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Within the framework of the model of interacting parameters of the magnetic and structural orders, taking

into account the internal periodic magnetic field orthogonal to the exchange field, we analyzed the features of

magnetostructural transitions in the Mn1−xCoxNiGe system. A qualitative description of changes in the nature of

magnetic phase transitions from magnetostructural transitions of the 1st order paramagnetism-antiferromagnetism

(x = 0.05−0.1) to isostructural transitions of the 2nd order paramagnetism-ferromagnetism (x = 0.15−0.8) with

a change in the concentration of Co is presented. An explanation is given for the onset of irreversible magnetic-

field-induced transitions at temperatures on the order of 5K in strong magnetic fields, accompanied by a change

in the saturation magnetization for samples x = 0.15−0.8. The low-temperature inverse magnetocaloric effect at

liquid helium temperatures is predicted for these samples.
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1. Introduction

As established in the first part of our work, magnetic

disordering in the Mn1−xCoxNiGe system, depending on

the Co concentration, is realized as the 1st or 2nd order

magnetic phase transitions. In samples with x = 0.05 and

x = 0.1 with a high-temperature paramagnetic (PM) phase

with a hexagonal (hex) crystal structure of the Ni2In type

(space group P63/mmc), a decrease of the temperature

leads to a magnetostructural 1st order transition and stabi-

lization of the antiferromagnetic (AF) phase with an rhom-

bic crystal structure of the TiNiSi type (space group Pnma).
With an increase in the concentration of Co in samples with

x = 0.15−0.80, the observed high-temperature magnetic

phase transitions are isostructural transitions of the 2nd

order PM(P63/mmc) ↔ FM(P63/mmc). In this case, the

saturation magnetization of the hexagonal ferromagnetic

phase FM(hex) decreases with increasing concentration x .
Other peculiarities of samples with x = 0.15−0.80 include

anomalous sensitivity of magnetization to measurements

in the ZFC, FC modes in magnetic fields with induction

up to 5 T.

To analyze the mechanisms of the nontrivial behavior

of the samples of the system under study, the model

of interacting parameters of the magnetic and structural

orders [1,2], supplemented by taking into account the

internal orthogonal field that regulates the change in the

ratio between the values of the saturation magnetization of

the rhombic and hexagonal phases, was applied.

2. Analysis of magnetic phase transitions
in the Mn1−xCoxNiGe system based
on the model of interacting
parameters of the structural
and magnetic orders

Thermodynamic potential (TP) � ≡ �(Q0, σ, e1, e2, y)
of a magnetoelastic system in which a structural transition

of the
”
displacement“ type hex(P63/mmc) → orth(Pnma),

can be formally represented as the TP sum of

the structural �1 ≡ �1(Q0, σ, e1, e2) and the spin

�2 ≡ �2

(

Ĥ(ŝ)
)

= �s(y) subsystems.

� = �1 + �2. (1)

For the theoretical analysis of such magnetostructural sys-

tems, we use a model in which the spontaneous appearance

of rhombic symmetry and the corresponding configuration

of atoms in the crystal lattice is associated with the freezing

of optical vibrations of Ni atoms below the temperature

Tt1 [1,2]. According to [1,3], the thermodynamic potential
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(TP) of a structurally elastic subsystem has the form

�1(Q0, σ, e1, e2)=
N0

2
V0(Q

2
0+σ )+

N0

4
(γQ4

0+6Q2
0σ +3σ 2)

+
N0

6
Ŵ(Q6

0 + 15Q4
0σ + 45Q2

0σ
2 + 15σ 3)

− 1

2
N0Q2

0ν0(1 + L1e1 + L2e2) − T
kB

2
N0 lnσ

+
1

2
e21k0 +

1

2
(e2)

2k2 + Pe1 − Tαe1k0. (2)

Average value in the approximation of a shifted harmonic

oscillator [3]

Q0 = 〈Qn〉 =

∞
∫

−∞

1√
2πσ

exp

[−(Qn − Q0)
2

2σ

]

Qn dQn,

describing the frozen shared shift Qn of Ni1, Ni2〈UNi1,2
nz 〉

ions in the n-th lattice cell during the structural transition

P63/mmc(Q0 = 0) ↔ Pnma(Q0 6= 0), is identified with the

structural order parameter. The average value Q0 and

the dispersion σ = 〈[Qn−Q0]
2〉 are considered as inde-

pendent variational parameters and are determined from

the minimization of the total thermodynamic potential of

the magnetoelastic system �. Dependence of the Fourier

component of pair-wise interaction between soft modes of

different cells

ν0(e1, e2, x) =
∑

n′

νnn′ = ν0(x)(1 + L1e1 + L2e2)

from volume (e1) and rhombic (e2) strains and

concentration (x) takes into account the connection

of the phonon subsystem with the static strains

of the crystal and the chemical composition

(L1 = (∂ν0/∂e1)/ν0(x), L2 = (∂ν0/∂e2)/ν0(x)). Since

with increasing Co concentration, the volume Vhex

of the hexagonal cell decreases, and the appearance

of the structural order parameter at the transition

hex[P63/mmc(Q0 = 0)] ↔ orth[Pnma(Q0 6= 0)] is followed

by its increment ((Vorth−Vhex)/Vhex ≡ 1V/V = e1 > 0),
then Lx = (∂ν0/∂e1)(∂e1/∂x)/ν0 < 0. Thus, an increase in

x can be compared with an increase in internal
”
chemical“

pressure.

The spin subsystem includes magnetically active

Mn atoms with spin magnetic moment 2µBŝ
k
n (µB — Bohr

magneton). At the P63/mmc(Q0 = 0) ↔ Pnma(Q0 6= 0)
structural transition, these atoms are also displaced from

their previous equilibrium positions, however, these shifts,

which arise due to shifts of Ni atoms, cannot be attributed

to local (relating to a specific cell n). Thus, as a result

of a structural transition, it can be spoken about a change

in the complete configuration of the atomic system, which,

through a change in the spin-polarized electron structure,

leads to a change in the main magnetic characteristics of

the system. And not only the type of magnetic ordering,

but also the magnitude of the saturation magnetization and

the magnitude of the effective magnetic moment [4]. This is
naturally taken into account in first-principles approaches [4].
However, within the phenomenological approaches based

on the Heisenberg model, which initially uses localized

magnetic moments, the spin state change factor requires

special approaches. For example, a change in the measured

value of the saturation magnetic moment while maintaining

the value of the atomic spin can be described in terms

of a model of the Heisenberg type with the introduction

of an internal field orthogonal to the direction of the

measured magnetic moment. For spin systems with a

spatially periodic structure, this internal field Ok
n is also

spatially periodic. In this case, to describe a simple spatially

periodic helimagnetic spin structure with a wave vector of

the structure q = [0, 0, qa ] [5], the Hamiltonian of the spin

subsystem can be represented as

Ĥ(s) = −
∑

nk,n′k′

Jkk′

nn′ ŝ
k
n ŝ

k′

n′ − 2µBH0

∑

ni

ŝk
n −

∑

ni

Ok
n ŝ

k
n. (3)

where ŝk
n — are spin operators of k-atoms in the n-th

elementary hexagonal cell, Jkk′

nn′ ≡ J(|1Rkk′

nn′ |) corresponding

integrals of the exchange interaction between magnetically

active atoms at a distance

|1Rkk′

nn′ | = |Rk′

n′ − Rk
n| ≡ D(Q0, e1), (4a)

∑

n
= N0,

∑

n,k
= N = 2N0(1− x) — number of elementary

cells and number of magnetically active atoms (Mn) per

unit volume, and Ok
n = wk

nO, H0 = [0, 0, H0] — vectors

of internal spatially periodic and external homogeneous

magnetic fields, µB — Bohr magneton; wk
n — the unit vector

that determines the direction of the space-periodic field Ok
n

with modulus O is given by

wk
n =

[

sin(qRk
n),− cos(qRk

n), 0
]

. (4b)

In the mean field approximation (MFA), the thermodynamic

potential of the spin system �2

(

Ĥ(ŝ)
)

with the Hamilto-

nian (3) can be reduced to �s (y) ≡ �M (Appendix)

�2

(

Ĥ(ŝ)
)

= �s(y)

= N
[

J(qa) sin(ϑ)2 + J(0) cos(ϑ)2
]

y2s2 − NkBT ln z (X),
(5a)

J(qa) ≈ J0(Q0, e1) + J1(Q0, e1) cos(9)

+ J2(Q0, e1) cos(29), (5b)

J(0) ≈ J0(Q0, e1) + J1(Q0, e1) + J2(Q0, e1). (5c)

9 = qa chex/2, 29 = qa chex — parameters of the helicoidal

structure described by the wave vector qa ; J0(Q0, e1) —
interatomic exchange integrals between Mn atoms inside

layers perpendicular to the direction of the wave vector q;

J1(Q0, e1) and J2(Q0, e1) interatomic exchange integrals be-

tween Mn atoms located in the nearest and next to the near-

est layers at distances chex/2 and chex (chex — hexagonal
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cell parameter along wave vector direction q); ϑ — angle

between the direction of the local quantization axis and the

direction of the external field H0; kB — Boltzmann constant.

The dependence of the exchange interaction integrals

J(qa) on the structural order parameter Q0 and volume

strain e1, which follows from condition (4a), ensures the

interaction between the spin and structural subsystems via

the relation between the parameters of the magnetic y and

structural orders

y = m/s ≤ 1, (6)

m = 〈ŝk
nu

k
n〉h ≡ 〈m̂k

n〉h is the mean value of the spin projec-

tion m̂k
n to the direction of the local quantization axis

uk
n =

[

cos(qRk
n) sin(ϑ), sin(qRk

n) sin(ϑ), cos(ϑ)
]

,

calculated in the mean field approximation (Appendix)

z (X) = sh
[(

1 + (2s)−1
)

X
]

/ sh
[

(2s)−1X
]

, (7)

X =
1

kBT

√

√

√

√

√

{

[J(qa) sin
2(ϑ) + J(0) cos2(ϑ)]ys2 +

+ 2µBH0s cos(ϑ)
}2

+ O2s2
, (8)

The extremum of the function J(qa) is

determined from the equation ∂J(9)/∂9 = 0, the

competing solutions of which for J1(Q0, e1) > 0,

J2(Q0, e1) < 0 will only be helicoidal (for
cos9 = J1(Q0, e1)/4|J2(Q0, e1)| = δ(Q0) ≡ δ < 1) with

a higher value quantities J(q) (J(q) = J0(Q0, e1)
+ (2δ2 + 1)|J2(Q0, e1)|) and ferromagnetic (at 9 = 0)
with lower magnitude J(0) (J(0) = J0(Q0, e1)
+ (4δ − 1)|J2(Q0, e1)|) since 1J ≡ J(q) − J(0)
= 2(δ−1)2|J2(Q0, e1)| > 0.

For subsequent calculations, the values J(qa), J(0) can be

represented as an expansion in linear powers of volumetric

strains e1 and even powers of structural order parame-

ters Q2n
0 , as well as their combinations in the form (e1Q2

0)
n.

In this work, we will only take into account the expansion

terms up to Q4
0 and linear combinations (e1Q2

0). Such a

decomposition does not contradict physical considerations

and keeps the TP invariant in association with operations

of the symmetry group P63/mmc . Then the value

J(qa) sin
2(ϑ) + J(0) cos2(ϑ) ≡ J(qa) − 1J cos2(ϑ) in (5)

and (8) can be represented as

J(qa) − 1J cos2(ϑ) = J00

[

rAF + Q2
0(λAF + λ1AFe1)2

+ 2λQ4
0 − 1J cos2(ϑ)

]

, (9)

1J ≡ J(qa) − J(0) = J00

[

1 + 2Q2
0(λ20 + λ21e1)

]

×
[

2z (cos9− 1)
(

2δ(Q0) − cos9− 1
)]

, (10a)

rAF = 1 + z
[

4δ(Q0) cos9− 2 cos2 9 + 1
]

, (10b)

δ(Q0) = R − AQ2
0 + BQ4

0, (10c)

λAF = λ00 + zλ20
[

4δ(Q0) cos9− 2 cos2 9 + 1
]

. (10d)

λ1AF = λ01 + zλ21
[

4δ(Q0) cos9− 2 cos2 9 + 1
]

, (10e)

J00 ≡ J0(Q0 = e1 = 0) = 3T0kB/2s(s + 1). (10f)

The temperature dependences of the magnetic, struc-

tural, and elastic characteristics can be obtained from

the conditions for the extreme value of the thermody-

namic potential: ∂J(qa)/∂9 = 0, ∂�/∂ϑ = 0, ∂�/∂σ = 0,

∂�/∂e1 = 0, ∂�/∂e2 = 0, ∂�/∂y = 0, ∂�/∂Q0 = 0. The

first two equations determine the conditions for the exis-

tence of a helimagnetic structure regardless of the external

magnetic field (11a) and in the external magnetic field

H0 = [0, 0, H0], (11b)

cos9 =

{

δ(Q0) at |δ(Q0)| < 1

1 otherwise
, (11a)

cos ϑ =































2H0µB

(J(qa) − J(0))y
at |δ(Q0)| < 1

2H0µB

(J(qa) − J(0))y
at

∣

∣

2H0µB

(J(qa) − J(0))y

∣

∣ < 1

1 otherwise.

(11b)
The following three equations have analytical solu-

tions in the form of dependencies: e1 = e1(Q0, y, T, P),
e2 = e2(Q0), σ = σ (Q0, T ). The last two of them are

reduced to the form

−y2(∂hm/∂Q0) +
(

∂�1(Q0, σ, e1, e2)/∂Q0

)

= 0, (12a)

y − B s(X)
(2a/a3)hmy + 2µBsH0 cos ϑ

√

(

(2a/a3)hmy + 2µBsH0 cos ϑ
)2

+ s2O2

= 0,

(12b)

X =

[

√

[(2a/a3)hmy + 2µBsH0 cos ϑ ]2 + s2O2

]

/

kBT,

(12c)

ahm ≡ ahm(Q0, e1) ≡ ahm(Q0, y, T, P)

= NJ00

(

J(q)/J00 − 1J(q) cosϑ2/J00

)

s2. (12d)

a = NJ00s
2 = (3/2)s2a3T0/s(s + 1),

a2 = N0kB = 2(1− x)a3, a3 = NkB.

B s(X) — Brillouin function:

B s(X) =

(

1

2s + 1

)

coth

(

X
2s + 1

)

−
(

1

2s

)

coth

(

X
2s

)

= B s(Q0, y, T, P) (13)

In (12) we use the following expression

ν0(x)(1 + L1e1 + L2e2) ≡ ν0(1 + Lx x)(1 + L1e1 + L2e2)

at Lx < 0. (14)

Equations (12) are solved numerically and allow to

obtain the temperature dependences of the magnetic (y(T ))
and structural (Q0(T )) order parameters in the presence of

pressure P and an external magnetic field H0 depending
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on the concentration x and the modulus of the internal

periodic field O(x) = |Ok
n|. Condition (11b), taking into

account expression (10c) for A > 0, B > 0, in accordance

with calculations [4] and experimental data [5,6], identifies
the appearance of a helimagnetic structures only in the

rhombic state.

The dependences y(T ) and Q0(T ) determine the behav-

ior of the temperature dependences of the magnetization

M(T ) for given values of the magnetic field strength H0

and the dimensionless inverse paramagnetic susceptibility

χ−1(T ) within H0 → 0

M(T ) = M0(x)y(T ) cos ϑ(T ), (15a)

χ−1(T, P) =
a3O(x) − 2aB s(Q0, 0, T, P)hm(Q0, 0, T, P)

2aB s(Q0, 0, T, P)
,

(15b)
where M0(x) — saturation magnetization in the model of

localized Mn spins for a sample with a given number x and

spin s = 3/2; to calculate it, we use the expression

M0[emu/g] = (1− x)2sµB/A(x)

= 1.116906∗s∗10000∗(1− x)/A, (16)

A — atomic weight per formula unit.

For example, for samples with x : 0.05; 0.1; 0.15; 0.8; 0.7
M0(x) values reach 85.37; 80.79; 76.22; 71.22; 62.56 emu/g

respectively. In the usual model of a ferromagnet with

localized spins, these values correspond to the saturation

magnetization, since at T = 0, y = cos ϑ = 1. However,

in the case under consideration, for O(x) 6= 0 and the

parameter O(x) increases with growth x , the values of

M(T = 0) to the maximum achievable magnetic fields, in

full agreement with the experimental results [7] are far from

the values of M0(x). Meanwhile, as will be shown below,

the solution of the equations of state (12), depending on

the ratio between the values of the quantities O(x), ν0(x),
and (2a/a3)hm, leads to two radically different scenarios

of the behavior of magnetostructural characteristics. These

scenarios can be compared with the results given in Part 1

of this work [7] in Fig. 6, a, b and Fig. 6, c, d.

The table gives the values of the thermodynamic potential

coefficients, which are used to solve the equations of

state (12) and then compare the results of the solutions

and the experimental results of measurements of samples

with the corresponding concentrations x . The values a2, a3

are calculated based on the X-ray density ρ(x), table [7].
The quantities M0(x) are calculated for the spin s = 3/2 by

the formula (16).

First, based on the solutions of equations (12) with

the corresponding values of the coefficients, we will give

an interpretation of the experimental peculiarities of the

magnetic measurements of Mn1−xCoxNiGe solid solutions

for samples with x < 0.15.

Meanwhile, we will proceed from the following: in the

area of anomalous behavior of the inverse paramagnetic

susceptibility (see Fig. 5, 6 in [7]), there is magnetostruc-

tural transition of the 1st order PM(hex)↔HM(orth) at

temperatures Tt ≈ 250−300K significantly higher than the

paramagnetic instability temperature of the hexagonal phase

Tt > θhex ≈ 100−150K.

According to the theoretical analysis, this becomes achiev-

able with an appropriate selection of the TP coefficients

(table). Then, Fig. 1, a, b, c, the calculated value of the

lability temperature of the hexagonal phase exceeds the

paramagnetic Curie temperature of the orthorhombic phase:

Tt1 ≥ θorth . The instability temperature of the hexagonal

phase in this case can coincide with the temperature

of the initiation of helimagnetic order Tt1 = TN1. As a

result of the interrelation of these processes, the magnetic

ordering becomes a magnetostructural transition of the

1st order PM(hex)↔HM(orth), which is accompanied by

an abrupt change in the magnetization Morth, temperature

hysteresis 1T = Tt2−Tt1, anomalous behavior of the reverse

magnetic susceptibility χ−1(T ), which is consistent with

the experimental dependences, Fig. 1, d, e, f. This behavior

corresponds to the first scenario.

The difference between the shapes of the experimental

σ (T ) and theoretical Morth(T ) dependences is not significant
and is related to the orientation factor: in the experiment

with polycrystalline powder, the direction of the magnetic

field vector H and the direction of the wave vector of

the magnetic structure q is not fixed; in theory, a strict

condition for the collinearity of both vectors is under study.

It should be noted that the temperature dependences of the

magnetization Morth(T ) and the magnetic order parameter

y(T ) (M0y(T ) in Fig. 1, a) also differ qualitatively. The

dependence y(T ) reflects the change in the magnitude

of the magnetic moment in the rhombic phase along the

local space-periodic quantization axis and can only be

studied in experiments on magnetic neutron scattering;

the temperature dependences of the magnetization in the

Morth(T ) orthorhombic phase are fixed as a response of a

helimagnetic space-periodic structure to an external spatially

uniform magnetic field, i.e., as a distortion of the heli-

magnetic structure. The paramagnetic Curie temperature

θhex for the hexagonal phase is determined from the

extrapolation of the high-temperature dependence of the

inverse paramagnetic susceptibility χ−1
hex(T ) measured in the

hexagonal phase. The PM Curie temperature of the θorth
orthorhombic phase in the case of the 1st order transition

under consideration is an unobservable value, since the

appearance of the helimagnetic order occurs abruptly at

Tt1 = TN1 < θorth . However, in a real experiment, in which

magnetostructural transitions are close to diffuse first-order

phase transitions, the value of θorth can be compared with

the temperature θ∗ in Fig. 1, f.

In strong magnetic fields, the distortion of the helimag-

netic structure is so significant that it can be spoken of

its complete suppression over the entire temperature range,

Fig. 2, d, e, f. From the curves shown in Fig. 2, a, b, c it can

be seen that as the magnetic field increases, the temperature

dependences of cos ϑ approach their saturation-1, which

Physics of the Solid State, 2022, Vol. 64, No. 14
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Change in the main TP coefficients in describing the magnetostructural properties of alloys of the Mn1−xCoxNiGe system

x ν0(x) sO/kB at s = 3/2 λ00 λ20 L3
λmax

AF
T0 A B M0 a2 a3

λmin
AF

unit kbar K K emu/g kbar

0.05 47.56 282.5 1 34.5 7.0
99.7

40 6.2 57 85.12 0.00177 0.00337
95.7

0.1 43.62 382.5 1 22 7.0
68.09

50 6.2 70 80.56 0.00178 0.00321
67.58

0.15 37.47 467.5 7.0 −1.76 19
1.82

69.0 6.2 20 76 0.0018 0.00306
1.52

0.2 37.47 520 7.7 −1.76 18 1.8 74 6.2 20 71.6 0.0018 0.00289

No t e. The values a2, a3 are calculated based on the X-ray density ρ(x), table 1 [7]. The quantities M0(x) are calculated for the spin s = 3/2 by the

formula (16).
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Figure 1. Theoretical (a, b, c) and experimental (d, e, f ) temperature dependences of the magnetostructural characteristics in the

Mn0.95Co0.05NiGe solid solution in weak magnetic fields (up to 1 T).
Dash-dotted lines here (Figs 1, b and 1, c) and further correspond to the maximum TP; vertical arrows mark lability temperatures of

rhombic Tt2 (hexagonal Tt1) phase in a field with induction B = 1T; the dashed lines in Fig. 1, c describe the solutions of equations (12)
for Q0(T ), at y(T ) ≡ 0 with the corresponding lability temperatures of the rhombic Tt20 and hexagonal Tt10 ≈ Tt1 phases; y — helimagnetic

order parameter in fields with induction B = 1T (a); Morth, Mhex — specific magnetizations in rhombic, hexagonal phases in a field with

induction B = 1 T.
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Figure 2. Temperature dependences of the magnetization of Mn0.95Co0.05NiGe (symbols) and Mn0.9Co0.1NiGe (lines) samples in strong
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thin vertical lines in the area of temperature hysteresis 1T = Tt2−Tt1 determine the temperatures Tm of the TP equality in the hexagonal

and rhombic states in the corresponding fields; the dashed lines correspond to the continuation of the dependences of the magnetization

in the hexagonal phase Mhex(T ) = M0y(T, Q0 ≡ 0) cos[ϑ(T, Q0 ≡ 0)] is below the lability temperature Tt1 of the state with hexagonal

configuration.

correlates with an increase in magnetization in Fig. 2, a, b, c.

The theoretical results are in satisfactory agreement with

the experimental ones shown in Fig. 2, d, e, f. It should

be noted that the real temperature of magnetostructural

ordering T1 lies between the temperature of loss of stability

of the hexagonal phase Tt1 and the temperature of the TP

equality in the rhombic and hexagonal states Tm. Depending

on the physical and mechanical state of the crystal, the

temperature T1, apparently, can approach its limit value Tt2

with increasing magnetic field induction.

The transition to a theoretical analysis of the properties of

samples with x ≥ 0.15 is carried out by changing the ratio

between the coefficients responsible for the stabilization of

the rhombic and hexagonal configurations in favor of the

hexagonal one. In general, according to the table, this is due

to a decrease in the value of ν0(x) and an increase in the

value of O(x). As an example, let us review the simulation

of the temperature dependences of the magnetostructural

characteristics of two samples with x = 0.15 and x = 0.2

in relatively weak magnetic fields (B ≤ 5T), Fig. 3 and in a

strong field B = 10T, Fig. 4.

The theoretical results shown in Fig. 3 correspond to

the second scenario of the system behavior, in which

the order-disorder transitions are isostructural transitions

of the second order hex(FM)↔ hex(PM). Nevertheless, in
this case, at temperatures below the magnetic ordering

temperature (T < θhex), the model admits the existence of

a rhombic HM state, since the lability temperature of the

rhombic state is Tt2 > 0 (Fig. 3, a, b). The transition to the

rhombic state is spontaneously difficult because, according

to the calculations, the temperature of the appearance of this

state is Tt1 < 0. However, since the temperature Tm(B) of

the TP equality in the competing hexagonal ferromagnetic

hex(FM) and rhombic helimagnetic orth(HM) states is

positive (0 < Tm < Tt2), the transition to the rhombic phase

in the ZFC mode is thermodynamically possible upon slow

cooling to T < Tm. In this case, such a transition should be

accompanied by volume deformations e1 and a decrease in

the magnetization Fig. 3, b.

This result gives an understanding of the low-temperature

features of the temperature dependences of the magneti-

zation in the ZFC-FC mode in increasing magnetic fields

(Fig. 3, c). Indeed, on the one hand, the appearance of an
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orthorhombic phase is associated with the appearance of

a helimagnetic state and an antiferromagnetic contribution

to the magnetization. On the other hand, the appearance

of bulk deformations e1 of the crystal cell accompany-

ing hex(FM)↔ orth(HM) transitions leads to additional

obstacles for the formation of nuclei of new phases [8].
This can become a decisive factor for blocking reversible

magnetostructural processes in a magnetic field at low

temperatures and for maintaining the FM states induced

by a magnetic field. Or in other words, to the opportunity

of realizing low-temperature irreversible induced transitions

described in Figs 5, a−5, f ) and experimentally fixed

in Fig. 6.

In more detail, the process of implementing irreversible

field-induced transitions is as follows. When the sample

temperature is lowered in the ZFC mode to T < Tm, the

helimagnetic rhombic state HM(orth) is realized with a

lower value of TP (�orth < �hex, Fig. 5, c, Fig. 5, f ). The

primary process of magnetization of the HM(orth) state is

described by a thick line in Fig. 5, a, d. The break field of

these lines B1 corresponds to the complete suppression of

the helimagnetic state and the appearance of the
”
weakly

ferromagnetic“ rhombic state FM(orth), which persists up

to B = B2. The field B2 corresponds to the field lability

boundary of the
”
weakly“ ferromagnetic rhombic state.

The values of B2 are compared with the experimental

values of Bk1 (Fig. 6) for real diffuse induced transitions.

Thus, the induced transition at B = Bk1, according to our

theory, is a magnetostructural transition of the 1st order

FM(orth)−FM(hex) type, which is accompanied by abrupt

changes in volumetric deformations e1 and magnetic (y)
and structural (Q0) order parameters, Fig. 5, b, c, e, f. These

transitions owe their existence to the difference in satu-

ration magnetization values in the ferromagnetic rhombic

Morth=M0yorth and hexagonal Mhex=M0yhex>Morth states.

Note that for O(x) = 0, Mhex(T = 0) = Morth(T = 0) since

for T = 0 according to (12b) yorth = yhex = B s(X) = 1. The

irreversibility of the field-induced hexagonal state, which

is observed experimentally when the field is lowered and

the sample is remagnetized (Fig. 6, a), can arise due to

volume-structural blocking of the processes of nucleation

of competing phases as a result of differences in specific

volumes in rhombic and hexagonal states (e1orth > e1hex).
Theoretically, this is realized due to the negative value of

the lability temperature of the hexagonal ferromagnetic state

(Tt1 < 0) in the region of low values of the magnetic field

induction (B ≪ B2). The differences between the model

M(B) and experimental σ (B) dependences can be caused
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peculiarities of the magnetization M(T ), inverse paramagnetic

susceptibility χ−1(T ) and relative volume e1(T ) of the correspond-
ing alloys of the system under study in a strong magnetic field

B = 10 T.

by the use of a single-domain description of magnetostruc-

tural phenomena and the geometry of the external field

induction direction (B//q). In this case, the olicrystalline

sample used is considered as a single-crystal single-domain,

in which the processes of rotation of magnetocrystalline

domains when approaching the saturation magnetization are

not taken into account.

3. Magnetocaloric peculiarities

Expression for the system entropy

S(T, H0) ≡ S[Q0(T, H0), y(T, H0), T ]

can be obtained from the definition of S = −∂�/∂T and

reduced to the form

S[T, H0] = N0kB ln
{

z
[

X [Q0(T, H0), y(T, H0), T ]
]

}

− NkBB s(X)X [Q0(T, H0), y(T, H0), T ] + αk0e1

× [Q0(T, H0), y(T, H0), T ] +
1

2
N0kB ln[σ (Q0(T, H), T )].

(17)
In (17), the first two terms correspond to the entropy

of a magnetically ordered system of spins in rhombic —

Q0 6= 0 (hexagonal Q0 = 0) by crystal lattices for a given

temperature: 3rd term — entropy of a volumetrically

deformed magnetically ordered crystal in rhombic (hexa-
gonal) states; the last term describes the decrease in the

entropy of the crystal due to the appearance of a struc-

tural order parameter Q0. The temperature dependences

[1S(T )] = [S(B = µ0H0) − S(0)] are shown in Fig. 7 and

correspond to heating (air magnetic permeability µ0 = 1).
Analysis of these dependencies calculated as part of

the model used for the values of the orthogonal field:

sO/kB = 282.5K, sO/kB = 382.5K, sO/kB = 467.5K for

x = 0.05, x = 0.1 and x = 0.15 respectively, shows that

for samples x = 0.05, x = 0.1 the maximum change in the

isothermal entropy 1S(T ) corresponds to the direct MCE

and the temperature region of magnetostructural 1st order

transitions order-disorder orth(HM)↔ hex(PM), which in

strong fields in full accordance with the experimental

data are transformed into orth(FM)↔ hex(PM) transitions

(Fig. 2, e, f ). The discrepancy between the theoretical

and experimental dependences is due to two factors. First

of all, these are the diffuse nature of magnetostructural

phase transitions, which is not taken into account in the

present theoretical description, the use of the isotropic form

of magnetoelastic energy [8] and approximate values of a

number of elastic constants, for example, compressibility

(κ(x) = 1/k0 = 2 · 10−3 kbar−1) and volume expansion co-

efficient (α(x) = 2 · 10−5 [◦K]−1).
For a sample with x = 0.15, the maximum values of the

isothermal entropy 1S(T ) (Fig. 7, f ) as a reaction to the

inclusion of a magnetic field when the sample is heated

correspond to the lability temperatures of the rhombic state

Tt2(0), Tt2(B) under transitions orth(HM)↔ hex(FM) in

Fig. 2, Fig. 7, e. The temperature value Tt2 correlates

with the temperature value T ∗ in Fig. 3, c. The qualitative

behavior of the quantities T ∗ and Tt2 with an increase in

the induction intensity agrees with — their values decrease

with an increase in the magnetic field. However, the

value T ∗ > Tt2(0) shall be brought as to fully correspond

to the values of these quantities and the quantities B2

(Fig. 5) and B1 (Fig. 6) into full correspondence. The

value 1S(T ) > 0 in the temperature range T < Tt2(0)
determines the inverse magnetocaloric effect (IMCE). It
can be observed only in fields B < B2 (B < Bk1), since

in high fields the sample is already in a stable hexagonal

ferromagnetic state hex(FM) and subsequent temperature

changes in the field or field at a constant temperature will

not lead to a sharp increase in magnetization and, accord-

ingly, 1S in the area of helium temperatures. However,

the direct magnetocaloric effect (DMCE) can be observed

at high temperatures. DMCE in samples with x ≥ 0.15

should be observed in the area of isostructural magnetic

disorder and reach a maximum at the Curie temperature.

In the model description in Fig. 7 this is T = θhex.

A more realistic process of the appearance of IMCE for

samples with x ≥ 0.15 can be tracked by considering

not temperature, but field dependences of the jump in

entropy 1S(B) at a fixed temperature. Figure 8 shows
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the model field dependences of the isothermal entropies

S(B) for the rhombic Sorth(B) and hexagonal Shex(B)
phases and change in the jump in isothermal entropy

1S(B) = S(B)−S(0), combined with M(B) dependences

for a sample with x = 0.15 at a temperature 3K. In

the field B < B2 1S(B) = Sorth(B)−Sorth(0) ≤ 3.2 J/K · kg
describes the inverse MCE, which corresponds to the

isostructural stabilization of the ferromagnetic state as

the magnetization increases from its value in the he-

limagnetic state HM(orth) (B ≤ B1) to its maximum

value in rhombic state FM(orth) (B ≤ B2). Irreversible

jump 1S(B) = Shex(B)−Sorth(0) = 7.5 J/K · kg at B = B2

corresponds to the irreversible magnetostructural transition

FM(orth)↔ FM(hex), Fig. 8, a. Here, irreversibility means

that in order to repeat the process of primary magnetization,

it is required to heat the sample aver the temperature of

Tt2(0) and then cool it in the ZFC mode.

Large-scale changes in the 1S(T ) values during mag-

netostructural transitions are related to the fact that the

decrease in the symmetry of the system due to the

appearance of magnetic order correlates with the decrease

in the symmetry of the crystal lattice from more symmetric

hexagonal to less symmetric rhombic. This leads to the fact

that changes in the purely magnetic contribution from the

first two terms in (17) are supplemented by changes in the

structural contribution from the last term in (17).
Meanwhile, an increase in volumetric strains in the

rhombic state, on the contrary, weakens the first two

contributions. Therefore, to enhance the magnitude of

the magnetocaloric effect (MCE), it is advantageous to

achieve compensation for volumetric strains. Because the

contributions to 1S(T ) from the change in volume and

from the change in the crystal structure have different

signs. This can be achieved by selecting the appropriate

doping with an increase in the number of components

of the basic composition. Such doping should lead to

the maximum compensation of volumetric strains while

maintaining the jumps in lattice parameter strains, which

provide magnetostrictive contributions to the jump-like

implementation of magnetic ordering. A more detailed

analysis of the relationship between volumetric strains and

spontaneous magnetostriction in layered structures can be

found in [9].

4. Conclusion

The work shows that taking into account changes in

the effective exchange integrals and the internal orthogonal

field with a change in the structural configuration of

atomic centers and the concentration of Co underlies the

formation of the mechanism of magnetostructural coupling

between the spin and lattice subsystems of solid solutions

Mn1−xCoxNiGe. As part of this approach, using the

mean field approximation for the spin subsystem and the

shifted harmonic oscillator approximation for the structural

subsystem, there is an interpretation of two scenarios for

the implementation of magnetic disordering and features of

a jump change in the saturation magnetization at helium

temperatures. A qualitative agreement is obtained between

the behavior of the experimental and theoretical magnetic

and magnetocaloric characteristics in the area of room tem-

peratures. The existence of an inverse magnetocaloric effect,

enhanced by a magnetostructural transition, is predicted at

helium temperatures.
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Appendix

In the mean field approximation (MFA) (3) can be

represented in the form

Ĥh(s) = −
∑

nk

1k
n ŝ

k
n, (A1)

where 1k
n = hk

n + Ok
n .

In (A1), like MFA, operators
∑

nk,n′k′

Jkk′

nn′ ŝ
k
n ŝ

k′

n′ + 2µBH0

∑

ni ŝ
k
n from (3), including

multiparticle interactions
∑

nk,n′k′

Jkk′

nn′ ŝ
k
n ŝ

k′

n′ , are replaced

by the operators of
(
∑

n,k
hk

n ŝ
k
n

)

single-particle interaction.

Meanwhile, the orthogonality condition is introduced for

the exchange hk
n = huk

n and the internal space-periodic

Ok
n = Owk

n fields

Ok
nh

k
n = (wk

nu
k
n)Oh = 0. (A3)

In (3) there are O, h-modules of internal space-periodic and

exchange fields.

For a simple space-periodic helimagnetic spin structure

with the structure wave vector q = [0, 0, qa ], the unit

vectors wk
nu

k
n satisfying the orthogonality condition (A3) can

be represented in the form

uk
n =

[

cos(qRk
n) sin(ϑ), sin(qRk

n) sin(ϑ), cos(ϑ)
]

, (A4a)

wk
n =

[

sin(qRk
n),− cos(qRk

n), 0
]

, (A4b)

uk
n coincides with the direction of the local quantization axis,

which at H0 = 0 is in the plane perpendicular to the wave

vector q (ϑ = π/2). Distribution function

ρ(Ĥh) =
∏

n,k

ρk
n(Ĥh) ≡

∏

n,k

ρk
n(M̂

k
n)

as part of the MFA with Hamiltonian (A1) is the product

of single-particle distribution functions ρk
n(Ĥh) ≡ ρk

n

ρk
n(M̂

k
n) ≡ ρk

n =
eβ|h

k
n+Ok

n|V
k
n ŝ

k
n

z (X)
≡ eβ

√
h2+O2M̂k

n

z (X)
, (A5)

z (X) = S peβ(
√

h2+O2)M̂k
n ≡

s
∑

Mk
n=−s

eβ(
√

h2+O2)Mk
n

= sh[
(

1 + (2s)−1
)

X ]/ sh[(2s)−1X ], (A6)

X = βs
√

h2 + O2, β = 1/kBT, Mk
n ∈ −s, s + 1, . . . , s,

where M̂k
n is the spin projection operator on the direction

Vk
n of the molecular field 1k

n

1k
n = hk

n + Ok
n = 1Vk

n ≡ |(hk
n + Ok

n)|Vk
n ≡

(

√

h2 + O2
)

Vk
n,

which is determined by the unit vector Vk
n, Mk

n by the

operator eigenvalue of M̂k
n .

The quantity h ≡ h(q) is a variational parameter, which

is determined using the variational principle of statistical

mechanics: the optimal value of the quantity h should satisfy

the extreme value of the model free energy �M .

Model free energy

�M ≡ QM

(

H(s)
)

as the upper limit of the genuine free energy �
(

Ĥ(s)
)

≡ �

of the spin system is given by the expression [1,2,10]

�M = 〈Ĥ(s) − Ĥh(s)〉Ĥh
− NkBT ln z (X). (A7)

The average

〈Ĥ(s) − Ĥh(s)〉Ĥh
≡ 〈Ĥ(s) − Ĥh(s)〉

is determined according to the following diagram

〈

−
∑

nk,n′k′

Jkk′

nn′ ŝ
k
n ŝ

k′

n′ − 2µBH0

∑

ni

ŝk
n +

∑

ni

ŝk
nh

k
n

〉

≡ −
∑

nk,n′k′

Jkk′

nn′ 〈ŝk
n〉〈ŝk′

n′ 〉 − 2µBH0

∑

ni

〈ŝk
n〉 +

∑

ni

〈ŝk
n〉hk

n.

(A8)
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In the spin subsystem under consideration, three types of

averages can be distinguished

〈ŝk
n〉W = wk

n〈wk
n ŝ

k
n〉 = wk

n〈l̂kn〉 = wk
nl, (A9a)

〈ŝk
n〉V = Vk

n〈Vk
n ŝ

k
n〉 = Vk

n〈M̂k
n〉 = Vk

nM, (A9b)

〈ŝk
n〉u = uk

n〈uk
n ŝ

k
n〉 = uk

n〈m̂k
n〉 = uk

nm, (A9c)

where l ≡ 〈l̂kn〉 = 〈wk
n ŝ

k
n〉, M = 〈M̂k

n〉 = 〈Vk
n ŝ

k
n〉,

m = 〈m̂k
n〉 = 〈uk

n ŝ
k
n〉 — average values of projection

operators of the spin operator ŝk
n onto the directions of the

corresponding fields.

Thus, (A9a)−(A9c) correspond to the mean values of the

components of the spin operator along the internal periodic

field (A9a), along the mean field (A9b), and along the ex-

change field (A9c), which forms the local quantization axis.

From this set, using the distribution function ρk
n(M̂

k
n) (A5),

only 〈ŝk
n〉V = Vk

n〈M̂k
n〉 can be calculated directly.

〈ŝk
n〉V = Vk

n〈M̂k
n〉 = Vk

n S p
M̂k

n eβ(
√

h2+O2)M̂k
n

z (X)

= Vk
n

s
∑

Mk
n=−s

Mk
n eβ(

√
h2+O2)Mk

n

z (X)
= Vk

nsB s(X) ≡ Vk
nM,

(A10)

where the Brillouin function B s(X) is defined by the

expression

B s(X) =

(

1

2s + 1

)

coth
1

2s + 1
X −

(

1

2s

)

coth
1

2s
X .

(A11)

It can be shown that the remaining mean values of 〈l̂kn〉,
〈m̂k

n〉 are not independent and are expressed in terms of the

component M . To do this, we reduce the equality

〈

(hk
n + Ok

n)ŝ
k
n

〉

=
〈

Vk
n ŝ

k
n

√

h2 + O2
〉

to the form

h〈m̂k
n〉 + O〈l̂kn〉 = M

√

h2 + O2. (A12)

Taking in turn the partial derivatives ∂/∂O and ∂/∂h of both

parts (A12) we get

〈l̂kn〉 =
O

√

h2 + O2
M ≡ l,

〈m̂k
n〉 =

h
√

h2 + O2
M ≡ m ≡ ys . (A13)

It should be noted that for O 6= 0 only 〈ŝk
n〉u are measured

quantities, so as average (A8) 〈ŝk
n〉 we use the measured

quantities 〈ŝk
n〉u. Taking into account, according to (A13),

the computability m and the representation of the measured

quantity 〈ŝk
n〉u in the form 〈ŝk

n〉u = uk
nm the expression �M

can be reduced to the form

�M = −
∑

n,k

[

[

m2
∑

n′,k′

J
(

|1Rkk′

nn′ |
)

uk
nu

k′

n′

]

+2µBH0u
k
nm−mh

]

− NkBT ln[z (X)] = −Nm2
[

J(q0) sin
2(ϑ) + J(0) cos2(ϑ)

]

− N2µBH0 cos(ϑ)m + Nmh − NkBT ln[z (X)],
(A14a)

J(qa) =
∑

1R

J(|1R|) cos(q1R)

≈ J0 + J1 cos(9) + J2 cos(29), (A14b)

J(0) ≡ J(qa = 0) ≡ J(9 = 0) = J0 + J1 + J2. (A14c)

The expression for the modulus of the exchange field is

determined from the condition

d�M/dh = ∂�M/∂h + (∂�M/∂m)dm/dh = 0. (A15)

Meanwhile, since

∂�M/∂h = Nm − N∂kBT ln z (X)/∂h

= Nm − hN
√

h2 + O2
M = 0

(see A13), then (A15) is reduced to the form

(dm/dh)
{

− 2m[J(qa) sin
2(ϑ) + J(0) cos2(ϑ)]

− 2µBH0 cos(ϑ) + h
}

= 0. (A16)

Where

h=
{

2[J(qa)
(

sin(ϑ)2
)

+J(0)
(

cos(ϑ)2
)

]m+2µBH0 cos(ϑ)
}

.

(A17)

After substituting (A17) into (A14a), the expression �M

in the form (5a) is obtained.
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