03,05

Магнитоимпеданс в сульфиде марганца, замещенного лютецием

© М.Н. Ситников 1 , С.С. Аплеснин 1,2 , А.М. Харьков 1,¶ , Х. Абдельбаки 1 , Ф.В. Зеленов 1

Поступила в Редакцию 11 ноября 2022 г. В окончательной редакции 11 ноября 2022 г. Принята к публикации 14 ноября 2022 г.

Исследованы компоненты импеданса, импеданс твердого раствора ${\rm Lu_x Mn_{1-x}S}~(x<0.2)$ в интервале температур $80-500~{\rm K}$ и частот $100-10^6~{\rm Hz}$. Найдена смена знака магнитоимпеданса по концентрации и температуре. Определен вклад реактивной и активной компонент в магнитоимпеданс. Установлена корреляция температур магнитоимпеданса с температурами максимумов затухания ультразвука и электрозвука. Частотные зависимости реактивной части импеданса описываются в модели Коул–Коула.

Ключевые слова: полупроводники, импеданс, магнитоимпеданс, затухание ультразвука.

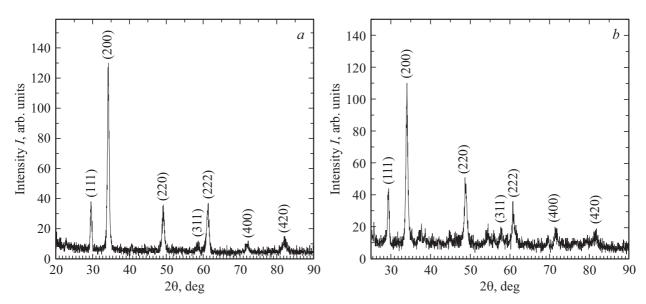
DOI: 10.21883/FTT.2023.02.54293.527

1. Введение

Поиск новых материалов для спинтроники [1,2] является актуальной задачей. Перспективными являются соединения, обладающие магниторезистивным эффектом в области высоких температур [3–5]. В области комнатных температур хорошо исследованы полупроводники манганиты с колоссальным магнитосопротивлением в окрестности магнитного и зарядового упорядочения [6–8].

Окислы переходных металлов типа $R_{1-x}A_x \text{MnO}_3$ (R = La, Pr, Nd, Sm и др., A = Ca, Sr, Ba, Pb) являются объектами интенсивных экспериментальных и теоретических исследований [9–14]. При изменении концентрации двухвалентного иона свойства манганитов существенно меняются и наблюдается ряд фазовых переходов с разнообразными типами структурного, магнитного, зарядового и орбитального упорядочения. В области фазовых переходов меняются кинетические характеристики, наблюдается эффект колоссального магнитосопротивления [15,16]. Основной акцент исследований сделан для концентраций x < 0.5 в связи с существованием эффекта колоссального магнитосопротивления в области высоких температур, что делает их привлекательными для применения в спинтронике.

Пространственно-неоднородное распределение носителей заряда приведет к модификации обменных взаимодействий и образованию сложных магнитных структур и зарядового упорядочения. В области больших концентраций перовскитоподобная структура в манганитах существует только для ионов кальция, а для ионов $A=\mathrm{Sr}$, Ва, Рb реализуется гексагональная структура [9]. Допирование ионов кальция в $\mathrm{CaMnO_3}$ редкоземельными элементами приводит к последовательности магнитных фазовых переходов и к образованию зарядового упорядочения при $x\sim0.1$ выше температуры Нееля [17].


Характеристики магнитоимпеданса La_{0.67}Pb_{0.33}MnO₃, приготовленных золь-гель методом, отличаются от характеристик металлических гигантских магнитоимпедансных материалов. На низких частотах импеданс обнаруживает пик в слабом продольном поле, который исчезает в области высоких частот и резко падает с уменьшением магнитного поля. Магнитоимпеданс в золь-гель нанокристаллическом манганите зависит как от изменения диэлектрической проницаемости в магнитном поле, так и от магнитосопротивления на постоянном токе [18]. Максимум магнитоимпеданса существует в окрестности перехода металл—изолятор (МИ) в $La_{2/3}Ba_{1/3}MnO_3$ и смещается к высоким температурам во внешнем электрическом поле [19]. Величина магнитоимпеданса в $La_{0.67}Sr_{0.33-x}Pb_xMnO_3$ (x = 0-0.33) в области перехода МИ в несколько раз превышает магнитосопротивление на постоянном токе [20]. В манганитах наибольшее значение магнитоимпеданса достигается при фазовых переходах МИ и при образовании зарядового упорядочения.

В неупорядоченных полупроводниках $Me_x \text{Mn}_{1-x} \text{S}$ (Me = Ag и Tm) с неизовалентным замещением обнаружен магнитоимпеданс и магнитосопротивление, величина и знак которых зависят от электрического поля, температуры и типа замещающего элемента [21]. В $Yb_x \text{Mn}_{1-x} \text{S}$ (0.05 < x < 0.2) ион иттербия находится в трехвалентном состоянии и максимум магнитоимпеданса найден в окрестности ян-Теллеровского перехода [22]. В твердом растворе $\text{Lu}_x \text{Mn}_{1-x} \text{S}$ найдено отрицательное магнитосопротивление на постоянном токе и критическая температура исчезновения гистерезиса электрической поляризации [23]. Реактивная часть импеданса зависит от емкости, которая определяется диэлектрической проницаемостью. Диэлектрическая проницаемость в электрически неоднородных полупровод-

¹ Сибирский государственный университет науки и технологий им. М.Ф. Решетнева, Красноярск, Россия

 $^{^2}$ Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, Россия

[¶] E-mail: khark.anton@mail.ru

Рис. 1. Рентгенограмма $Lu_xMn_{1-x}S$ для концентраций x = 0.05 (a), 0.1 (b).

никах обнаруживает магнитодиэлектрический эффект в магнитном поле [24–26].

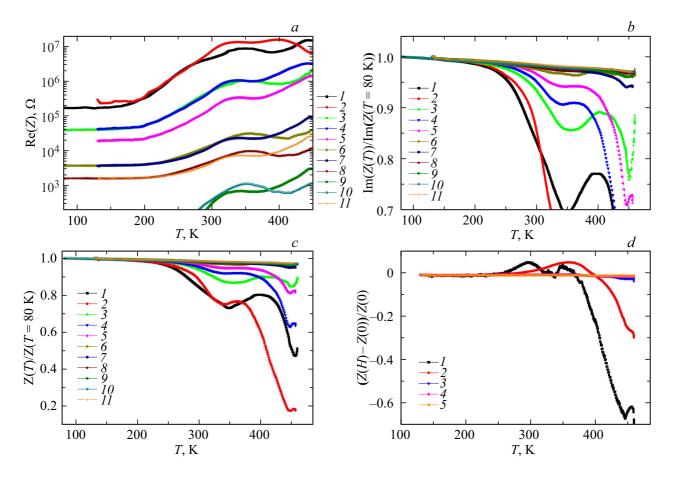
Цель настоящей работы — установить влияние размера неоднородности в результате увеличения концентрации замещения ионов марганца ионами лютеция в $\text{Lu}_x \text{Mn}_{1-x} \text{S}$ на компоненты импеданса в магнитном поле, на корреляцию деформации структуры и зарядовых флуктуаций с магнитоимпедансом.

2. Материалы и методы

Твердые растворы $\mathrm{Lu}_x\mathrm{Mn}_{1-x}\mathrm{S}$ выращены кристаллизацией из расплава полученных порошковых сульфидов в стеклоуглеродных тиглях и кварцевом реакторе в атмосфере аргона протягиванием реактора через одновитковый индуктор ВЧ установки. Полнота сульфидирования контролировалась методом рентгенофазового анализа и весовым контролем. Изучение фазового состава и кристаллической структуры синтезированных образцов проведено при комнатной температуре на рентгеновской установке ДРОН-3 с использованием CuK_α — излучения в режиме набора информации "по точкам".

На рис. 1 представлена рентгенограмма соединения $\mathrm{Lu}_x\mathrm{Mn}_{1-x}\mathrm{S}$. Основные пики соответствуют ГЦК-структуре. Для концентрации $x\geq 0.1$ появляются слабые дифракционные максимумы от примесной ромбической фазы.

Активная и реактивная компоненты импеданса измерены на приборе AM-3028 в области частот $0.1-1000\,\mathrm{kHz}$ и температур $80-500\,\mathrm{K}$ без поля и в магнитном поле $H=8\,\mathrm{kOe}$. Затухание ультразвука исследовалось на образце размером $6\times5\times4\,\mathrm{mm}$ с двумя пьезодатчиками ЦТС-19 на расстоянии $l=4\,\mathrm{mm}$. На один из пьезодатчиков подавался прямоугольный импульс с длительностью $100\,\mathrm{ns}$ и на другом регистриро-


валось напряжение. Коэффициент затухания ультразвука определялся в виде:

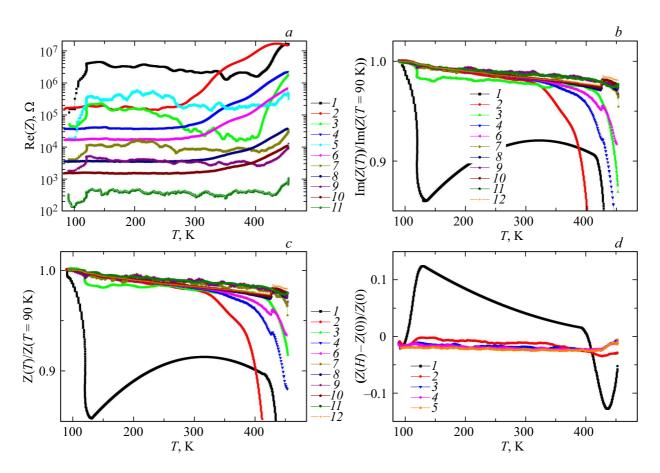
$$\alpha = \frac{\ln\left(\frac{U_{\text{in}}}{U_{\text{out}}}\right)}{I},\tag{1}$$

где $U_{\rm in}$ — входное напряжение, $U_{\rm out}$ — регистрируемое напряжение после прохождения звуковой волны. Электроны (дырки) взаимодействуют с акустическими волнами, индуцируемые пьезодатчиками, за счет деформационного потенциала. Носители тока взаимодействуют с ультразвуком в результате увлечения электронов проводимости с бегущей звуковой волной, что приведет к разности потенциалов на образце к звукоэлектрическому эффекту — электрозвук.

3. Результаты и обсуждение

Размер неоднородности электрических состояний будем варьировать концентрацией замещения марганца лютецием. При малых концентрациях трехвалентные ионы лютеция окружены ионами марганца и формируют случайный потенциал в матрице. С ростом концентрации образуются кластеры ионов лютеция и области с различной подвижностью носителей заряда. Выше концентрации протекания атомов по ГЦК-решетке $X_{\rm c} = 0.17$ образуются домены с ионами лютеция и можно выделить макрообласти с различной проводимостью. Ниже концентрации протекания неизовалентное замещение приводит к образованию электронов и дырок, локализованных в потенциальных ямах. На внешней границе кластеров лютеция локализованы дырки, связанные кулоновским взаимодействием с электронами внутри кластера. Разные типы носителей заряда и степень их локализации будет приводить к отличному поведению компонент импеданса во внешнем магнитном поле. На

Рис. 2. Активная часть импеданса Re(Z) от температуры (a), нормированная реактивная часть импеданса $Im(Z(T))/Im(Z(T=80\,\mathrm{K}))$ (b) и нормированный импеданс $Z(T)/Z(T=80\,\mathrm{K})$ (c) без поля (1,3,6,8,10), и в магнитном поле $H=8\,\mathrm{kOe}$ (2,4,5,7,9,11) на частотах $\omega=1\,\mathrm{kHz}$ (1,2), $5\,\mathrm{kHz}$ (3,4), $10\,\mathrm{kHz}$ (5), $50\,\mathrm{kHz}$ (6,7), $100\,\mathrm{kHz}$ (8,9), $300\,\mathrm{kHz}$ (10,11) для $Lu_xMn_{1-x}S$, x=0.05. Температурная зависимость магнитоимпеданса на частотах $\omega=1\,\mathrm{kHz}$ (1), $5\,\mathrm{kHz}$ (2), $50\,\mathrm{kHz}$ (3), $100\,\mathrm{kHz}$ (4), $300\,\mathrm{kHz}$ (5) для $Lu_xMn_{1-x}S$, x=0.05.


рис. 2 изображены компоненты импеданса на разных частотах от температуры.

В Lu_{0.05}Mn_{0.95}S активная Re(Z) и реактивная Im(Z) компоненты импеданса обнаруживают два экстремума по температуре. Температура максимума Re(Z) растет от $T=344~\rm K$ для $\omega=1~\rm kHz$ до $356~\rm K$ для $\omega=300~\rm kHz$. В магнитном поле температура максимума смещается в сторону низких температур. Температура второго максимума Re(Z) и минимума Im(Z) при $445~\rm K$ не зависит от частоты. В результате смещения температуры минимума импеданса в магнитном поле магнитоимпеданс меняет знак от 4 до -60% (рис. 2, c, d). На частотах выше $50~\rm kHz$ изменение импеданса составляет порядка одного процента. Реактивная часть импеданса обратно пропорциональна емкости Im(Z) $\sim 1/C$, поэтому магнитоимпеданс обусловлен изменением диэлектрической проницаемости в магнитном поле.

Для концентрации x=0.1 сопротивление в $\mathrm{Lu}_x\mathrm{Mn}_{1-x}\mathrm{S}$ на переменном токе в окрестности температуры Нееля при $T=120\,\mathrm{K}$ увеличивается больше, чем на порядок, температура скачка не зависит

от частоты (рис. 3,a). Сопротивление резко возрастает выше $410\,\mathrm{K}$. В магнитном поле активная компонента импеданса плавно меняется в области магнитного фазового перехода и при нагревании выше $340-390\,\mathrm{K}$ превышает $\mathrm{Re}(Z)$ без поля. Температура, при которой $\mathrm{Re}(Z(H)) > \mathrm{Re}(Z(0))$, увеличивается с ростом частоты.

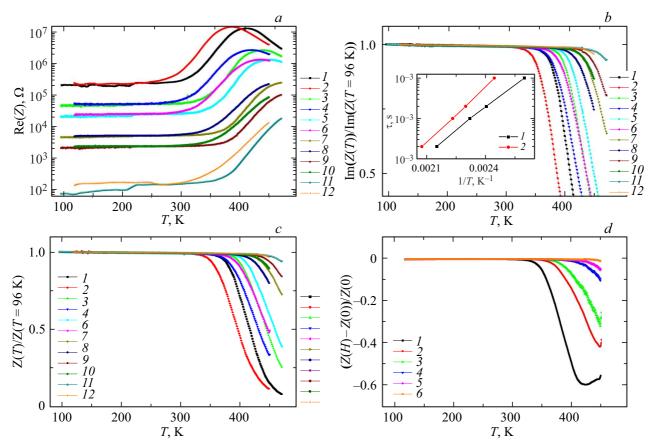
Реактивное сопротивление, также как импеданс, скачком уменьшается при $T=119\,\mathrm{K}$. Величина скачка резко уменьшается от 14% для $\omega=1\,\mathrm{kHz}$, 2% для $\omega=5\,\mathrm{kHz}$, 0.3% для $\omega=10\,\mathrm{kHz}$. В магнитном поле скачок исчезает. Основной вклад в магнитоимпеданс дает реактивная часть импеданса. Резкие изменения компонент импеданса в окрестности магнитного перехода вызваны наличием вырожденных электрон-дырочных состояний на границе кластера LuS, которые снимаются магнитным полем и спин-орбитальным взаимодействием. В магнитоупорядоченном состоянии дырки на $\mathrm{Mn}^{2+\delta}$ и электроны на $\mathrm{Lu}^{3-\delta}$ образуют определенный тип орбитальнозарядового упорядочения, связанного с подрешетками в антиферромагнетике (АФМ). Выше температуры Нееля орбитально-зарядовый порядок исчезает при 430 K, где

Рис. 3. Активная часть импеданса Re(Z) от температуры (a), нормированная реактивная часть импеданса $Im(Z(T))/Im(Z(T=90\,\mathrm{K}))$ (b) и нормированный импеданс $Z(T)/Z(T=90\,\mathrm{K})$ (c) без поля (1,3,5,7,9,11) и в магнитном поле $H=8\,\mathrm{kOe}$ (2,4,6,8,10,12) на частотах $\omega=1\,\mathrm{kHz}$ (1,2), $5\,\mathrm{kHz}$ (3,4), $10\,\mathrm{kHz}$ (5,6), $50\,\mathrm{kHz}$ (7,8), $100\,\mathrm{kHz}$ (9,10), $300\,\mathrm{kHz}$ (11,12) для $Lu_xMn_{1-x}S$, x=0.1. Температурная зависимость магнитоимпеданса на частотах $\omega=1\,\mathrm{kHz}$ (1), $5\,\mathrm{kHz}$ (2), $50\,\mathrm{kHz}$ (3), $100\,\mathrm{kHz}$ (4), $300\,\mathrm{kHz}$ (5) для $Lu_xMn_{1-x}S$, x=0.1.

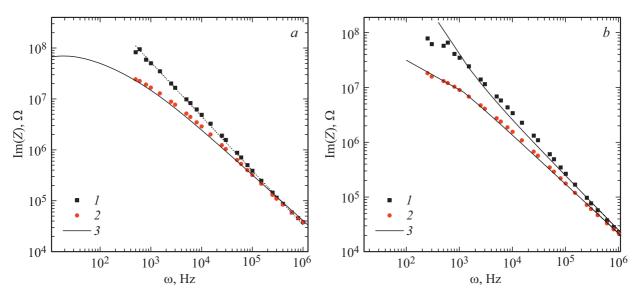
импеданс и реактивная часть скачком возрастают. Магнитоимпеданс представлен на рис. 3, d.

Выше концентрации протекания можно выделить три макрообласти, отличающиеся по проводимости и электронной плотности: домены LuS, MnS и граница между ними Mn—S—Lu. На рис. 4 изображены компоненты импеданса на разных частотах от температуры для $\operatorname{Lu}_x \operatorname{Mn}_{1-x} \operatorname{S}, \ x=0.2.$

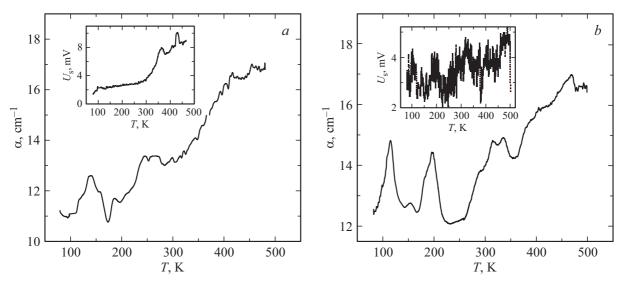
Сопротивление на переменном токе, вызванное электрическими потерями, проходит через максимум при нагревании. Температура максимума растет с ростом частоты. Реактивная часть импеданса уменьшается при нагревании и температуры максимумов производной $d\operatorname{Im}(Z)/dT$ и активной части импеданса совпадают. Для описания температурных зависимостей компонент импеданса используем модель Коул—Коула для диэлектрической проницаемости [27]:


$$Z = \frac{A}{1 + (i\omega\tau)^{1-\alpha}},\tag{2}$$

где время релаксации au определяется из условия $\omega au = 1$. На вставке рис. 4 зависимость au(1/T) хо-


рошо описывается экспоненциальной зависимостью $\tau = \tau_0 \cdot \exp(\Delta E/kT)$ с $\Delta E = 0.76$ eV без поля и в магнитном поле H = 8 kOe энергия активации увеличивается $\Delta E = 0.9$ eV. Экспоненциальный рост времени релаксации обусловлен зарядовым упорядочением. Возможно при T = 340 K формируется зарядовое упорядочение на границе кластера Mn-S-Lu и эти кластеры формируют состояние типа стекла. Импеданс существенно реагирует на магнитное поле выше температуры зарядового упорядочения в области частот $10^3 - 10^5$ Hz. Основной вклад в магнитоимпеданс связан с реактивной частью, в частности с изменением емкости в магнитном поле.

Переход, вызванный зарядовыми флуктуациями, проявится в дисперсии мнимой части импеданса. На рис. 5 приведены частотные зависимости ${\rm Im}(Z)$ для двух предельных температур. Реактивная компонента импеданса обусловлена емкостью и для описания частотной зависимости используем модель Коул—Коула для диэлектрической проницаемости [28]:


$$Im(Z) = Ar^{-1/2}\cos\theta,\tag{3}$$

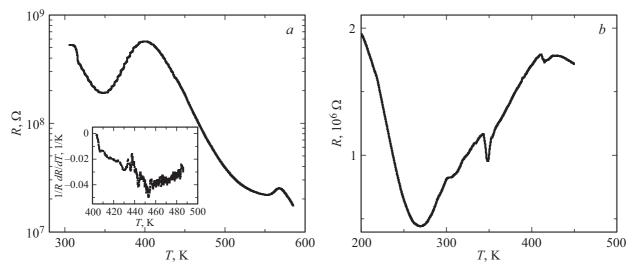

Рис. 4. Активная часть импеданса Re(Z) от температуры (a), нормированная реактивная часть импеданса $Im(Z(T))/Im(Z(T=96\,\mathrm{K}))$ (b) и нормированный импеданс $Z(T)/Z(T=96\,\mathrm{K})$ (c) без поля (I,3,5,7,9,11) и в магнитном поле $H=8\,\mathrm{kOe}$ (2,4,6,8,10,12) на частотах $\omega=1\,\mathrm{kHz}$ (I,2), $5\,\mathrm{kHz}$ (3,4), $10\,\mathrm{kHz}$ (5,6), $50\,\mathrm{kHz}$ (7,8), $100\,\mathrm{kHz}$ (9,10), $300\,\mathrm{kHz}$ (11,12) для $Lu_xMn_{1-x}S$, x=0.2. Температурная зависимость магнитоимпеданса на частотах $\omega=1\,\mathrm{kHz}$ (I), $5\,\mathrm{kHz}$ (2), $10\,\mathrm{kHz}$ (3), $50\,\mathrm{kHz}$ (4), $100\,\mathrm{kHz}$ (5), $300\,\mathrm{kHz}$ (6) для $Lu_xMn_{1-x}S$, x=0.2. Вставка: зависимость времени релаксации от обратной температуры.

Рис. 5. Зависимость реактивной части импеданса ${\rm Im}(Z)$ от частоты ω для ${\rm Lu}_x {\rm Mn}_{1-x} {\rm S}$ с x=0.1 (a), 0.2 (b) при $T=300\,{\rm K}$ (1), 460 K (2). Подгоночные функции (3) согласно формулам (3-5).

Рис. 6. Температурная зависимость коэффициента затухания ультразвука α для $\mathrm{Lu}_x\mathrm{Mn}_{1-x}\mathrm{S}$ с x=0.05 (a), 0.2 (b). Вставка: электрозвук U_s от температуры в $\mathrm{Lu}_x\mathrm{Mn}_{1-x}\mathrm{S}$ с x=0.1 (a), 0.2 (b).

Рис. 7. Температурная зависимость электросопротивления для $\operatorname{Lu}_x \operatorname{Mn}_{1-x} \operatorname{S}$ с x=0.05 (a), 0.2 (b). Вставка: Температурная зависимость 1/R dR/dT для $\operatorname{Lu}_x \operatorname{Mn}_{1-x} \operatorname{S}$ с x=0.05.

$$r = \left[1 + (\omega \tau)^{1-\alpha} \sin\left(\frac{\alpha \pi}{2}\right)\right]^2 + \left[(\omega \tau_0)^{1-\alpha} \cos\left(\frac{\alpha \pi}{2}\right)\right]^2,$$

$$\theta = \arctan\left[\frac{(\omega \tau_0)^{1-\alpha} \cos\left(\frac{\alpha \pi}{2}\right)}{1 + (\omega \tau_0)^{1-\alpha} \sin\left(\frac{\alpha \pi}{2}\right)}\right].$$
(5)

Параметр показателя степени α описывает увеличение дисперсии и $\alpha=0$ соответствует модели Дебая. При комнатной температуре подгонка $\mathrm{Im}(Z(\omega))$ функцией (3) дает степень $\alpha=0.025$ (рис. 5, b). При нагревании до 340 К в $\mathrm{Lu_{0.2}Mn_{0.8}S}$ дисперсия $\mathrm{Im}(Z(\omega))$ возрастает до $\alpha=0.05$ и практически остается неизменной до 420 К и выше этой температуры возрастает до $\alpha=0.1$. В модели Дебая используется одно время релаксации, в неупорядоченной системе существует спектр времен релаксации, который можно качественно описать одним

параметром lpha, который показывает уширение распределения по временам релаксации. Для концентраций ниже концентрации протекания частотные зависимости ${
m Im} \big(Z(\omega) \big)$ не описываются в рамках модели Коул—Коула, за исключением $T=460\,{
m K}$ (рис. 5,a).

Структурные, магнитные и зарядовые переходы проявятся в затухании ультразвука. На рис. 6 представлен коэффициент затухания ультразвука в интервале температур $80-500~\mathrm{K}$. Низкотемпературные максимумы $\alpha(T)$ при $T=138~\mathrm{K}$, $x=0.05~\mathrm{u}$ $T=113~\mathrm{K}$, x=0.2 наблюдаются в области магнитных фазовых переходах и связаны с деформацией решетки в результате магнитоупругого взаимодействия. Максимум $\alpha(T)$ и электрозвука при $T=200~\mathrm{K}$ в $\mathrm{Lu_{0.2}MnO_{0.8}S}$ возможно вызван структурным переходом. Акустические фононы, возбуждаемые пьезодатчиком, увлекают электроны и создают разность

потенциалов на образце. Формирование зарядового упорядочения дырок на межкластерной границе LuS—MnS вызывает максимумы в $\alpha(T)$ и в электрозвуке при $T=330\,\mathrm{K}$. При этой температуре дисперсия реактивной части импеданса возрастает и электросопротивление на постоянном токе имеет максимум при $340\,\mathrm{K}$ (рис. 7,b).

Небольшой скачок в $\alpha(T)$ при $T=452\,\mathrm{K}$ при x=0.05совпадает с температурой минимума $\operatorname{Im}(Z(T))$ и максимумом емкости. Температурный коэффициент сопротивления 1/R dR/dT также обнаруживает минимум при этой температуре (вставка рис. 7, a). Использование разных методик: затухание ультразвука, импеданс и электросопротивление на постоянном токе дают аномалию при одной температуре. Возможно, при этой температуре происходят локальные искажения структуры в окрестности ионов лютеция, которые приводят к изменению электронной структуры. Электрозвук имеет острый максимум при 440 К. Выше концентрации протекания при x = 0.2 максимум затухания звука и электрозвука сдвигается в область высоких температур до $T = 470 \, \mathrm{K}$. Максимумы затухания ультразвука при 400-420 К и отсутствие аномалий электрозвука при этих температурах вызваны упорядочением заряженных дефектов, на которых носители тока испытывают рассеяние и максимум электросопротивления (рис. 7).

4. Заключение

В сульфидах марганца, замещенных лютецием, основной вклад в импеданс обусловлен реактивной частью. Найден максимум поглощения ультразвука в области магнитного фазового перехода в результате магнитоупругого взаимодействия. Определены две температуры зарядового упорядочения из электрозвука. При малых концентрациях зарядовое упорядочение сопровождается максимумом емкости и увеличением реактивной части импеданса в магнитном поле. Смещение минимума реактивной и максимума активной частей импеданса по температуре в магнитном поле приводит к смене знака магнитоимпеданса в окрестности перехода. При больших концентрациях лютеция увеличивается дисперсия импеданса, компоненты которого описываются в модели Коул-Коула. При высоких температурах максимум затухания связан с температурой упорядочения заряженных вакансий, сопровождающиеся максимумом электросопротивления по температуре и уменьшением импеданса в магнитном поле.

Финансирование работы

Работа выполнена при поддержке гранта Президента Российской Федерации № МК-620.2021.1.2.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] I. Zutic, J. Fabian, S. Das Sarma. Rev. Mod. Phys. **76**, 323 (2004). https://doi.org/10.1103/RevModPhys.76.323
- [2] А. Ферт. УФН 178, 1336 (2008).
- [3] S.S. Aplesnin, M.N. Sitnikov. JETP Lett. 100, 95 (2014). https://doi.org/10.1134/S0021364014140021
- [4] О.Б. Романова, В.В. Кретинин, С.С. Аплеснин, М.Н. Ситников, Л.В. Удод, К.И. Янушкевич. ФТТ 63, 721 (2021).
- [5] M. Kreutzbruck, B. Mogwitz, F. Gruhl, L. Kienle, C. Korte, J. Janek. Appl. Phys. Lett. 86, 072102 (2005). https://doi.org/10.1063/1.1866642
- [6] Э.Л. Нагаев. УФН **166**, 833 (1996).
- [7] М.Ю. Каган, К.Л. Кугель. УФН 171, 577 (2001).
- [8] Ю.А. Изюмов, Ю.Н. Скрябин. УФН 171, 121 (2001).
- [9] R. Gunnarsson, M. Hanson. Phys. Rev. B 73, 014435 (2006). https://doi.org/10.1103/PhysRevB.73.014435
- [10] Ю.А. Бойков, Т. Клаесон, В.А. Данилов. ФТТ **47**, 2189 (2005).
- [11] S.L. Cheng, C.H. Du, T.H. Chuang, J.G. Lin. Sci. Rep. 9, 7828 (2019). https://doi.org/10.1038/s41598-019-44104-7
- [12] A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura. Nature 388, 50 (1997). https://doi.org/10.1038/40363
- [13] Н.Г. Бебенин, Р.И. Зайнуллина, В.В. Устинов. УФН **188**, 801 (2018).
- [14] M. Hsini, L. Ghivelder, F. Parisi. JMMM 535, 168059 (2021). https://doi.org/10.1016/j.jmmm.2021.168059
- [15] J. Tao, D. Niebieskikwiat, M. Varela, W. Luo, M.A. Schofield, Y. Zhu, M.B. Salamon, J.M. Zuo, S.T. Pantelides, S.J. Pennycook. Phys. Rev. Lett. 103, 097202 (2009). https://doi.org/10.1103/PhysRevLett.103.097202
- [16] J. Wu, J.W. Lynn, C.J. Glinka, J. Burley, H. Zheng, J.F. Mitchell, C. Leighton. Phys. Rev. Lett. 94, 037201 (2005). https://doi.org/10.1103/PhysRevLett.94.037201
- [17] W.E. Pickett, D.J. Singh. Phys. Rev. B 53, 1146 (1996). https://doi.org/10.1103/PhysRevB.53.1146
- [18] H. Qin, J. Hu, B. Li, Y. Hao, J. Chen, M. Jiang. JMMM 320, 2770 (2008). https://doi.org/10.1016/j.jmmm.2008.06.011
- [19] J. Hu, H. Qin, H. Niu, L. Zhu, J. Chen, W. Xiao, Yu. Pei. JMMM 261, 105 (2003). https://doi.org/10.1016/S0304-8853(02)01430-0
- [20] S. Biswas, S. Keshri. Phase Transitions **92**, 172 (2019). https://doi.org/10.1080/01411594.2019.1566826
- [21] O.B. Romanova, S.S. Aplesnin, M.N. Sitnikov, L.V. Udod. JETP 132, 831 (2021). http://doi.org/10.1134/S106377612103016X
- [22] S.S. Aplesnin, M.N. Sitnikov, A.M. Kharkov, S.O. Konovalov, A.M. Vorotinov. JMMM 513, 167104 (2020). https://doi.org/10.1016/j.jmmm.2020.167104
- [23] S.S. Aplesnin, M.N. Sitnikov, A.M. Kharkov, O.B. Begisheva, F.V. Zelenov. Phys. Status Solidi B 259, 2100555 (2022). https://doi.org/10.1002/pssb.202100555
- [24] M.M. Parish, P.B. Littlewood. Phys. Rev. Lett. 101, 166602 (2008). https://doi.org/10.1103/PhysRevLett.101.166602
- [25] M.M. Parish. Phil. Trans. R. Soc. A 372, 20120452 (2014). http://doi.org/10.1098/rsta.2012.0452
- [26] S.S. Aplesnin, A.N. Masyugin, V.V. Kretinin, S.O. Konovalov, N.P. Shestakov. Phys. Solid State 63, 242 (2021). https://doi.org/10.1134/S1063783421020025
- [27] K.S. Cole, R.H. Cole. J. Chem. Phys. **9**, 341 (2004). https://doi.org/10.1063/1.1750906
- [28] А.С. Волков, Г.Д. Копосов, Р.О. Перфильев. ФТТ 125, 364 (2018).

Редактор Ю.Э. Китаев