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1. Introduction

Nanoobjects with a single helical axis of symmetry (here-
inafter referred to as one-dimensional objects for short) in

spiral topology possess unique properties. In addition to

known biological DNA and RNA helices, there are other

object: spiral stereoregular polymers, nanorods with spiral

symmetry, nanotudes with different chirality, and other

objects [1]. Theoretical studies of spiral nanostructures have
certain peculiarities [2–4]. As opposed to the symmetry

of triperiodic or biperiodic crystals, which is described by

the space or layer groups, respectively, factorized by the

translation subgroup of the crystal, one-dimensional objects

should be described by spiral groups of symmetry (i.e., line
groups). Line groups are factorized by a generalized trans-

lation subgroup, generated by a
”
generalized translation“

(CQ | f ). This operation, generated by the order Q screw

axis, consists in rotation by
”
rotation angle“ ϕ = 360◦

Q and

”
shift“ by f along the axis of symmetry. If Q is an irrational

number, then the spiral system has no translation symmetry,

but has spiral symmetry.

Thus, the application of the spiral group theory makes

it possible to consider one-dimensional systems with or

without translation symmetry. The authors of this paper

have developed and applied to nanohelicenes [5] an original

technique for the calculation of different properties (poten-
tial energy, Young modulus, bandgap) of one-dimensional

systems without translation symmetry using interpolation

of results obtained from calculations of one-dimensional

systems with translation symmetry [6]. This gives the

possibility to use modern high-level ab initio schemes

of calculation based on the density functional method,

in particular, its hybrid variants. The above-mentioned

technique is also applicable to the calculation of electronic

states of various one-dimensional systems, that makes it

possible, for example, to proceed with the consideration of

electronic properties of stereoregular polymers possessing

spiral symmetry only.

Therefore, to describe spiral objects, concepts are intro-

duced that naturally take into account the fact that the main

parameter in the structure is the generalized translation, and

not the translation. In particular, the concept of the
”
spiral

Brillouin zone“.

Zone patterns of electronic states in SBZ were obtained

in a number of studies. Spiral stereoregular polymers were

studied by the extended Hueckel method [7–12] and by the

Hartree–Fock method [13,14]. Electronic bands of carbon

nanotubes were calculated earlier on the basis of simplified

calculation schemes without geometry optimization: DFTB

(method of density functional tight binding) [4] and LACW

( linear augmented cylindrical wave with the Slater local

density functional) [15,16], DFT method in LDA (local
electron density) approximation [17]. In [18–21] the DFT

method is developed for studying spiral nanostructures,

however, currently its applicability is limited by calculations

of nanotubes and LDA approximation.

Thus, despite the developed theory of spiral bands, they

were not obtained for the systems with spiral periodicity

in high-level DFT-calculations with hybrid functionals, with

geometry optimization and calculation of different physical

properties, such as phonon spectra, magnetic structure (that
requires calculations with spin polarization), etc.

This study presents a technique to obtain
”
spiral“

electronic bands after transition to SBZ using results of

high-level quantum-mechanical calculations by CRYSTAL17

software [22,23] by way of example of a carbon nanotube

with a chirality of (4,1) and [1.1]helicene (see [5] for nota-
tions). It is worth noting, that [1.1]helicene (hereinafter —

1807



1808 V.V. Porsev, R.A. Evarestov

nanohelicene) is a nanostructure that possesses only spiral

periodicity [6]. We have compared electronic bands in

TBZ and SBZ for a carbon nanotube with a chirality

of (4,1) and used this example to show the preference

of spiral classification for the analysis of electronic bands

topology. It is worth noting, that, selectively, spiral bands

(more specifically — the upper valent spiral band) obtained

from the analysis of CRYSTAL17 calculation results were

considered for some polymers [11,12]. However, the

algorithm presented in this study makes it possible to

automate the process of obtaining all electronic bands in

SBZ, providing the general pattern of electronic states in

their spiral classification.

2. Structure of spiral groups

Let us take a brief look at key points of the theory of

spiral groups of symmetry, that are needed for understand-

ing the results of this study. A rigorous description can be

found in [4].
As it was already mentioned above, the essential dif-

ference of spiral groups of symmetry from single-periodic

groups consists in the use of the generalized translation

Z = (X | f ), where X is either CQ rotation about the Oz
axis, or σV reflection in the plane that contains Oz axis,

and f is shift along the Oz axis. The action of Z operation

translates one
”
monomer“ (an atomic fragment of minimum

size, that does not change when the generalized translation

is used) to the neighboring one, and all possible powers of

this operation, Zn, compose an infinite cyclic group Z. If

X = CQ , then group Z is composed of (CQ | f )n operations.

The CQ defines rotation of monomer about Oz axis by an

angle of

ϕ =
360◦

Q
, Q ≥ 1. (1)

If there is a translational periodicity, it means, that in the

group Z there are operations of (I|a) type, where I is a

single operation, and a is a period of translation. Otherwise

speaking, there is a subgroup T of pure translations in Z. It

means, that there is a q, that

(X | f )q = (Xq|q f ) = (I|a). (2)

That is the period a can be expressed through f as follows

a = q f . (3)

For the (CQ | f ) operation the condition of Xq = I results

in that the order of the screw axis, Q, should be a rational

number

Q =
q
r
, q ≥ r, (4)

q and r are coprime integers.

The angle of monomer rotation in case of rational Q is:

ϕ =
r · 360◦

q
. (5)

If symmetry of a one-dimensional system is described by

a group with rational Q, then this system is called
”
com-

mensurate“ [4] and is translationally periodic in addition to

spiral periodicity. If Q is an irrational number, the system is

called
”
incommensurate “, because there is no translational

periodicity and the system has spiral periodicity only.

Spiral group L, that describes the symmetry of one-

dimensional system, is factorized by group Z of generalized

translations

L = ZP, (6)

where P — axial point group symmetry, reflecting additional

symmetry of the monomer shared with operations of

group Z. This factorization is called
”
spiral“ (or

”
polymer“).

Depending on P, thirteen
”
families“ of spiral groups are

possible, however
”
incommensurate“ systems can only

belong to the first or the fifth families.

The first family is composed of groups with P = Cn —
the group of rotations about Oz axis. In case of systems

considered in this study, the axis order is equal to one,

therefore P = C1 and in this case L = Z× C1 coincides

with group Z.

The fifth family is composed of groups with P = Dn.

As compared with group Cn, group Dn has rotation

operations U by 180◦ about the axes normal to the Oz
main axis. For the systems considered in this study: P = D1,

therefore L = Z ∧ D1.

If Q is a rational number, then, in addition to spiral

factorization, the spiral group also allows
”
translational“

factorization by subgroup T. Group L for this factorization

can be expanded in adjacent classes by the subgroup T as

follows:

L =

q
∑

j=1

(

C j
q

∣

∣

∣

{

j p
q

}

a

)

T(a) (7)

— the first family,

L =

q
∑

j=1

[(

C j
q

∣

∣

∣

{

j p
q

}

a

)

+ U

(

C j
q

∣

∣

∣

{

j p
q

}

a

)]

T(a) (8)

— the fifth family.

Here C j
q — rotation by angle ϕ j = j 360◦

q ;
{ j p

q

}

a —

translation to fractional part of j p/q number multiplied

by a period of a . Parameter p < q, that is present

in the translational factorization, sets the translation to a

fraction of period when rotating by the minimum angle of

ϕ1 = 360◦/q. For the systems considered in this study:

Cn = C1, therefore p and q are coprime numbers.

Elements (C j
q| j p/qa) do not for a group, however,

rotations C j
q form the isogonal group Cq . The translational

factorization makes it possible to use crystallographic nota-

tions of spiral groups: Lqp for the first family and Lqp2 for

the fifth family.

Thus, with a rational Q two factorizations are possible:

spiral one, defined by parameters (q, r, f ), and translational

one, defined by parameters (q, p, a). Parameter q is the

same for both factorizations, f and a are related to each
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other by equation (3), and parameters r and p for the

systems considered in this study can be expressed through

each other according to the following formula:

r p ± 1 = ql, (9)

where l is a positive integer number.

In [6] we have proposed an algorithm that makes it

possible to use CRYSTAL17 software package for quantum-

mechanical study of spiral periodic systems [22,23]. This

software was developed for calculations in the translational

factorization. Optimized atomic and electronic structures of

spiral periodic systems with irrational Q are obtained by

interpolating the results for translationally periodic systems

with rational Q, which are taken from an interval, that also

allows plotting the curve of dependence of energy versus

torsional stresses. The control of computational resources

is defined by setting rmax, and values of Q in the interval

should be selected in such a way, as to ensure r ≤ rmax.

3. Irreducible representations of spiral
groups

Since group Z is a cyclic Abelian group (with gener-

ator Z = (CQ | f )), its irreducible representations (IR) are

expressed in a simple form

Ak̃(Z) = ei k̃ f , k̃ ∈

(

−
π

f
,
π

f

]

. (10)

Interval (−π/ f , π/ f ] is called the
”
spiral Brillouin zone“

(or
”
Jones zone“). Parameter k̃ can be defined as a

”
spiral“

wave vector.

IRs of the finite cyclic Abelian group Cn (with generator

Cn) are defined as follows

Am̃(Cn) = eim̃2π/n, m̃ ∈

(

−
π

2
,
π

2

]

. (11)

Thus, IRs of spiral groups of the first family are expressed as

products of IRs of groups Z and Cn and are defined by two

quantum numbers k̃ and m̃. Since in this study we consider

systems with n = 1, it can be assumed that m̃ = 0.

IRs for the fifth family are additionally defined by
”
parity“

5U . In case of singular points defined by values of k̃ = 0, π
f

and m̃ = 0, n
2
, IRs will be one-dimensional and expressed

through products of IRs for generators (10), (11) and 5U .

Other IRs are two-dimensional (see [4]) and do not arise in

this study because we only consider the case of m̃ = 0.

Relationships (10), (11) make it possible to determine IRs

for spiral periodic systems, including those without transla-

tional periodicity (irrational values of Q). If the symmetry

of a system is defined by a rational Q, then it is possible to

introduce IRs that are defined by more traditional quantum

numbers k and m based on representations of the subgroup

of translations T and isogonal group Cq :

Ak(I|a) = eika , k ∈

(

−
π

a
,
π

a

]

, (12)

Am(Cq) = eim2π/q, m ∈

(

−
π

2
,
π

2

]

. (13)

Interval (−π/a, π/a ] is a one-dimensional Brillouin zone in

the usual sense, and k is a
”
translational“ wave vector. Since

Cq is not a subgroup of spiral group L, TRs of its generators

are defined by more complex expressions

Ak,m(I|a) = eika , (14)

Ak,m

(

C1
q

∣

∣

∣

{ p
q

}

a

)

= eika p/q · eim2π/q. (15)

Since pairs (k̃, m̃), and (k, m) define representations for the

same group, it is possible to transit from one pair to another

and the reverse. In this study we use transition in one

direction only, i.e., from translational to spiral factorization:

(k̃, m̃) =

(

k + rm
2π

a
+ Kq

2π

a
, m + M

)

. (16)

Expression (16) is written for the case of n = 1 and makes

it possible to obtain (k̃, m̃) values at set (k, m). Integers K
and M are determined from the requirement that (k̃, m̃) are

within the intervals defined in (10) and (11). Also, it is

worth noting, that the condition of n = 1 automatically sets

m̃ = 0.

4. Technique to obtain electronic
spiral bands

Symmetry is taken into account by CRYSTAL17 software

in the translational factorization. It means, that solving the

Hartree–Fock or Kohn–Sham equations gives one-electron

wave function χkmi(x , y, z ) and their energies εkmi are

classified by quantum numbers (k, m), and i index allows

distinguishing the states with an identical set of k and m.

Grouping one-electron energies as functions of k, εmi(k)
allows obtaining electronic state bands in TBZ, which

topology interpretation makes it possible to predict some

or other electronic properties of the system.

However, since k is determined via the translational

period a , it becomes difficult to interpret energy bands

for spiral periodic systems (even with rational Q), and

in case of incommensurate systems they become simply

inaccessible. Therefore, a need arises to introduce
”
spiral“

bands of one-electron energies, i.e., reclassify εmi(k) values

into spiral factorization and obtain continuous functions

εm̃ j(k̃) in general case, and ε j(k̃) for the systems considered

in this study. Thus, to obtain spiral bands, it is necessary

to translate the εmi (k) values obtained in CRYSTAL17 as

a result of solving the electronic problem (Hartree–Fock or

Kohn–Sham) to ε j(k̃).

According to (16), to determine k̃ it is necessary to

know a pair of (k, m) for each ε. Accordingly, the

algorithm of actions to obtain ε j(k̃) functions consists

in calculating in the CRYSTAL17 software an electronic

15 Physics of the Solid State, 2022, Vol. 64, No. 11
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structure (with optimized geometry) in translational factor-

ization, outputting to file the ε values and (k, m) indices

for them, and further reclassifying by formula (16). The

last task required a separate program to be written to

automate the process, because even for relatively simple

systems the number of values of one-electron energies ε

may be hundreds or thousands. Unfortunately, though,

the derivation of ε distribution over k in CRYSTAL17 is

implemented correctly, the procedure to derive distributions

of ε over m gives incorrect values (though the quantum-

mechanical calculation itself is correct). To determine m, in

this study we used another approach based on the Wigner’s

theorem (see [24] for its application in quantum-mechanical

calculations of solid states).
The Wigner’s theorem makes it possible to use the fact

that eigenvectors of the F̂ operator (Hartree–Fock or Kohn–
Sham), defined in a symmetrized basis of crystalline orbitals,

are transformed by IR of the symmetry group of the physical

system. Since for the first family of spiral groups all IRs

are one-dimensional, then D(g) matrices of D̂(g) operators

corresponding to operations of g symmetry in the space

of one-electron states will be diagonalized simultaneously

with the energy operator. In case of the first family and C1

symmetry of monomer, g operations are (C j
q| j p/qa) from

equation (7).
Eigenvectors of the F̂ operator form the C matrix that

diagonalize the matrix of energy operator, F:

E = C
−1

FC. (17)

And simultaneously C diagonalize D(g) matrices:

D(g) = C
−1

D(g)C. (18)

The D(g) diagonal matrix contains in its main diagonal a set

of IR numbers corresponding to g operation. Comparison of

these numbers with values obtained by formula (15) makes

it possible to precisely identify m, use (16) to obtain values

of k̃ and build up spiral bands of electronic states.

The process of building D(g) matrices, that are matrices

of regular representation in the systems under study,

appeared to be the most complex. Dimension of D(g) is

equal to the number of all Bloch sums of atomic basic

functions per one translational cell.

Coefficients of eigenvectors expansion in the basis of

Bloch functions can be derived in CRYSTAL17 using the

CRYAPI OUT option. Here the main problem is to build

up the D(g) matrices of regular representation exactly in

the implementation that is used in CRYSTAL17 software.

The procedure to build up D(g) matrices in CRYSTAL17

is described in detail in [25] (see formulae (21)−(24)).
Currently we have implemented the procedure to build up a

regular representation of D(g) for atomic s - and p-functions,
therefore, it is limited by elements of the first and the second

periods.

Calculations were carried out in CRYSTAL17 soft-

ware. Geometry was optimized by the DFT method

with PBE0 hybrid functional [27] in a split-valence basis

with polarizing d-functions pob-TZVP [28]. The electronic

structure was calculated to obtain electronic state bands in

SBZ using the same PBE0 functional in the basis formed

from pob-TZVP by the removal of polarizing d-functions.
We have verified that the atomic basis of d-orbital has almost

no effect on the electronic structure.

5. Results

Spiral symmetry of one-dimensional systems defines the

features of their electronic energy bands. The topology

of electronic energy bands in one-dimensional systems has

its specifics and is described in detail by way of example

of carbon single-wall nanotubes with different diameters.

In [4] it is shown, that spiral electronic bands can be

introduced instead of the difficult-to-interpret pattern of

translational bands. The application of the above-discussed

”
non-crystallographic“ factorization (6) allows transiting to

spiral electronic bands. At the same time, as noted in [4],
translational and spiral bands correspond to different classi-

fications of the same electronic states of a one-dimensional

system, and, therefore, the same set of eigenvalues and,

as a consequence, the same nature of the system (metal,

semiconductor), because the bandgap remains unchanged

with changes in the classification of electronic states.

As an illustration of the presented technique to obtain the

spiral band structure of electronic states, let us consider spi-

ral bands of a chiral carbon nanotube (4,1), for comparison

with earlier results [16]. For the carbon nanotube with a

chirality of (n1, n2) the following relationships are true, that

allows obtaining of parameters q and r (at n1 = 4, n2 = 1):

R = n1a1 + n2a2 (19)

— folding vector,

T = t1a1 + t2a2 (20)

— translation vector,

t1
t2

= −
2n2 + n1

2n1 + n2

= −
2

3
, (21)

q = det

(

4 1

−2 3

)

= 14, (22)

n1h2 − n2h1 = 4h2 − h1 = 1, h1 = 3, h2 = 1, (23)

r = h1t2 − h2t1 = 11. (24)

Here a1 and a2 are translation vectors of the graphene

layer with an angle of 60◦ between them, and chiral vector

h = h1a1 + h2a2 [26]. Thus, for tube (4,1) with a symmetry

of the fifth family of spiral groups, the screw axis has an

order of Q = 14/11. Parameter p = 5 (see (9)), therefore
in the crystallographic notation symmetry of nanotube (4,1)
will be denoted as L1452.
Each wave number k in the translation band has q = 14

corresponding values of k̃ vector in the spiral band, while

Physics of the Solid State, 2022, Vol. 64, No. 11
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Figure 1. Electronic energy bands in TBZ (left) and SBZ (right) of a carbon nanotube (4,1). Values of k and k̃ vectors are presented in

fractions of translation vector of the corresponding reciprocal lattice. Fermi energy is shown by a dashed line in SBZ.

Correspondence of wave vector values in two factorizations ∗

k, TBZ k̃, SBZ

0 0, 1/14, 2/14, 3/14, 4/14, 5/14, 7/14 ( = 0.5)
0.5 1/28, 3/28, 5/28, 7/28 ( = 0.25), 9/28, 11/28, 13/28
0.25 1/56, 3/56, 7/56, 9/56, 11/56, 13/56, 17/56

No t e. ∗ Values are presented in fractions of translation vector of the

corresponding reciprocal lattice.

the total number of translation bands is defined by the

dimension of the selected atomic basis. For example, for the

upper valent translational band we get 28 · 2 = 56, where

28 — number of carbon atoms in a translational periodic

cell, and 2 derives from the fact that valent electrons are at

2s - and 2p-orbitals. It follows from this that 56 occupied

translational bands have corresponding 56/14 = 4 occupied

spiral bands. The correspondence of wave vector values can

be easily determined from the table.

This correspondence can be also determined using genkpt

software [29] that links the points of the narrowed Brillouin

zone (in this case it is TBZ) and the initial Brillouin zone

(in this case it is SBZ), showing certain analogy between

the idea of a spiral band and idea of a
”
supercell“. The

above-mentioned software is intended to determine the

correspondence between points in the Brillouin zone in

the method of SUPERCELL-ZONE FOLDING (expanded
cell in a direct lattice — the narrowed Brillouin zone in a

reciprocal lattice); see [29] for the detailed description of

this method and genkpt software. It can be seen in Fig. 1,

that the pattern of translational bands gives an electronic

structure of a tube as that of metal, while in the pattern

of spiral bands the situation is more complex. The upper

spiral valent band is partly located above the Fermi level,

while the lower conduction band is partly located below

the Fermi level. However, the system as a whole is a

metal, because the above-mentioned parts of bands contain

an equal number of states. This unusual feature of spiral

bands was obtained earlier for the tube in question when

calculated by the LACW method [16].
The spiral bands of a nanotube (4,1) shown in Fig. 1

are mainly of methodic character; this system was not

considered as having translational periodicity, therefore it

became possible to consider it in terms of two different

factorizations. At the same time it is shown, that even

in these examples the spiral factorization is considerably

advantageous due to the better interpretation of bands

(Fig. 1).
This advantage fully shows its worth when studying the

band pattern for
”
incommensurate“ systems that have spiral

periodicity only. Here we present spiral electronic bands

of a nanohelicene, that, as it is shown in [6], is a system

having spiral periodicity only. Moreover, the use of spiral

factorization makes it possible to consider the order of screw

axis Q as a parameter, that changes continuously under

torsion distortion. Accordingly, the pattern of spiral bands

under torsion distortion changes continuously as well.

In this context nanohelicene is understood as a one-

dimensional structure, that can be considered as a gener-

15∗ Physics of the Solid State, 2022, Vol. 64, No. 11
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Figure 2. E(ϕ) dependence in the interval of ϕ ∈ [51.43◦, 72◦]. Plan view (along Oz axis) of the atomic structure of nanohelicene,

grey atoms (1, 2, 3, 4) — carbon, white atoms (5, 6) — hydrogen. For the structure with symmetry L61 numbering of monomer atoms is

shown.

0
–25

–20

–15

–10

–5

0

5

10

15

20

25

E
n
er

g
y,

 e
V

0.5
L71 L347 L3213

L61 L416 L116 L51

0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5

Figure 3. Electronic state bands of nanohelicene in SBZ. The symmetry corresponds to points on the torsion curve E(ϕ) in Fig. 2. The

upper valent band is shown by a red dashed line, the lower conduction band is shown by a blue dashed line.
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alization of molecular helicenes [30], that consists in the

extension to infinity of the adjoining π-system by screwing

about the screw axis. Previously we have shown [6], that
these systems are spiral periodic, minimum energy should

be achieved at irrational value of Q. It is convenient to

define the E(ϕ) energy per one monomer in some fixed

spiral symmetry. Here the energy of monomer at ϕ = 60◦

is assumed as a zero value.

The use of the algorithm presented in [6] makes it possi-

ble to derive the dependence of E(ϕ) energy of monomer

on the rotation angle (see Fig. 2) and determine the value

of irrational Q that corresponds to the minimum energy by

means of interpolation between neighboring rational values

of Q [6]. Plan view of the atomic structure of nanohelicene

at selective values of ϕ, as well as corresponding notation of

the symmetry group are shown in Fig. 2. For the structure

with symmetry L61 figures additionally indicate the atoms

that compose the monomer: thus, the monomer of the

nanohelicene has the following composition: C4H2.

Fig. 3 illustrates evolution of band patterns in SBZ in the

interval of ϕ angles shown in Fig. 2. In each of the band

patterns nine valence bands are kept because the monomer

has 18 valent electrons. The presence of a bandgap matches

the fact that the nanohelicene is a semiconductor in the

entire considered interval of ϕ angles, though the value of

the bandgap changes when ϕ is varied.

In the presented here results, the structure with symmetry

L416 is the most close in terms of energy to the point of

E(ϕ) minimum, accordingly, the band pattern of electronic

states at symmetry L416 in Fig. 3 is the most close to the

pattern that corresponds to the E(ϕ) minimum. It means,

that changes in the band patterns for other points of the

E(ϕ) curve can be considered as changes attributable to

torsion distortions of the nanohelicene’s atomic structure.

As can be seen from Fig. 3, torsion distortions of the

nanohelicene’s atomic structure in both directions:
”
screw-

in“ (i.e., increase in ϕ) and
”
screw-out“ (decrease in ϕ)

leave unchanged the total topology of the electronic state

bond structure in SBZ. Only partial changes are observed

that manifest smoothly during transition from one boundary

of the studied interval of ϕ angles to another. This is

a reflection of the fact that the atomic structure of the

nanohelicene is kept in the entire studied interval of angles,

allowing quite free sliding of spiral turns in relation to each

other similar to layers of graphite.

6. Conclusion

A technique is presented to obtain bands of electronic

states in the spiral Brillouin zone from quantum-mechanical

calculations performed in translational factorization of spiral

group of symmetry of one-dimensional nanostructures. By

way of example of a carbon nanotube with a chirality

of (4,1) the preference of spiral classification for the analysis

of electronic bands topology is shown.

The band pattern of electronic states in SBZ is built for a

nanohelicene having spiral periodicity only, which matches

well in terms of energies the minimum on the curve of

energy vs rotation angle, E(ϕ). Building up band patterns

for other points on E(ϕ) makes it possible to consider

the evolution of electronic structure at torsion distortions.

It is shown for the nanohelicene, that
”
screwing-in“ and

”
screwing-out“ torsion distortions cause little changes in

the electronic band structure in SBZ, that corresponds to

keeping the atomic structure in the entire interval of torsion

distortions.
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Theory and Applications to Nanotubes and Polymers. Lecture

Notes in Physics. Springer, Berlin (2010). V. 108. 194 p.

[5] V.V. Porsev, A.V. Bandura, S.I. Lukyanov, R.A. Evarestov.

Carbon 152, 755 (2019).
[6] V.V. Porsev, A.V. Bandura, R.A. Evarestov. Comput. Mater.

Sci. 203, 111063 (2022).
[7] I.I. Ukrainski. Theor. Chim. Acta 38, 139 (1975).
[8] W.V. Glassey, R. Hoffmann. Theor. Chem. Acc. 107, 272

(2002).
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