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Exchange spring-like inhomogeneous states in a ferromagnetic wire
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Transverse structure of magnetization in a ferromagnetic film induced by magnetic field of electric current has

been analyzed. Two steps of arising exchange spring evolution are shown. The first one (weak current) is gradual

twisting of magnetization aside from the wire axis. Above some critical current the transient area is compressed

and localized near the middle plane. In presence of additional conductive layer the transient structure becomes

asymmetric resulting to non-zero lateral component of the net magnetization. It is shown also that the mentioned

asymmetry can provide additional displacement of domain walls after the electric current pulses.
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For several decades now, the interaction of an electric

current with a ferromagnetic domain structure has been

one of the central issues of spintronics [1–10]. A significant

number of mechanisms have been proposed for the effect of

current carriers on inhomogeneous magnetization, including

adiabatic and nonadiabatic transfer of spin momentum, as

well as spin-orbit interaction through the Rashba effect, the

Dzyaloshinskii–Moriya interaction, etc. [11–17]. Each new

mechanism is described by introducing an additional term

into the Landau–Lifshitz equation, while numerical simu-

lation and data fitting allow one to judge the importance

of the considered interaction in a particular experiment.

Despite a huge number of studies, the question of the

prevalence of one or another mechanism in each specific

case remains open, and the interpretation of the data

obtained is constantly changing.

An alternative to this approach, which treats the in-

teraction of a ferromagnet with a current as the sum

of individual effects of electrons, is the consideration of

stationary magnetic fields in the framework of Maxwell’s

classical magnetostatics. Analysis of the restructuring of

magnetization under the action of a global field surrounding

an electric current made it possible to successfully explain

the experimentally observed slope and transformation of

domain walls [18–21]. Nevertheless, today it is generally

accepted that the field mechanism of current interaction with

domain walls is less important than spin-orbit effects due to

the various orientation of the current field along the sample

and the smoothening effect of the exchange energy at a

small film thickness [22,23].

The last consideration deserves special attention. The

global current field causes an inhomogeneous deviation

of the magnetization from the equilibrium direction. The

theory of this phenomenon, known in English literature as

fanning or scissoring [24,25], is described, for example, in

the work [24]. The calculated deviation of the magnetization

angle (considered as a small parameter) for the numerical

values used turned out to be on the order of several tens of

degrees. Since the publication of this work, both the film

sizes and the characteristic values of the current density have

changed significantly; therefore, in order to compare the

effectiveness of various mechanisms of current interaction

with the domain structure in modern experiments, this

estimate needs to be updated. In this case, the region of

strong currents, corresponding to a magnetization deviation

of 90◦, as well as intermediate regimes, seems to be the

most interesting.

In this article, the evolution of the current-induced

transient magnetization structure is traced in a wide range

of current values. To estimate the energy, a simplified

linear model is used, so that the structure and equilibrium

parameters of the exchange spring differ somewhat from

the exact results expressed in terms of elliptic integrals [26].
Nevertheless, this approach, which has great clarity and

simplicity of calculations, well describes the basic principles

that determine the evolution of the transition structure with

a change in the current density and other parameters, and

the deviation of the domain wall width and the exact

magnetization profile in the region of
”
the tails“ does not

exceed several percent [27,28].

Consider a long thin flat ferromagnetic wire 2t thick and

2w wide. The length of the wire is assumed to be infinite,

and its width is much greater than its thickness. Due

to the shape anisotropy, in the absence of external fields

and current, a homogeneous state of magnetization along

the long axis of the wire z will correspond to the lowest

energy: mz = 1, mx = my = 0. Here, mi = M i/M describes

the magnetization components along three coordinate axes,
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the x axis is directed perpendicular to the film plane, the y
axis along its width.

Uniform electric current with density j (total current

I = 4 jtw) creates a transverse magnetic field inside the

wire. Its components Hx and Hy at any point can be

calculated using the formulas given in [29]. In practice,

the Hx field turns out to be less important, since the

magnetization deviation perpendicular to the film plane is

effectively suppressed by stray fields (the demagnetization

factor in this direction is close to one). Considering only the

field in the Hy plane far from the side edges of the stripe,

we can confine ourselves to the simplified formula

Hy (x) = (2π/5) jx , (1)

where the current density is expressed in Amperes per

square centimeter, the thickness is in centimeters, and

the field is in Oersteds [24,29]. The field is equal to

zero in the middle plane of the sample, varies linearly

with the coordinate, and reaches a maximum (in absolute

value) on the film surface. Under the action of this field,

the magnetization will deviate from the z axis, and the

magnitude of the deviation is determined by the balance

of magnetic and exchange energies. The largest deviation

can be expected on the film surface, where the field is

maximum; in the middle plane, where the field is zero, the

magnetization is still directed along the z axis. Such a spatial

turn of the magnetization under the action of magnetic

and exchange forces is similar to the phenomenon of
”
an

exchange spring“, well known in the physics of magnetic

layered structures [30,31]. The role of the hard layer, which

fixes the direction of magnetization in one of the planes, is

played in this case by the middle plane, where the field is

equal to zero.

We will approximate the distribution of magnetization

over the film thickness by a linear function

my (x) = (v/u)x , (2)

where u and v are two fitting parameters characterizing

the half-width and amplitude of the magnetization profile.

Formula (2) is applicable in the middle region |x | ≤ u,
for the rest of the film my = ±v . Both parameters are

determined from the minimization of the total energy,

consisting of the exchange and magnetic parts

W =

t
∫

−t

(

A(∂my/∂x)2 − Mmy (x)Hy (x)
)

dx . (3)

Here A is the exchange stiffness constant. Integrating this

expression using equations (1) and (2), we obtain

W = 2Av2/u − (2π/5) jMv(t2 − u2/3). (4)

Minimization with respect to two parameters gives their

equilibrium values

u = t
√

3/5, (5)

v = 2πM j(25A)−1t3
√

3/5. (6)

The parameter u within the framework of the used model

turns out to be constant and does not depend on the current,

while the parameter v increases linearly with it. This

corresponds to a gradual twisting of the exchange spring at

a constant width, and the transition region occupies a very

significant part of the sample. The value v , obviously, cannot

be greater than one, therefore expressions (5) and (6) are

valid at a current density below the critical one, determined

by the condition v = 1:

jc = 25
√

5/3A(2πMt3)−1. (7)

At higher currents v ≡ 1, and only one free parameter u
remains. Minimizing the expression (4) with respect to it,

we obtain for the region j > jc

u =

(

15A
2π jM

)1/3

. (8)

We see that the second stage in the evolution of the ex-

change spring with increasing current consists in its gradual

compression and localization in the middle part of the film.

The change in the calculated magnetization profiles with

increasing current along with the dependences (5), (6), (8)
are shown in Fig. 1.

The dependence of the total energy of the system on

the current in both regions (above and below jc) is found

by substituting the equilibrium parameters u and v into

equation (4). As expected, at the point jc the curve has

a singularity (break point):

W ( j) = −2(5/3)1/2At−1( j/ jc)
2, (9)

for j < jc ,

W ( j) =
(

2At−1(5/3)1/2 + (6π/25)Mt2
)

( j/ jc)
1/3

− (2/5)πMt2 j (10)

for j > jc . At currents below the critical value, the energy

gain is quadratic in current, and then it becomes close to

linear, and in both cases the energy is negative due to the

interaction of the magnetization with the field.

Let us now consider a similar problem in the presence

of a second current-carrying (nonmagnetic) layer in the

immediate vicinity of the main film. This situation is typical

for modern experiments, which are usually carried out on

structures consisting of a fairly large number of layers. As a

rule, in numerical estimates only the strongest field created

by one of the layers is taken into account; the contributions

of weaker currents are most often omitted. We will see,

however, that a number of effects are related not to the

magnitude of the additional field, but to the asymmetry of

the problem introduced by it.

The magnetic field H1, created outside the additional layer

by the current flowing through it, decreases with distance,

reaching the dependence 1/x at infinity [29]. A noticeable

drop in the field occurs at distances of the order of the

wire width, therefore, within the boundaries of the main

ferromagnetic layer H1 can be considered a constant value.
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Figure 1. Evolution of the exchange spring with increasing

current. a is magnetization profiles over the film thickness at

j/ jc = 0 (black line), 0.3 (red), 0.7 (green), 1, 2, 3, 5 and 10.

b is dependence of the parameters u and v (half-width and

amplitude of the exchange spring) on the magnitude of the current.

As before, it can be estimated using equation (1), now

understanding by x the half-thickness of the additional layer,

and by j — the current density in it. The general expression

for the field is modified from expression (1) to

Hy (x) = (2π/5) j(x + εt1), (11)

where ε = j1/ j is the ratio of the current densities in the

additional and main layers. It is easy to see that the position

of the field node shifts from x = 0 to x = −a = −εt1
regardless of the current value. It is natural to assume that

the node of the exchange spring will be located at the same

point. Assuming the previous linear approximation (2) in

the region |x + a | ≤ u and repeating the already known

process of energy minimization, we obtain instead of

expressions (5)−(7)

u =
(

(3/5)(t2 + ε2t21)
)1/2

, (12)

v = 2πM j(25A−1)
(

(3/5)(t2 + ε2t21)
)3/2

, (13)

jc = 25A(2πM)−1
(

(3/5)(t2 + ε2t21)
)

−3/2
. (14)

At ε = 0, the expressions (12)−(14) go over to the

corresponding equations (5)−(7) for a single layer. The

new distribution of magnetization in the ferromagnetic layer

is shown in Fig. 2, a. It can be seen that the structure

of the exchange spring itself has changed insignificantly,

but now it is shifted as a whole towards the nonmagnetic

layer. Despites the magnitude of the additional field may be

relatively small, this displacement plays an important role in

controlling the energy stored in the exchange spring.

Let’s consider, for example, the total transverse magneti-

zation along the y axis. In the case of a single ferromagnetic

layer, it is obviously equal to zero due to the symmetry

of the field with respect to the middle plane of the film.

However, in the presence of a second current-carrying layer,

this magnetization is nonzero:

〈my 〉 =
1

2t

t
∫

−t

my(x)dx = av/t. (15)

Together with the value of v , the transverse magnetization

increases linearly with current, reaching saturation above

the critical value jc (Fig. 2, b). It usually remains less

than one even in saturation due to the smallness of the
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Figure 2. a — magnetization profiles in the ferromagnetic

layer of a two-layer system. The designations are the same as

in Fig. 1. b is dependence of the average value of the lateral

relative magnetization 〈my〉 on the flowing current.
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parameter a , but the effect is nonzero for any geometrical

parameters of the layers. At present, current-induced

transverse magnetization is most often interpreted as a

manifestation of the spin Hall effect [32,33]. The deviation

of the average magnetization due to the asymmetry of the

magnetic field, as a rule, is not taken into account. However,

it seems possible that at least part of the experimentally

measured
”
spin current“ has a completely various nature,

as described above. In particular, this contribution does not

depend on the spin polarization of the carriers and remains

unchanged even in the case of a completely unpolarized

current.

Another manifestation of the asymmetry of the current

field of a two-layer system is that the gain in energy relative

to the initial zero state now gives not only the exchange

spring, but also the state of uniform magnetization across

the wire. Substituting into equation (3) the expression for

the field (11) and my ≡ 1 leads to the result

W = −(4π/5)M jεtt1 . (16)

The energy of a homogeneous state with transverse mag-

netization turns out to be linear in the current, while the

energy of the exchange spring is quadratic in j . This

means that at very low currents the homogeneous transverse

state is more favorable, and as the current increases, a

phase transition to the state with an exchange spring should

occur (Fig. 3). In real samples, this transition is apparently

smoothed out by the presence of demagnetization fields and

the vertical component of the current field. To elucidate

this issue, a more precise analysis is required, but it is

noteworthy that even in our simplified model, the question

of the ground state of magnetization in the presence of a

current turns out to be nontrivial.

Hitherto, we have considered as the ground state (in the

absence of current) a uniformly magnetized ferromagnetic

layer. Let’s now show that the field asymmetry in two-

layer systems can also affect the behavior of domain walls.

Let’s consider the well-known phenomenon of domain wall

bending under the action of an inhomogeneous current

field [18–21]. Figure 4, a shows a domain wall separating

two domains of opposite polarity (here, the presence of the

corresponding magnetic anisotropy is assumed). When a

current is passed, the wall is deformed, since the field on

both sides of the sample has a various sign and pushes

the wall in opposite directions. The exact solution for the

shape of the deformed Bloch wall was obtained by several

authors [18–21]; for our purposes, we may not specify the

structure of the wall, assuming only that it has a certain

surface energy σ and tilts at an angle θ determined by the

energy’s balance

W/2 =
σ t

cos θ
−

(2π/5) jMt3 tan θ
3

. (17)

Here, the increase in the surface energy is compensated

for by the favorable orientation of the magnetization in
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Figure 3. The energy of the state with an exchange spring (black
squares) and the uniform transverse state (red circles) depending

on the magnitude of the current in a two-layer system. At the

bottom is enlarged initial part of the diagram.

triangular regions. Minimizing this expression, we obtain

the equilibrium angle

sin θ =
(2π/5) jMt2

3σ
. (18)

This value differs from the exact result [18–21] only by a

numerical factor of the order of one. The angle of inclination

increases as the current increases, leading to an abrupt

reorientation of the wall when a certain critical current is

reached. When the current is turned off, the second term

in equation (17) vanishes, and the wall elastically returns

to its original position, straightening around its center of

symmetry.

In the presence of an additional current-carrying layer,

the magnetic field node, as we already know, is displaced

from the mean plane of the ferromagnetic film. Therefore,

the domain wall experiences excess pressure on one of the

sides and moves further here than on the opposite side

(Fig. 4, b). In the center of the wall, this displacement

will be q = a · tan θ. When the current is suddenly turned

off, the wall rotates back around its
”
center of gravity“,

so that its position remains stationary. Therefore, in this

case, after a current pulse, the wall will acquire a residual

displacement q. In the experiment, this will manifest itself

as the advance of the wall along the sample with an
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Figure 4. Deformation of the domain wall (green line) under the

action of inhomogeneous magnetic fields created by the flowing

current. a — in a single ferromagnetic layer, the advancing field

component has a various sign at the edges of the sample, displacing

the wall in opposite directions. When the current is turned off,

the surface energy of the wall returns it to its original position.

b — in the presence of an additional current-carrying layer, the

field is asymmetric (the field node is in position a), and the wall

displacement is greater at one of the edges than at the other. After

the termination of the action of the current pulse, the new position

of the wall does not coincide with the initial one, leading to a finite

displacement q.

apparent speed

V =
2πMt2a
15σ τ

j, (19)

where τ is current pulse duration. Expression (19), which

is true at a current density much lower than the critical

value, formally describes the current-linear dynamics of the

domain wall, the mechanism of which, as in the case of the

pseudo-Hall effect, has nothing to do with the assumed spin

polarization of current carriers.

Over the past decades, an exceptionally large array of

experimental data has been accumulated on the interaction

of the magnetization of a ferromagnetic layer with electric

current [34–43]. Particular attention is paid to two areas:

the actual transport properties of layered systems and the

motion of domain walls. In most works, specific interactions

at the interface, which determine the spin characteristics

of current carriers, or the individual transfer of angular

momentum by individual transport charge carriers, are

considered as the driving mechanism of the observed

phenomena. The direct effect of the magnetic fields that

exist in the vicinity of a ferromagnet, both due to the

presence of magnetostatic poles and the global field created

by the current (now often called as the Oersted field),
is usually considered insignificant. Nevertheless, in many

situations, static and dynamic magnetic fields can make a

certain contribution to the measured macroscopic quantities,

and in the early stages of research, this mechanism was

entirely considered as the unique one [18–20].
To understand the role of magnetic fields in spintron-

ics, let us make some simple estimates. In a typical

ferromagnet with a saturation magnetization of the order

of 1000 G and an exchange length 5 nm, the expected

critical current density corresponding to a fully developed

exchange spring is 8 · 109 A/cm2 by the formula (7) for

a single ferromagnetic layer thickness of 10 nm. This is

much higher than the experimentally measured threshold

values of the current causing the motion of domain walls

in thin films (usually from 108 A/cm2). However, the

critical current decreases rather rapidly (inversed cubic

term) with increasing film thickness, reaching the required

order of magnitude already at 40 nm. Moreover, according

to formula (14), the critical current density decreases in the

presence of additional current-carrying layers, the number

of which in modern experiments is quite large. Despite

the implied relatively small value of currents (and the fields

generated by them) in such
”
technical“ layers, they simply

by virtue of their existence shift the exchange spring in

the main layer, thereby producing an unequal effect on the

surfaces of the ferromagnet. It should also be noted that

in the presence of domain walls, magnetization reversal

processes proceed much more easily than in a uniformly

magnetized material (
”
Brown’s coercive force paradox“),

and only partial development of the exchange spring is

required to rearrange the structure of the boundaries. In any

case, the role of the global field cannot be neglected even

if it is small, and the spatial redistribution of magnetization

should be evaluated separately in each particular case.

Another common objection to the global field is change

of its sign in various parts of the sample, which balances

the forces acting on the conduction electrons or the domain

wall. The above consideration shows that this argument

is valid only in the simplest, completely symmetrical

situations. The presence of two components of the magnetic

field leads to the fact that any asymmetry (for example, the

presence of adjacent layers) initiates mechanisms similar to

those shown in Fig. 4. (The exact calculation of such phe-

nomena is rather complicated due to the three-dimensional

nature of the problem). The residual displacement of the

domain wall after its deformation under the action of a cur-

rent pulse was repeatedly observed experimentally [34–44],
but at that time the asymmetry mechanism was not clear,

which led to the rapid development of the concept of

”
electron pressure“ [45]. The mechanism proposed in this

article automatically explains many experimentally observed

features, for example, the presence of a current threshold,

the stochasticity of the wall displacement, the rearrangement

of the wall from transverse to longitudinal, the generation of

new boundaries, etc. [34–44]. As for the numerical values,

the estimate by formula (19) gives a greatly underestimated
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relative to the experimental value of the velocity of the order

of 1m/s. However, it should be taken into account that this

formula is valid only in the linear mode at small tilt angles;

as the current increases further, the angle approaches 90◦,

and the wall mobility grows irreversibly.

In this article, we consider the evolution of the transverse

structure of magnetization in a ferromagnetic film under

the action of a magnetic field of a current flowing through

it. We did not aim to create an exact theory, confining

ourselves to a simplified assessment of the expected type of

transition structure, as well as the factors that determine the

critical values of the current density. If a complete theory

is needed, it obviously must combine calculations of the

form [24] with the ideas proposed in our article. Numerical

micromagnetic simulating of each specific experiment could

also become an alternative, but the general principles of the

phenomenon are much easier to demonstrate on a simple

model. The twisting of the magnetization near the film

surfaces leads to the formation of a transition structure of

the exchange spring type. Two stages in the evolution of

this region with increasing current consist in an increase in

the angle at a constant width and further compression with

localization in the middle plane of the film. In the presence

of adjacent conductive layers, the exchange spring becomes

asymmetric, causing the appearance of a nonzero lateral

magnetization that increases with current. In the presence

of domain walls, the asymmetry of the field induced by

the current leads to their advancement along the wire. All

of these phenomena exist to some extent for any nonzero

current and do not depend on its spin polarization. This

should be taken into account when studying the dynamics

of domain walls, as well as kinetic transport spin effects.
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