level.
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Figure 4. Dependencies δ(ωσ ), that determine position of normalized frequencies of absorption for quasi-levels of (a, b, d, e) and energy
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ωµ23 = 0 and µκ equal to 0.1 (solid lines), 0.5 (dashed lines), 1.0 (dash-dotted lines); e — δ2 = 1, δ3 = −1, ωµ23 = 0.2 and µκ equal to

0.1 (solid lines), 0.5 (dashed lines), 1.2 (dash-dotted lines).

At low ωσ the position of absorption frequencies

of quasi-levels is determined by the following relation-

ships δ̃2 = δ2 = 0, δ̃0,3 =
(

δ3 ±
√

δ23 + 4(ω2
µ23 + ω2

κ)
)

/2.

With ωκ, ωµ23 ≪ 1 shifted frequencies are determined by

the following relationships: δ̃2,0 = 0, δ̃3 = δ3 (Fig. 2, d). It

can be seen from the comparison of these results with the

case shown in Fig. 2, a, that frequencies of exciton and

biexciton quasi-levels are nearly the same at low values of

the Rabi frequency ωσ . The described cases are important

from the experimental point of view. Let us assume that we

have a semiconductor with a low bond energy of triexciton

(ωκ ≈ 0, ωµ23 ≈ 0). ω2 and ω3 pulses act in conditions

of precise resonance. In this case the researcher will

observe three quasi-levels spaced at an insignificant distance

apart from each other (Fig. 2, a). With abrupt change in

ω3, frequency of the quasi-level emerged as a result of

cascade recombination of triexcitons shifts by a frequency

equal to resonance detuning of the pulse with a frequency

of ω3 (Fig. 2, d, f). In addition, a change in ω3 results in

approaching of two other quasi-levels to each other at low

Rabi frequencies.

In the case when all Rabi frequencies are different

from zero, the position of the quasi-level is significantly

affected by the interference term in (15), which is re-

sponsible for the approaching of exciton and biexciton

quasi-level frequencies to each other (Fig. 2, e). In case

of coincidence of the Rabi frequencies, ωµ23 = ωκ and

ωσ = −1/2δ3 + 1/2
√

δ23 + 4ω2
κ , frequencies of exciton and

biexciton quasi-levels coincide with each other and are

determined by the following relationships: δ̃3 = −δ3 − 2ωσ ,

δ̃0,2 = ωσ .

Fig. 3, a−c shows the case of δ2 > 0, δ3 = 0. With

these conditions (15) can be written as follows:

δ(δ + δ2)
2 − (ω2

σ + ω2
µ23)(δ + δ2) − δω2

κ + 2ωκωσωµ23=0.

In the case shown in Fig. 3, a, b solid lines represent

ωκ ≪ 1, the position of absorption frequencies of quasi-

levels will be determined by the following relationships:

δ̃3 ≈ δ2, δ̃0,2 ≈ 1/2δ2 ± 1/2
√

δ22 + 4(ω2
σ + ω2

µ23). With an

increase in ωσ and ωµ23, the position of the triexciton

quasi-level remains almost unchanged, at the same time the

absorption frequency of the biexciton quasi-level decreases

with growing ωσ and ωµ23, and the frequency of the exciton

quasi-level increases (Fig. 3, a).

With low, but non-zero, ωκ and ωµ23 three absorption

bands are observed with the position of one of them fully

determined by the detuning of resonance δ2, and other

two dependent on the δ2 detuning of resonance and �σ

Rabi frequency. The case that takes into account ωκ
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is shown in Fig. 3, a, b by dashed and dash-dotted lines.

The frequency of the triexciton quasi-level decreases at ωκ

growing, while the frequency of the biexciton quasi-level

grows. the frequency of the exciton quasi-level remains

nearly unchanged with an increase in ωκ . The impact of

interference term results in approaching of triexciton and

biexciton quasi-level frequencies to each other (Fig. 3, b).
With ωσ = �µ23 =

√

−δ2ωκ + ω2
κ frequencies of triexciton

and biexciton quasi-levels coincide with each other and

position of the absorption frequencies in this case is

determined by the following relationships: δ̃0 = −2ωκ and

δ̃2,3 = −δ2 + ωκ .

Fig. 3, d−f shows the case of δ3 = −δ2. With these

values of parameters (15) can be written as follows:

δ2(δ + δ2) − (ω2
σ + ω2

κ)δ − ω2
µ23(δ + δ2) +2ωκωσωµ23 = 0.

In the case shown in Fig 3, d at ωµ23 = 0 position

of absorption frequencies of quasi-levels will be

determined by the following relationships: δ̃3 = 0, δ̃ = 1/2

×
(

δ2 ∓
√

δ22 + 4(ω2
σ + ω2

κ)
)

. An increase in ωκ , ωσ

results in the growth of the frequency of the exciton

quasi-level and decrease in the frequency of the biexciton

quasi-level. With low values of ωµ23 ≈ 0 the position of

the triexciton quasi-level coinciding with the frequency

of the exciton level does not change with an increase in

ωσ (Fig. 3, d). With an increase in ωµ23 the frequency

of the exciton quasi-level grows, while the frequency of

the triexciton quasi-level decreases with an increase in ωσ

and ωκ . Taking into account the interference results in

approaching of exciton and triexciton quasi-level frequencies

to each other. The degeneration of quasi-energy states is

observed at ωκ = ωσ =
√

δ2ωµ23 + ω2
µ23, at the same time

positions of quasi-levels are determined by the following

relationships: δ̃2 = −δ2 − 2ωµ23, δ̃0,3 = ωµ23.

Up to now, we have considered cases of resonance values

of pump pulses: ω̄3 = ω̄2, ω̄2 = ω0, ω̄3 = ω0. As it was

shown above, the degeneration of quasi-energy states is

observed, if at least two of the Rabi frequencies are equal to

each other. Generally, with arbitrary non-zero detunings of

resonance, a change takes place in the restrictions imposed

on Rabi frequencies at which quasi-energy states coincide

with each other.

Let us consider some of these cases. The case of

δ3 = 3δ2/5 (δ2, δ3 < 0) is shown in Fig. 4, a−c. In the case

shown in Fig. 4, a solid lines correspond to ωκ = 0. In this

case it is possible to unambiguously identify quasi-energy

states, since ω0 6= ω̄2 6= ω̄3. From (15) the Rabi frequencies

ωµ23 = 0, ωκ = 0, ωσ = 2|δ2|/5
√
6 were derived at which

biexciton and triexciton quasi-levels coincide with each

other. With an increase in ωκ (Fig. 4, a, b) the distance

between absorption frequencies of biexciton and triexciton

quasi-levels increases and an increase in ωµ23 results in the

shift of absorption frequencies of quasi-levels (Fig. 4, b). The
coincidence of absorption frequencies of exciton and triex-

citon quasi-levels takes place at ωµ23 = ωσ /2, ωκ = ωσ /3,

ωσ = 6|δ2|/5. Absorption frequencies of quasi-levels in this

case are determined by the following relationships: δ̃0 = δ2,

δ̃2,3 = −9δ2/5.

Fig. 4, d−f shows the case of δ3 = 5δ2/3 (δ2, δ3 > 0).
Solid lines (Fig. 4, d) show the case of ωµ23 = 0, ωκ = 0 and

ωσ = 2δ2/3
√
10, and in this case triexciton and biexciton

quasi-levels coincide with each other. With an increase in

ωκ (Fig. 4, d) the distance between absorption frequencies

of biexciton and exciton quasi-levels increases. An increase

in ωµ23 results in the shift of absorption frequencies of quasi-

levels (Fig. 4, e). At the Rabi frequencies of ωµ23 = 3ωσ /2,

ωκ = 3ωσ , ωσ = −2δ2/3 (Fig. 4, f) absorption frequencies

of exciton and triexciton quasi-levels coincide with each

other. In this case absorption frequencies of quasi-levels are

determined by the following relationships: δ̃3 = −13δ2/3,

δ̃0,2 = δ2/3.

Results shown in Figs. 2−4 are indicative of a consider-

able impact of the Rabi frequencies of ωµ23, ωκ , ωσ on the

absorption in the exciton region of the spectrum. The Rabi

frequencies, in turn, are determined by field intensities of

incident pulses.

Currently, there is no experimental data for the estimate

of field intensities at which splitting of the exciton level

is observed when triexciton states are taken into account.

Here we present experimental data for the estimate of the

field intensity of the exciton state splitting due to taking into

account the impact of the mechanism of exciton-biexciton

conversion. According to [36], in quantum dots on InGaAs

the intensity of pumping where splitting of quasi-levels

is observed is 18 kW/cm2 and the value of the splitting

in this case is 94µeV. With an increase in intensity up

to 50 kW/cm2, the splitting increases up to 150µeV. Since

the value of the splitting does not depend on the pulse

intensity acting in the region of exciton transition, it can be

arbitrary, but sufficient to ensure necessary concentration

of excitons, and its intensity can vary from 2−5 kW/cm2.

Even if the bond energy of the triexciton is by an order

of magnitude less than the bond energy of the biexciton,

these effects can be observed at a pump intensity not greater

than 1MW/cm2.

4. Conclusion

Thus, under the action of two strong pumpings the

splitting of exciton level takes place and three quasi-energy

states arise. Frequencies of new quasi-levels are determined

by detuning of resonance of the strong pump pulses, that

allows for their identification. In addition, the position

of absorption bands is affected by ωµ23, ωκ , and ωσ

Rabi frequencies that are determined by intensities of the

strong pump pulses, and their values can vary in a wide

range. Taking into account the constructive two-photon

transition attributable to the value of ωµ23 does not result

in the emergence of a new quasi-level, however it leads

to the Stark shifts of quasi-levels. It is worth noting,

that (15) includes the 2ωκωσωµ23 term attributable to

quantum interference of all taken into account mechanisms
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of non-linearity, and with certain parameters the quantum

interference results in the possibility of coincidence of the

absorption frequencies of quasi-levels. Thus, despite the

low bond energy of biexciton-triexciton conversion, at a low

field acting in the region of biexciton-triexciton transition a

shift of quasi-levels arising under the action of two other

fields will be observed. An increase in the field acting in

the region of biexciton-triexciton transition will result in the

emergence of the third quasi-level in the region of exciton

transition.
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