04,08,09

Люминесценция и электронные возбуждения в кристаллах $Li_6Gd(BO_3)_3$: Ce^{3+}

© И.Н. Огородников¹, И.Н. Седунова¹, Л.И. Исаенко², С.А. Журков²

1 Уральский федеральный университет,

Екатеринбург, Россия

² Институт геологии и минералогии СО РАН,

Новосибирск, Россия E-mail: ogo@dpt.ustu.ru

(Поступила в Редакцию 20 июня 2011 г.)

Представлены результаты исследования люминесценции кристаллов ${\rm Li_6Gd(BO_3)_3:Ce^{3^+}}$ при селективном фотовозбуждении на низшие возбужденные состояния матричного иона ${\rm Gd^{3^+}}$ и примесного иона ${\rm Ce^{3^+}}$ в температурном интервале от 100 до 500 K, где обнаружены существенные изменения в механизмах миграции и релаксации энергии электронных возбуждений. Монотонное возрастание в 10-15 раз интенсивности полосы люминесценции с энергией $3.97\,{\rm eV}$ объяснено в рамках модели, учитывающей конкуренцию двух процессов: миграции энергии электронных возбуждений в цепочках ионов ${\rm Gd^{3^+}}$ и колебательной релаксации энергии между уровнями 6I_J и 6P_J . Показано, что излучательные переходы в ионах ${\rm Ce^{3^+}}$ с нижнего возбужденного состояния $5d^1$ на ${}^2F_{5/2^-}$ и ${}^2F_{7/2}$ -уровни основного состояния обусловливают две пары полос фотолюминесценции: 2.08 и $2.38\,{\rm eV}$ (центр ${\rm Ce1}$) и 2.88 и $3.13\,{\rm eV}$ (центр ${\rm Ce2}$). Обсуждаются возможные модели центров свечения ${\rm Ce1}$ и ${\rm Ce2}$.

Работа частично поддержана Междисциплинарным интеграционным проектом № 34 и Программой поддержки научных исследований аспирантов и молодых ученых Уральского федерального университета.

1. Введение

Ортоборат лития-гадолиния $Li_6Gd(BO_3)_3$ (LGBO) многие годы интенсивно исследуется как с точки зрения изучения фундаментальных свойств этого соединения, так и с точки зрения его практического применения в качестве оптического рабочего вещества для сцинтилляционных детекторов тепловых нейтронов [1–8]. Интерес к LGBO обусловлен сочетанием в нем нескольких важных факторов. В состав этого соединения входят элементы, имеющие стабильные изотопы ¹⁰В и ⁶Li с большими сечениями захвата тепловых нейтронов и большим количеством выделяющейся энергии на поглощенный нейтрон (суммарная энергия составляет около 2.8 MeV) [9,10]. Отметим, что такие же элементы входят в состав других боратов лития, изучавшихся нами ранее, например LiB₃O₅ (LBO) [11,12] и Li₂B₄O₇ (LTB) [13]. Однако в отличие от LBO и LTB кристаллы LGBO имеют, во-первых, высокую изоморфную емкость для вхождения трехвалентных редкоземельных ионов в качестве примесей замещения в позиции матричных ионов Gd^{3+} и, во-вторых, эффективный канал передачи этим примесям энергии электронных возбуждений от матрицы [1-3]. Кроме того, кристаллы LGBO обладают интенсивной собственной люминесценцией в ультрафиолетовой области спектра, обусловленной излучательными переходами в матричном ионе Gd^{3+} [1,7].

В работах [14,15] нами была обнаружена монотонная зависимость интенсивности стационарной радиолюминесценции LBGO от температуры, обусловливающая "разгорание" собственной люминесценции LGBO примерно в 15 раз в области температур от 100 до 500 К.

Несколько меньший по величине эффект "разгорания" был обнаружен в этих работах и для люминесценции примесных центров Ce^{3+} .

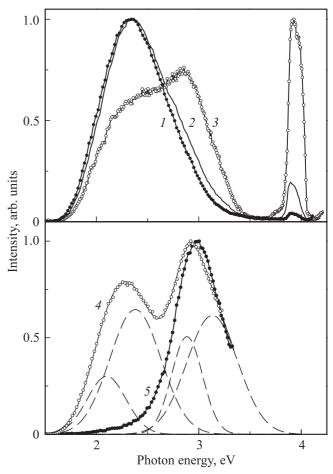
Эффективные межконфигурационные излучательные переходы $5d^1 \to 4f^1$ иона Ce^{3+} в твердых телах вследствие преимущественно электродипольного характера проявляются как интенсивные широкие полосы свечения с коротким временем затухания [16–18]. Благодаря тому, что энергетическое положение уровней внешних $5d^1$ -орбиталей в лантанидах подвержено сильному влиянию внешнего окружения [19,20], ион Ce^{3+} может быть использован как люминесцентный зонд для изучения особеностей переноса энергии электронных возбуждений, обусловливающих эффект "разгорания" интенсивности люминесценции в LGBO.

Целью настоящей работы является дальнейшее изучение собственной и примесной люминесценции кристаллов ${\rm Li_6Gd(BO_3)_3:Ce^{3+}}$ методом люминесцентной спектроскопии при селективном фотовозбуждении в области температур $100-500~{\rm K}$, где наблюдается проявление эффекта "разгорания" интенсивности люминесценции.

2. Детали эксперимента

Кристаллы ортобората лития-гадолиния, легированные примесью ионов Ce^{3+} , были выращены методом Чохральского в Институте геологии и минералогии СО РАН (Новосибирск). Для синтеза соединения $Li_6Gd(BO_3)_3$ использовались исходные реагенты марки осч — Li_2CO_3 , H_3BO_3 и Gd_2O_3 , в качестве легирующей примеси вводился карбонат церия. Соединение плавится конгруэнтно при температуре $848^{\circ}C$.

Скорость вытягиания кристалла не превышала 5 mm в сутки, при росте использовался высокий радиальный градиент (до $20 \, \mathrm{K} \cdot \mathrm{cm}^{-1}$). Получены прозрачные ограненные кристаллы размером до 0.5 cm³. В работе исследованы образцы $Li_6Gd(BO_3)_3: Ce^{3+}$ (LGBO: Ce) высокого оптического качества с содержанием примеси церия 0.5 wt.%. Начальный состав реакционной смеси соответствовал эквивалентному замещению гадолиния церием. В канале возбуждения люминесценции использовались ксеноновая разрядно-дуговая лампа высокого давления ДДС-400 и первичный монохроматор ДМР-4. Спектры фотолюминесценции (ФЛ) и спектры возбуждения ФЛ в области от 1.4 и 6 eV, а также кривые температурной зависимости интенсивности люминесценции регистрировались с помощью монохроматора МДР-23 (решетка 1200 линий на миллиметр, обратная линейная дисперсия $1 \text{nm} \cdot \text{mm}^{-1}$) и фотоэлектронного умножителя ФЭУ-106. Спектры ФЛ не корректировались на спектральную чувствительность оптического тракта, а спектры возбуждения ФЛ нормировались на равное число фотонов, падающих на образец. Все измерения выполнены в вакууме не хуже 10^{-4} Pa. В качестве камеры образца использовался малоинерционный вакуумный криостат с кварцевыми окнами, позволяющий регулировать температуру образца в диапазоне от 80 до 500 К с помощью специализированного микропроцессорного терморегулятора.


3. Результаты эксперимента

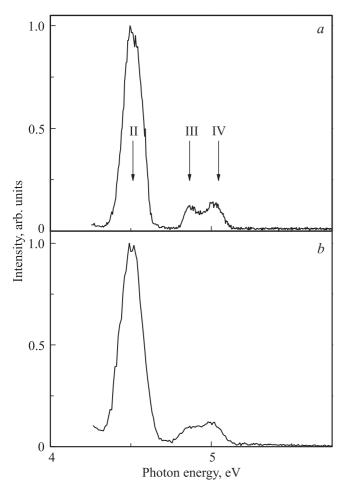
На рис. 1 приведены спектры ФЛ кристалла LGBO:Се, измеренные при температурах 100 и 300 K

Таблица 1. Параметры полос ФЛ кристалла LGBO: Ce³⁺

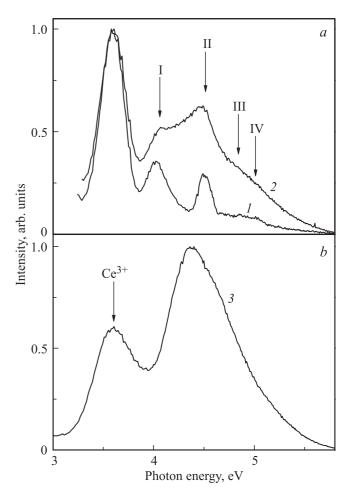
Поположен	Температура, К					
Параметр	100			300		
$E_{\rm ex}, { m eV}$	3.6	4.3	4.5	3.6	4.5	
E_{m1} , eV	2.10	2.07	2.09	2.10	2.08	
ΔE_1 , eV	0.45	0.41	0.40	0.48	0.38	
A_1	0.30	0.32	0.41	_	0.15	
E_{m2} , eV	2.38	2.38	2.40	2.38	2.38	
ΔE_2 , eV	0.59	0.54	0.47	0.43	0.59	
A_2	0.65	0.90	0.88	0.06	0.56	
E_{m3} , eV	2.88	2.80	2.80	2.88	2.86	
ΔE_3 , eV	0.36	0.44	0.44	0.41	0.48	
A_3	0.51	0.27	0.39	0.57	0.60	
E_{m4} , eV	3.13	3.15	3.12	3.12	3.13	
ΔE_4 , eV	0.59	0.48	0.47	0.51	0.42	
A_4	0.62	0.05	0.08	0.60	0.16	
R,%	48.7	81.5	73.4	4.8	52.5	

Примечание. Параметры элементарных полос гауссовой формы: E_m — положение максимума, ΔE — ширина на полувысоте (FWHM), A — амплитуда, нормированная на единицу в максимуме наблюдаемого спектра ФЛ, $E_{\rm ex}$ — энергия возбуждения ФЛ. $R = [{\rm Ce1}]/([{\rm Ce1}] + [{\rm Ce2}])$ — относительный вклад центров первого типа в ФЛ.

Рис. 1. Спектры ФЛ кристалла LGBO: Се при температурах T=100~(1,2,4)~и 300 К (3,5)~и $E_{\rm ex}=4.5~(2,3),~4.3~(1)$ и 3.6 eV (4,5). Штриховыми линиями показаны выделенные элементарные полосы гауссовой формы.


при возбуждении фотонами различных энергий в области прозрачности кристалла. В спектрах ФЛ можно выделить две области, различающиеся зависимостью интенсивности ФЛ от температуры и энергии возбуждения.

В видимой области спектр люминесценции представлен широкой неэлементарной полосой ФЛ, простирающейся от 1.7 до 3.5 eV. Положение максимума и интенсивность наблюдаемой полосы зависят от условий эксперимента. Результаты декомпозиции спектра ФЛ свидетельствуют о наличии четырех перекрывающихся основных элементарных полос гауссовой формы (табл. 1). Соотношения интенсивностей элементарных полос определяют все наблюдаемые особенности спектра ФЛ в видимой области спектра. Отметим также, что элементарные полосы сгруппированы в две пары со средними расстояниями между положениями максимумов полос в парах 0.296 и 0.286 eV соответственно (табл. 1). Различие между этими значениями по результатам декомпозиции составляет около 3.5%, однако, учитывая сильное перекрытие элементарных полос, это различие следует считать несущественным, а пары — эквидистантными.


В ультрафиолетовой области спектра наблюдается сравнительно узкая интенсивная полоса ФЛ с энергией 3.97 eV. В кристаллах LGBO данная полоса люминесценции обусловлена излучательными переходами $^6P_J \rightarrow ^8S_{7/2}$ в матричном ионе Gd $^{3+}$ [1,7,8].

На рис. 2 представлены спектры возбуждения полосы люминесценции с максимумом при 3.97 eV при 100 и 300 К. В спектрах возбуждения ФЛ наблюдаются три полосы с энергиями 4.50, 4.88 и 5.0 eV, соответствующие переходам в ионе Gd^{3+} с основного $^8S_{7/2}$ -состояния на возбужденные состояния 6I_J (II), $^6D_{9/2}$ (III) и 6D_J (IV).

На рис. 3 представлены спектры возбуждения полос ФЛ с энергиями 2.3 и 2.8 eV при 100 и 300 К. В спектре возбуждения полосы ФЛ 2.8 eV доминируют широкие, частично перекрывающиеся полосы с максимумами при 3.60, 4.02, 4.50 eV. Спектр возбуждения в области 4.5—5.5 eV слабо структурирован. При 100 К наблюдается увеличение эффективности возбуждения ФЛ, сопроводающееся увеличением степени перекрывания полос. В спектре возбуждения ФЛ 2.3 eV при 100 К можно выделить две широкие неэлементарные полосы с максимумами при 3.60 и 4.38 eV.

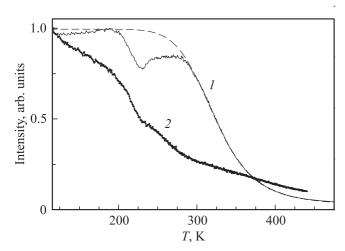


Рис. 2. Спектры возбуждения полосы ФЛ 3.97 eV кристалла LGBO:Се при температурах T=300~(a) и $100~{\rm K}~(b)$. Стрелками обозначены оптические переходы в ионе ${\rm Gd}^{3+}$: ${}^8S_{7/2} \rightarrow {}^6I_J~({\rm II}), \, {}^8S_{7/2} \rightarrow {}^6D_J~({\rm IV}).$

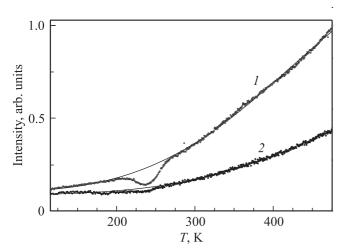


Рис. 3. Спектры возбуждения ФЛ с энергиями 2.8 (1,2) и 2.3 eV (3) кристалла LGBO : Се при температурах T=300~(1) и $100~{\rm K}~(2,3)$. Обозначения переходов в ионе ${\rm Gd}^{3+}$ идентичны использованным на рис. 2. I — $^8S_{7/2} \rightarrow ^6P_J$.

На рис. 4 представлены температурные зависимости интенсивности полос ФЛ 2.3 и 2.8 eV, измеренные при энергии возбуждения $E_{\rm ex}=3.6\,{\rm eV}$. Из рис. 4 видно, что полоса ФЛ 2.3 eV испытывает термическое тушение начиная со 100 К, а при нагреве до 300 К ее интенсивность уменьшается примерно в 4 раза. Интенсивность полосы ФЛ 2.8 eV при 300 K составляет около 80% от интенсивности при 100 K. В области 200-250 K на температурных зависимостях полос ФЛ наблюдается особенность, заключающаяся в резком спаде интенсивности ФЛ примерно на 20%. В области 280-500 К температурная зависимость интенсивности полосы ФЛ 2.8 eV аппроксимирована законом Мотта с энергией активации 0.32 eV и безразмерным предэкспоненциальным множителем $2.8 \cdot 10^5$ (рис. 4). Отметим согласованное проявление особенностей на кривых температурных зависимостей интенсивности для рассмотренных выше полос ФЛ при различных энергиях возбуждения. Все это косвенным образом указывает на возможное взаимодействие соответствующих центров свечения.

Рис. 4. Температурные зависимости интенсивностей люминесценции LGBO: Се, измеренные при $E_{\rm ex}=3.6\,{\rm eV}$ в полосах ФЛ 2.8 (1) и 2.3 eV (2). Штриховой линией показан результат аппроксимации.

Рис. 5. Температурные зависимости интенсивностей люминесценции LGBO: Се в полосе с $E_m = 3.97 \, \mathrm{eV}$, измеренные при возбуждении $E_{\mathrm{ex}} = 4.5 \, (1)$ и $5.0 \, \mathrm{eV} \, (2)$. Точками показаны экспериментальные данные, сплошные линии — результат аппроксимации.

На рис. 5 представлены температурные зависимости интенсивности полосы $\Phi \Pi$ в области $3.97\,\mathrm{eV}$, измеренные при энергиях возбуждения $E_\mathrm{ex}=4.5\,$ и $5.0\,\mathrm{eV}$. Первая зависимость была нормирована на единицу в максимуме, вторая зависимость для наглядности нормирована до совпадения по интенсивности с первой зависимостью при $100\,\mathrm{K}$. В обоих случаях происходит монотонное возрастание интенсивности $\Phi \Pi$ при изменении температуры от $100\,\mathrm{до}\,500\,\mathrm{K}$. При $200-250\,\mathrm{K}$ на кривых температурной зависимости $\Phi \Pi$ также проявляется отмеченная выше особенность. При $E_\mathrm{ex}=4.5\,\mathrm{eV}$ особенность более заметна и возрастание интенсивности $\Phi \Pi$ происходит в $2\,\mathrm{pasa}$ быстрее, чем при $E_\mathrm{ex}=5.0\,\mathrm{eV}$.

4. Обсуждение результатов

4.1. Температурная зависимость собственной люминесценция. Собственная люминесценция LGBO обусловлена излучательными переходами в матричном ионе Gd^{3+} [1,7,8]. При этом состояния ${}^{6}P_{J}$ являются наиболее низкоэнергетическими возбужденными уровнями иона Gd³⁺. Именно излучательные переходы с этих состояний на основное состояние ${}^8S_{7/2}$ приводят к наблюдаемой люминесценции при 3.97 eV [1,7,8]. Возбужденные уровни 6I_J расположены на $\Delta E \approx 0.32\,\mathrm{eV}$ выше по энергии, чем ${}^{6}P_{J}$. Известно [1], что в LGBO колебательная релаксация энергии между ${}^{6}I_{J}$ и ${}^{6}P_{J}$ происходит безызлучательно. В то же время миграция энергии электронных возбуждений по уровням 6I_J в цепочках ионов Gd³⁺ происходит более эффективно, чем по уровням ${}^{6}P_{J}$ [21]. В предположении, что температурная зависимость интенсивности люминесценции при 3.97 eV лимитируется главным образом скоростью колебательной релаксации ${}^{6}I_{J} \rightarrow {}^{6}P_{J}$, нами ранее была предложена формула для аппроксимации температурной зависимости этой люминесценции в кристалле LGBO при возбуждении рентгеновским излучением лабораторного источника [14,15]

$$I(T) = I_m \left(I_0 + \frac{1}{1 + W \left(1 - \exp(-\hbar\omega/k_{\rm B}T) \right)^p} \right), \quad (1)$$

где I_m — амплитуда, I_0 — нормированный уровень температурно-независимого фона, p-порядок мультифононного процесса (количество фононов с энергией $\hbar \omega$, необходимых для перекрытия интервала энергии $\Delta E = p\hbar \omega$), $k_{\rm B}$ — постоянная Больцмана, W — отношение вероятности переноса энергии электронного возбуждения между соседними ионами ${\rm Gd}^{3+}$ к вероятности процесса колебательной релаксации при низкой температуре.

Физические процессы, положенные в основу формулы (1), должны проявиться и при селективном фотовозбуждении состояний 6I_J и 6D_J иона Gd^{3+} . В табл. 2 представлены параметры наилучшей аппроксимации по формуле (1) температурных зависимостей интенсивности $\Phi\Pi$ с энергией 3.97 eV, приведенных на рис. 5. Из табл. 2 следует, что в обоих случаях ($E_{\mathrm{ex}}=4.5$ и $5.0\,\mathrm{eV}$) температурная зависимость интенсивности $\Phi\Pi$ контролируется процессом колебательной релаксации между уровнями 6I_J и 6P_J в ионе Gd^{3+} ; энергия актуальных фононов при этом составляет около $40\,\mathrm{meV}$. Боль-

Таблица 2. Параметры аппроксимации по формуле (1) температурной зависимости полосы $\Phi \Pi$ 3.97 eV при различном возбуждении

$E_{\rm ex}, { m eV}$	I_m	100 <i>I</i> ₀	W	p	ΔE , eV
4.5	1.64	1.48	18.2	8	0.32
5.0	0.77	9.30	39.9	8	0.32

шее значение параметра W, наблюдаемое при возбуждении на сравнительно высоколежащие 6D_J -состояния иона Gd^{3+} , свидетельствует о большей вероятности переноса энергии электронного возбуждения на соседний ион Gd^{3+} в цепочке по сравнению с такой же вероятностью для случая возбуждения на 6I_J -состояния. Увеличение значения параметра I_0 при $E_{\mathrm{ex}}=5.0\,\mathrm{eV}$ может косвенным образом свидетельствовать о возрастании доли температурно-независимой составляющей в полосе $\Phi\Pi$ 3.97 eV иона Gd^{3+} при возбуждении на высоколежащие 6D_J -состояния.

Из общих соображений очевидно, что обнаруженная тенденция должна проявиться также при селективном возбуждении иона Gd^{3+} на еще более высоколежащие состояния, например состояния 6G_J . Однако технические возможности использованной аппаратуры были ограничены диапазоном возбуждения 5.5 eV, что не позволило провести изучение температурных зависимостей люминесценции Gd^{3+} при селективном фотовозбуждении на состояния 6G_J .

4.2. Спектры люминесценции Ce^{3+} . Анализ полученных спектроскопических данных (рис. 1 и 3) свидетельствует о том, что интенсивная люминесценция кристалла LGBO: Ce³⁺ в видимой области спектра обусловлена излучательными переходами в примесном ионе Ce^{3+} . Действительно, свободный ион Ce^{3+} имеет $4f^{1}$ -конфигурацию основного состояния и нижнее $5d^1$ -состояние с энергией $5.9\,\mathrm{eV}$. При помещении иона Се³⁺ в кристаллическую решетку самые низкоэнергетические разрешенные электродипольные переходы $4f^1 \to 5d^1$ могут наблюдаться в диапазоне энергий от 2.5 до 4.95 eV в зависимости от свойств конкретной матрицы и позиционной симметрии примесного иона [22,23]. Из наших измерений (рис. 1 и 3) следует, что наиболее низкоэнергетические полосы возбуждения люминесценции Ce³⁺ в кристаллах LGBO наблюдаются при $E_{\rm ex}=3.60,\,4.02$ и $4.50\,{\rm eV}$. Энергетическое положение двух последних полос коррелирует с положением уровней 6P_J и 6I_J в матричном ионе Gd^{3+} , что обеспечивает эффективную передачу энергии электронных возбуждений от матрицы к примесному иону. Очевидно, что при $E_{\rm ex} = 4.02$ и $4.50\,{\rm eV}$ в кристаллах LGBO будет происходить возбуждение полос люминесценции ионов Gd^{3+} и Ce^{3+} . В то же время при $E_{\rm ex} = 3.60\,{\rm eV}$ будет возбуждаться только люминесценция иона Ce^{3+} . Сосредоточим дальнейшее обсуждение на этом случае.

Известно [24], что в спектрах люминесценции ионов Ce^{3+} излучательные переходы $5d \to 4f$ обычно проявляются в виде дублета широких, частично перекрывающихся полос. Эти полосы свечения обусловлены излучательными переходами с релаксированного нижнего 5d-возбужденного состояния на основное 4f-состояние, расщепленное спин-орбитальным взаимодействием на два уровня $^2F_{5/2}$ и $^2F_{7/2}$. Величина расщепления зависит от многих факторов и варьируется от кристалла к кристаллу. Ее среднее значение составляет около $0.25\,\mathrm{eV}$ [24]. Полученное в наших

измерениях значение $0.29\,\mathrm{eV}$ достаточно близко к ожидаемому $(0.25\,\mathrm{eV})$.

Энергетическое положение уровней внешних 5*d*-орбиталей в лантанидах подвержено сильному влиянию внешнего окружения. В этой связи энергетическое положение переходов 5d o 4f в оптических спектрах определяется не только видом иона, но и его окружением в кристаллической матрице. Наличие в спектре ФЛ LGBO: Ce^{3+} двух пар полос свечения Ce^{3+} с расстоянием около 0.29 eV между полосами в парах (табл. 1) указывает на локализацию ионов церия в двух различных позициях кристаллической решетки, т.е. на наличие двух типов центров свечения на основе примесного иона Ce³⁺. Введем для этих центров обозначения Ce1 и Ce2. При этом полосы ФЛ 2.08 и 2.38 eV обусловлены излучательными переходами в центрах Се1, а полосы при 2.88 и 3.13 eV соответствуют переходам в центрах Се2.

Стоксов сдвиг люминесценции иона Ce^{3+} зависит от вида матрицы и составляет в среднем около 0.32 eV [24]. В наших измерениях для кристалла LGBO: Ce³⁺ оценка стоксова сдвига полосы ФЛ центра $Ce2~(E_m = 3.13 \, eV)$ составляет 0.47 eV, что несколько превышает среднее значение и свидетельствует о достаточно сильном электрон-фононном взаимодействии в этом кристалле. Из общих соображений следует, что стоксовы сдвиги полос ФЛ центров Се1 и Се2 и должны быть сравнимы. В таком случае для $\Phi \Pi$ центра Ce1 ($E_m = 2.38 \, \text{eV}$) следует ожидать еще одну полосу возбуждения с энергией 2.8-2.9 eV. В наших измерениях спектр возбуждения Φ Л был ограничен снизу энергией $E_{\rm ex} = 3.0\,{\rm eV}$. Однако из рис. 3 следует, что при этой энергии полоса ФЛ 2.3 eV возбуждается достаточно эффективно. Перекрытие полос люминесценции центра Се2 с полосой возбуждения центра Се1 обусловливает дополнительный канал возбуждения ФЛ с энергией 2.3 eV и объясняет наблюдаемую взаимосвязь полос ФЛ LGBO: Ce³⁺ в видимой области спектра. Подобную конверсию люминесценции между синей и зеленой областями видимого спектра наблюдали ранее в соединении $Ca_3Sc_2Si_3O_{12}$: Ce^{3+} [25].

Положение полосы Φ Л Ce^{3+} при прочих равных условиях зависит от ионного радиуса позиции, в которую помещается ион церия, и от концентрации активатора. Так, в кристаллах YAG:Се и TAG:Се при увеличении на полпроцента ионного радиуса позиции, занимаемой активатором, происходит понижение интенсивности и сдвиг максимума полосы свечения от 2.34 к 2.18 eV [26]. В карбонитридах, легированных ионами Се³⁺, при увеличении концентрации примеси церия наблюдался сдвиг энергетического положения максимума люминесценции от 2.175 к 2.148 eV [27]. Имеющиеся экспериментальные данные по LGBO однозначно указывают на то, что центр Се2 представляет собой примесный ион Се³⁺ в регулярной позиции иона Gd^{3+} [1,7,8]. Для центра Ce1одной из возможных моделей может быть ион Ce^{3+} в регулярной позиции иона Gd³⁺ в окрестности какого-либо дефекта, например вакансии. В кристаллах LGBO экспериментально установлено эффективное образование катионных вакансий лития при умеренных радиационных воздействиях [28,29]. Известно [30], что образование катионных вакансий может также происходить для компенсации избыточного заряда или деформации решетки при внедрении примеси замещения. Установление природы центра Ce1 требует проведения дополнительного исследования.

4.3. Температурная зависимость люминесценции Ce^{3+} . Относительный вклад двух центров свечения в наблюдаемую ФЛ в области 1.7-3.5 eV может быть определен из сопоставления площадей под парами элементарных полос, соответствующих данным центрам (табл. 1). При $E_{\rm ex}=3.6\,{\rm eV},\ T=100\,{\rm K}$ вклад обоих центров примерно одинаков. Нагрев от 100 до 300 К уменьшает вклад Се1-центра в 10 раз. Изменение энергии возбуждающих фотонов до $E_{\rm ex} = 4.5\,{\rm eV}$ приводит к возрастанию вклада Се1-центра до 73.4% при 100 К и до 52.5% при 300 К. Сопоставление этих данных с температурными зависимостями интенсивностей полос ФЛ (рис. 4) свидетельствует о наличии температурно-стимулированного процесса перераспределения энергии электронных возбуждений между центрами Се1 и Се2. Обсудим возможные механизмы.

Прежде всего отметим, что наблюдаемая на кривых температурных зависимостей интенсивности полос ФЛ особенность в области температур $200-250\,\mathrm{K}$ (рис. 4) не относится к процессу температурного тушения люминесценции. В работе [31] предложена модель, объясняющая подобную особенность люминесценции Ce^{3+} в кристаллах YAG: Се. Согласно [31], имеет место температурная зависимость силы осцилляторов поглощения для переходов из основного $4f^{1-}$ состояния на различные группы d-уровней $5d^{1-}$ полосы, обусловленная в свою очередь температурной зависимостью заселенности низкоэнергетических состояний $^2F_{5/2}$.

Необходимо отметить, что на температурной зависимости ФЛ ${
m Gd}^{3+}$ в полосе с $E_m=3.97\,{
m eV}$ также наблюдаются похожие особенности в области температур 200-250 К (рис. 5). Эти особенности наиболее отчетливо выражены при $E_{\rm ex} = 4.5\,{\rm eV}$. В этой полосе происходит также прямое фотовозбуждение люминесценции ионов Ce³⁺, при котором имеет место температурно-зависимая конкуренция между оптическими переходами из основного $4f^{1}$ -состояния на различные группы d-уровней $5d^1$ -полосы иона Ce^{3+} . Мы полагаем, что данная конкуренция сказывается и на эффективности возбуждения иона Gd^{3+} при $E_{\mathrm{ex}}=4.5\,\mathrm{eV}$. Ранее нами было показано [15], что процесс, приводящий к температурной зависимости интенсивности люминесценции Се³⁺, оказывает аналогичное влияние и на люминесценцию ионов Gd^{3+} , находящихся в окрестности примесного иона. Это объясняет коррелированное понижение эффективности $\Phi \Pi \ Ce^{3+}$ и Gd^{3+} в температурной области 200-250 K.

Температурное тушение $\Phi \Pi$ с энергией 2.8 eV происходит в области 280-500 K. В этой области интегральная интенсивность $\Phi \Pi$ LGBO: Ce^{3+} монотонно уменьшается с повышением температуры: при 300 K снижается вдвое и практичеки исчезает к 500 K. Зависимость интенсивности $\Phi \Pi$ аппроксимируется законом Мотта с энергией активации $E_T=0.32$ eV (рис. 4). Кроме того, постоянная времени кинетики затухания люминесценции также уменьшается по закону Мотта с энергией активации $E_T=0.32$ eV: $\tau=41.5$ ns при 260 K, 30.7 ns при 300 K и 0.2 ns при 500 K [32].

Во многих матрицах природу термического тушения Φ Л иона Ce^{3+} связывают с термостимулированной делокализацией электрона с нижнего возбужденного $5d^{1}$ -состояния в зону проводимости кристалла. Энергия активации температурного тушения люминесценции при этом определяется расстоянием по энергии от нижнего $5d^{1}$ -уровня до дна зоны проводимости матрицы. В рамках полуэмпирической модели [33] основное $4f^{1}$ -состояние иона Ce^{3+} в кристалле LGBO ожидается в запрещенной зоне примерно на 3.6 eV выше потолка валентной зоны. Минимальная энергия перехода $4f^1 \rightarrow 5d^1$ в кристалле LGBO составляет 3.60 eV, что дает оценку положения нижнего $5d^{1}$ -состояния на $7.2\,\mathrm{eV}$ выше потолка валентной зоны. Ширина запрещенной зоны кристалла LGBO по нашим оценкам составляет $E_g \approx 8.8 - 9 \, \text{eV}$ [7,8]. В таком случае ожидаемая энергия активации должна составить 1.6-1.8 eV. В наших измерениях получено значение $E_T = 0.32 \,\text{eV}$, что свидетельствует в пользу внутрицентрового механизма тушения ФЛ с энергией 2.8 eV.

Интенсивность $\Phi\Pi$ с энергией $2.3\,\mathrm{eV}$ в кристалле LGBO монотонно падает в широком диапазоне температур от $100\,\mathrm{do}\,500\,\mathrm{K}$. Это вполне согласуется с высказанным выше предположением о том, что одной из возможных моделей Ce1-центра может быть ион Ce^{3+} в регулярной позиции иона Cd^{3+} в окрестности какого-либо дефекта, например вакансии. Известно [26], что при увеличении ионного радиуса позиции, занимаемой ионом Ce^{3+} , интенсивность $\Phi\Pi$ в кристаллах YAG: Се и TAG: Се понижается, а температурное тушение $\Phi\Pi$ происходит при меньших температурах.

Заключение

Таким образом, в настоящей работе выполнено исследование люминесценции кристаллов LGBO: Ce^{3+} при селективном фотовозбуждении на низшие возбужденные состояния матричного иона Gd^{3+} и примесного иона Ce^{3+} в температурном диапазоне от 100 до $500~\mathrm{K}$, где происходят существенные изменения в механизмах миграции и релаксации энергии электронных возбуждений. Наиболее важные выводы из анализа полученных экспериментальных результатов в свете известных литературных данных заключаются в следующем.

- 1. В кристаллах LGBO: Ce³⁺ собственная люминесценция с энергией 3.97 eV обусловлена излучательными переходами в матричном ионе Gd³⁺ с низших возбужденных состояний ${}^{6}P_{J}$ на основное состояние ${}^{8}S_{7/2}$. Интенсивность этой люминесценции в решающей мере зависит от конкуренции двух процессов: миграции энергии электронных возбуждений в цепочках ионов Gd³⁺ и безызлучательной колебательной релаксации энергии между уровнями ${}^{6}I_{J}$ и ${}^{6}P_{J}$. Именно температурная зависимость вероятности колебательной релаксации в области температур от 100 до 500 К обусловливает монотонное возрастание в 10-15 раз интенсивности полосы люминесценции 3.97 eV. Экспериментальные кривые температурной зависимости интенсивности полосы ФЛ 3.97 eV аппроксимированы формулой (1) со следующими параметрами: порядок мультифононного процесса p = 8, энергия актуальных фононов $\hbar\omega = 40 \, \text{meV}$.
- 2. Интенсивная широкополосная люминесценция кристалла LGBO: Ce^{3+} в видимой области спектра обусловлена разрешенными электродипольными переходами $5d^1 \rightarrow 4f^1$ в примесных ионах Ce^{3+} . Стоксов сдвиг этой люминесценции составляет 0.47 eV, основные полосы возбуждения имеют энергии 3.60, 4.02 и 4.50 eV. Энергетическое положение двух последних полос коррелирует с положением уровней 6P_J и 6I_J в матричном ионе Gd^{3+} , что обеспечивает эффективную передачу электронных возбуждений от матрицы к примесному иону. Основное $4f^1$ -состояние иона Ce^{3+} в кристалле LGBO: Ce^{3+} расщеплено спин-орбитальным взаимодействием на два уровня $^2F_{5/2}$ и $^2F_{7/2}$ с $\Delta E = 0.29$ eV.
- ствием на два уровня ${}^2F_{5/2}$ и ${}^2F_{7/2}$ с $\Delta E=0.29\,\mathrm{eV}.$ 3. Внедрение примеси Ce^{3+} в решетку LGBO приводит к образованию двух типов дефектов, различающихся спектроскопическими проявлениями. Центр Се1 предположительно отнесен к иону Ce^{3+} в регулярном узле матричного иона Gd^{3+} , ассоциированному с каким-то дефектом решетки, например вакансией. Центр Се2 образуется при замещении матричного иона Gd³⁺ примесным ионом Се³⁺ в отсутствие ассоциации с другими дефектами. Излучательные переходы в ионах Се³⁺ с нижнего возбужденного состояния $5d^1$ на ${}^2F_{5/2}$ -уровни основного состояния обусловливают пары полос ФЛ с энергиями 2.08 и 2.38 eV (центр Ce1) 2.88 и 3.13 eV (центр Се2). Суперпозиция этих полос определяет наблюдаемый спектр ФЛ кристалла LGBO:Ce³⁺. Перекрытие полос люминесценции центра Се2 с низкоэнергетической полосой возбуждения центра Ce1 2.8 eV обусловливает дополнительный канал возбуждения ФЛ с энергией 2.3 eV.
- 4. Наблюдаемая на кривых температурных зависимостей интенсивности полос ФЛ при 2.3 и $2.8\,\mathrm{eV}$ особенность в области температур $200-250\,\mathrm{K}$ не относится к процессу температурного тушения люминесценции. Наиболее вероятной причиной этой особенности является температурная зависимость силы осцилляторов поглощения для переходов из основного $4f^1$ -состояния на различные группы d-уровней $5d^1$ -полосы, обнаруженная ранее в работе [31] для

- $YAG: Ce^{3+}$. Конкуренция между оптическими переходами из основного $4f^1$ -состояния на различные группы d-уровней $5d^1$ -полосы иона Ce^{3+} сказывается и на эффективности возбуждения иона Gd^{3+} при $E_{\rm ex}=4.5\,{\rm eV}$, что обусловливает коррелированное понижение эффективности $\Phi\Pi$ Ce^{3+} и Gd^{3+} в температурной области $200-250\,{\rm K}$.
- 5. В интервале $280-500\,\mathrm{K}$ температурное тушение люминесценции в области $2.8\,\mathrm{eV}$ происходит по внутрицентровому механизму и подчиняется закону Мотта с энергией активации $0.32\,\mathrm{eV}$ и безразмерным предэкспоненциальным множителем $2.8\cdot10^5.$

Авторы благодарны В.А. Пустоварову за поддержку и помощь в проведении измерений.

Список литературы

- C.T. Garapon, B. Jacquier, J.P. Chaminade, C. Fouassier. J. Lumin. 34, 211 (1985).
- [2] C.T. Garapon, B. Jacquier, Y. Salem, R. Moncorge. J. de Phys. Colloque C7 46, C7-141 (1985).
- [3] M. Buijs, J.I. Vree, G. Blasse. Chem. Phys. Lett. 137, 381 (1987).
- [4] J. Sablayrolles, V. Jubera, J.-P. Chaminade, I. Manek-Hönnirger, S. Murugan, T. Cardinal, R. Olazcuaga, A. Garcia, F. Salin. Opt. Mater. 27, 1681 (2005).
- [5] R.P. Yavetskiy, E.F. Dolzhenkova, M.F. Dubovik, T.I. Korshikova, A.V. Tolmachev. J. Cryst. Growth **276**, 485 (2005).
- [6] R.P. Yavetskiy, A.V. Tolmachev, E.F. Dolzhenkova, V.N. Baumer. J. Alloys Comp. 429, 77 (2007).
- [7] И.Н. Огородников, В.А. Пустоваров, С.И. Омельков, А.В. Толмачев, Р.П. Явецкий. Опт. и спектр. 102, 66 (2007).
- [8] И.Н. Огородников, В.А. Пустоваров, А.В. Толмачев, Р.П. Явецкий. ФТТ **50**, 1620 (2008).
- [9] J.B. Czirr, G.M. Mac Gillivray, R.R. Mac Gillivray, P.J. Seddon. Nucl. Insrtum. Meth. Phys. Res. A 424, 15 (1999).
- [10] V.V. Chernikov, M.F. Dubovik, V.P. Gavrilyuk, B.V. Grinyov, L.A. Grin', T.I. Korshikova, A.N. Shekhovtsov, E.P. Sysoeva, A.V. Tolmachev, O.V. Zelenskaya. Nucl. Instrum. Meth. Phys. Res. A 498, 424 (2003).
- [11] И.Н. Огородников, С.В. Кудяков, А.Ю. Кузнецов, В.Ю. Иванов, А.В. Кружалов, В.А. Маслов, Л.А. Ольховая. Письма в ЖТФ 19, 13, 77 (1993).
- [12] И.Н. Огородников, В.Ю. Иванов, А.Ю. Кузнецов, А.В. Кружалов, В.А. Маслов, Л.А. Ольховая. Письма в ЖТФ 19, 2, 14 (1993).
- [13] А.Ю. Кузнецов, Л.И. Исаенко, А.В. Кружалов, И.Н. Огородников, А.Б. Соболев. ФТТ 41, 57 (1999).
- [14] И.Н. Огородников, Н.Е. Порывай, И.Н. Седунова, А.В. Толмачев, Р.П. Явецкий. ФТТ 53, 247 (2011).
- [15] И.Н. Огородников, Н.Е. Порывай, И.Н. Седунова, А.В. Толмачев, Р.П. Явецкий. Опт. и спектр. **110**, 296 (2011).
- [16] D. Jia, R.S. Meltzer, W.M. Yen. J. Lumin. 99, 1 (2002).
- [17] G.Q. Xu, Z.X. Zheng, W.M. Tang, Y. Wu. J. Lumin. 124, 151 (2007).
- [18] A.M. Srivastava, A.A. Setlur, H.A. Comanzo, Y. Gao, M.E. Hannah, J.A. Hughes, U. Happek. Opt. Mater. 30, 1499 (2008).

- [19] B. Liu, C. Shi, M. Yin, Y. Fu, G. Zhang, G. Ren. J. Lumin. 117, 129 (2006).
- [20] R.A. Hansel, S.W. Allison, D.G. Walker. Appl. Phys. Lett. 95, 114 102 (2009).
- [21] G. Blasse, C. van den Heuvel, T. van Dijk. Chem. Phys. Lett. 62, 600 (1979).
- [22] P. Dorenbos. J. Alloys Comp. 341, 156 (2002).
- [23] P.A. Tanner, C.S.K. Mak, N.M. Edelstein, K.M. Murdoch, G. Liu, J. Huang, L. Seijo, Z. Barandiarán. J. Am. Chem. Soc. 125, 13 225 (2003).
- [24] D. Hou, B. Han, W. Chen, H. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. Gao, Y. Tao, J. Appl. Phys. 108, 083 527 (2010).
- [25] Y. Shimomura, T. Honma, M. Shigeiwa, T. Akai, K. Okamoto, N. Kijimaa. J. Electrochem. Soc. 154, J35 (2007).
- [26] C.-C. Chiang, M.-S. Tsai, M.-H. Hon. J. Atmos. Sci. 155, B517 (2008).
- [27] Y.-C. Wu, T.-M. Chen, C.-H. Chiu, C.-N. Mo. J. Electrochem. Soc. 157, J342 (2010).
- [28] И.Н. Огородников, Н.Е. Порывай, В.А. Пустоваров, А.В. Толмачев, Р.П. Явецкий, В.Ю. Яковлев. ФТТ 51, 1097 (2009).
- [29] I.N. Ogorodnikov, N.E. Poryvay, V.A. Pustovarov, A.V. Tolmachev, R.P. Yavetskiy, V.Y. Yakovlev. Rad. Measurements 45, 336 (2010).
- [30] V.T. Kuanyshev, T.A. Belykh, I.N. Ogorodnikov, B.V. Shulgin, M.K. Satybaldieva, M.M. Kidibaev. Rad. Measurements 33, 503 (2001).
- [31] D.J. Robbins. J. Electrochem. Soc. 126, 1550 (1979).
- [32] J.-F. Chen, Y. Li, G.-L. Song, D.-M. Yao, L.-Y. Yuan, X.-J. Qi, S.-H. Wang. Wuji Cailiao Xuebao/ J. Inorg. Mater. 22, 25 (2007).
- [33] P. Dorenbos. J. Lumin. **122–123**, 315 (2007).