Преобразование центров люминесценции CVD-ZnS при газостатировании

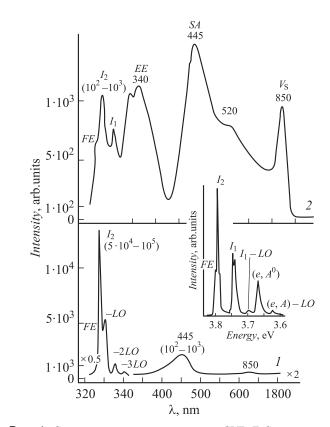
© Н.К. Морозова[¶], И.А. Каретников, В.Г. Плотниченко, Е.М. Гаврищук, Э.В. Яшина, В.Б. Иконников Московский энергетический институт (Технический университет), 111250 Москва, Россия

(Получена 15 апреля 2003 г. Принята к печати 22 апреля 2003 г.)

По спектрам катодолюминесценции и оптического пропускания выявлено влияние высоких давлений газостатирования (1500 атм при 1000° C) на равновесие собственных точечных дефектов сульфида цинка, выращенного CVD-технологией (химическим газофазным осаждением) с избытком цинка. Сняты спектры катодолюминесценции при $80-300\,\mathrm{K}$ и уровнях возбуждения 10^{22} и $10^{26}\,\mathrm{cm}^{-3}\cdot\mathrm{c}^{-1}$, а также спектры пропускания в диапазоне длин волн $4-12\,\mathrm{mkm}$ при $300\,\mathrm{K}$. Обнаружено, что газостатирование преобразует SA-свечение: возникает и усиливается на 1-3 порядка коротковолновая компонента $415\,\mathrm{mm}$, и гаснет длинноволновая компонента $445\,\mathrm{mm}$, наблюдавшаяся в исходных кристаллах. Одновременно при газостатировании исчезает полоса катодолюминесценции $850\,\mathrm{mm}$, обусловленная вакансиями $V_{\rm S}$. Эти эффекты объясняются частичным выходом избыточного цинка (Zn_i) из кристаллов и дополнительным встраиванием кислорода в узлы решетки ($O_{\rm S}$). Обнаружена дублетная полоса I_1 в области $\sim 331-332\,\mathrm{mm}$ при $80\,\mathrm{K}$, или $\sim 342-343\,\mathrm{mm}$ при $300\,\mathrm{K}$, обусловленная экситонами, связанными на акцепторных уровнях кислородных центров. Эта полоса доминирует в катодолюминесценции при уровне возбуждения $10^{26}\,\mathrm{cm}^{-3}\cdot\mathrm{c}^{-1}$. После газостатирования проявляются следы фазы ZnO как в спектрах катодолюминесценции ($730\,\mathrm{mm}$), так и в спектрах пропускания ($6-7\,\mathrm{mm}$).

Новые технологии получения из газовой фазы чистых с управляемым составом материалов A^{II}B^{VI} позволяют получить сведения о природе глубоких кислородных центров, ответственных за так называемую "самоактивированную люминесценцию", поскольку кислород остается в таких материалах единственной примесью, присутствующей в больших концентрациях. В работе [1] предложена классификация кислородных полос. При этом все основные группы "самоактивированных" полос в чистых кристаллах $A^{II}B^{VI}$ связывались с изолированным кислородом в узлах решетки O_S. Согласно принятой кристаллохимической модели, как и ее теоретическим обоснованиям [1-3], O_S формирует ближайшее окружение и создает взаимосвязанную совокупность дефектов. Эту совокупность дефектов, с одной стороны, можно рассматривать как изолированный изоэлектронный центр, с другой — как комплекс, который существует только во взаимодействии его составляющих. Изменение зарядового состояния собственных точечных дефектов в пределах области гомогенности приводит к изменению зарядового состояния всего комплекса (кислородного центра) и соответствующей ему люминесценции кристалла. Для чистого по посторонним примесям ZnS наблюдаются три группы кислородных полос: I — SA, синее свечение 445 (415) нм; II — SAL, ультрафиолетовое свечение $\sim 355-370\,\mathrm{hm}$; III — зеленое свечение 510-520 нм. Первая из них реализуется, если кислородный центр находится в решетке с избытком цинка, вторая — в кристалле стехиометрического состава, третья — при значительном избытке серы, т. е. избытке

В работе [4] на ZnSe подтверждена взаимозависимость полос спектра связанных экситонов (BE) с акцепторными уровнями кислородных центров SAL. Аналогичная


полоса BE 329 нм (100 K) наблюдалась и на образцах ZnS с SAL-свечением [5], выращенных в гидротермальных условиях. Она испытывала сверхлинейное усиление с интенсивностью возбуждения, оставаясь единственной в спектрах.

В связи с этим нами было проведено исследование конденсатов ZnS, полученных методом химического газофазного осаждения (CVD) при температуре 600° С и избытке цинка (отношение [Zn] / [H₂S] = 1.1-0.9) [6]. В соответствии с равновесием в системе собственных точечных дефектов [5] такой сульфид содержит собственные доноры: избыточный над стехиометрией межузельный цинк Zn_i и вакансии серы $V_{\rm S}$.

Такие конденсаты после выращивания были подвергнуты газостатированию при высоких давлениях, до $1500\,\mathrm{arm}$, и температуре $\sim 1000^\circ\mathrm{C}$. Высокие давления, способствуя уплотнению кристалла, воздействуют на равновесие в системе собственных точечных дефектов таким образом, чтобы уменьшить объем элементарной ячейки. При этом следует ожидать уменьшения концентрации всех дефектов [7] и прежде всего преобладающего в исходных кристаллах межузельного цинка Zn_i . Кроме того, возможно уменьшение концентрации вакансий V_S или образование новых дефектов, меньшего размера, например: $V_\mathrm{S} + \mathrm{O}_i \to \mathrm{O}_\mathrm{S}$.

Исследования спектров катодолюминесценции (КЛ) проводились первоначально при низком уровне возбуждения, 10^{22} см $^{-3} \cdot c^{-1}$, когда спектры в основном определяются глубокими уровнями дефектов и их комплексов. Детали методики исследования CVD-конденсатов описаны в [1]. Кроме того, мы приводим результаты исследования импульсной КЛ при плотности возбуждения 10^{26} см $^{-3} \cdot c^{-1}$, выполненные по методике [8]. Следует отметить, что в ZnS всегда присутствует кислород в концентрации больше 10^{18} см $^{-3}$, почти до предела его

[¶] E-mail: MorozovaNK@mpei.ru

Рис. 1. Спектры катодолюминесценции CVD-ZnS, полученного с использованием ректифицированного (I) и неректифицированного (2) H_2S при отношении $[Zn]/[H_2S] \approx 1.07$. Уровень возбуждения $10^{22}\,\mathrm{cm}^{-3}\cdot\mathrm{c}^{-1}$, $T=80\,\mathrm{K}$. Приведены длины волн в нм и (в скобках) интенсивности основных полос — типичные или конкретные. На вставке — фрагмент спектра фотолюминесценции при $10\,\mathrm{K}$ [13].

растворимости [9], так как эта примесь по термохимическим данным родственна решетке соединений $A^{II}B^{VI}$, содержится в исходных продуктах и обычно не контролируется.

Согласно представлениям [1], приведенным выше, кислород в исследуемых нами конденсатах с избытком Zn должен определять синее SA-свечение. Спектры KЛ при температуре $T=80\,\mathrm{K}$ двух исходных образцов CVD-ZnS, выращенных при разной степени очистки $\mathrm{H}_2\mathrm{S}$ от O_2 , приведены на рис. $1.^1$ Как видно из рисунка, само-активированное свечение действительно соответствует 445 нм. При очистке его относительная интенсивность I_{445}/I_{exc} (I_{exc} — интенсивность экситонной полосы) снижается от 5 (кривая 2) до 0.03. Полоса 850 нм обусловлена присутствием V_{S} [5,10,11].

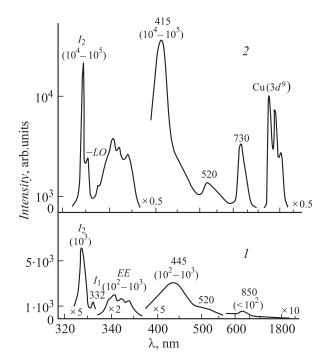
В экситонной области спектра чистых кристаллов ZnS с избытком Zn превалирует полоса I_2 с максимумом при 327.5 нм, обусловленная связанными на собственных донорах $\mathrm{Zn}_i^{\times(\bullet)}$ экситонами (см. таблицу). В КЛ чистых по посторонним примесям образцов ZnS (рис. 1,

кривая I) отсутствует краевое свечение (EE) и полоса 520 нм. Совершенство кристаллической структуры в этих образцах подтверждается высокой интенсивностью экситонных полос, для которых наблюдается до трех фононных LO-сателлитов основной полосы I_2 . При 300 К присутствует экситонная полоса 336.6 нм и очень слабое свечение в синей области спектра.

Для неочищенных от кислорода образцов в области спектра связанного экситона наблюдается полоса $I_1 \sim 331-322\,\mathrm{hm}$ с энергией связи $\sim 60\,\mathrm{m}$ (рис. 1, кривая 2). Видно, что полоса не элементарна. Обычно слабая при уровне возбуждения КЛ $10^{22}\,\mathrm{cm}^{-3}\cdot\mathrm{c}^{-1}$, она в очищенных образцах (кривая I) с усилением интенсивности экситонного спектра перекрывается LO-повторениями основной экситонной полосы.

В таблице отражено смещение полосы I_1 с температурой. При $T=10\,\mathrm{K}$ она совпадает с дублетом 331.8 и $\sim 331.2\,\mathrm{Hm}$ в спектре фотолюминесценции, приведенным на вставке к рис. 1 [12,13]. Спектр при $T=10\,\mathrm{K}$ снят на совершенных эпитаксиальных слоях ZnS при лазерном возбуждении. Природа дублета I_1 не идентифицирована. Энергия связи для компонент дублета, разрешенных при $10\,\mathrm{K}$, составляет 61 и 54 мэВ (от FE_{hl} [13]).

Влияние газостатирования (Γ C) на спектры КЛ типичного образца CVD-ZnS при уровне возбуждения $10^{22}\,\mathrm{cm}^{-3}\cdot\mathrm{c}^{-1}$ и $80\,\mathrm{K}$ представлено на рис. 2. В результате Γ C было обнаружено резкое и многоплановое изменение спектра КЛ.


Во-первых, оказалось, что возникает и усиливается на 2-3 порядка коротковолновая компонента SA-свечения

Положение полос свободного (FE) и связанного (BE) экситонов в ZnS


Полоса	Энергия, эВ (Длина волны, нм)			Энергия связи <i>є</i> , мэВ	Литератур- ная ссылка
	0 K	80 K	300 K	сылы с, мэв	пал севілка
FE_{lh} FE_{hh}	3.7979 (326.46) 3.8012 (326.17)	3.7929 (326.88) 3.7962 (326.6)	3.6881 (336.18) 3.6915 (335.87)	40.9	[12]
$I_2(\mathbf{Z}\mathbf{n}_i^{\bullet})$	3.790 (327.14)	3.7850 (327.56)	3.6803 (336.89)	8	[13]
$I_1(SA)$	3.737 (331.77) 3.744 (331.16)	3.7320 (332.22) 3.7390 (331.59)	3.6273 (342.1) 3.6343 (341.16)	61-64 54-57	[13]
$I_1(SAL)$	3.7734 (328.58)	3.7679 (329.05)	3.6437 (338.41)	24.5	[5]

Примечание. Температурное изменение энергии расшепленной полосы FE [13] $E(T)=E(0)-\alpha\cdot T^4/(\beta+T^3)$, где для FE_{lh} E(0)=3.7979 эВ — положение полосы свободного экситона при температуре 0 K, $\alpha=4.04\cdot 10^{-4}$ эВ/K, $\beta=2.82\cdot 10^6$ K³ и для FE_{hh} E(0)=3.8012 эВ, $\alpha=4.15\cdot 10^{-4}$ эВ/K, $\beta=2.75\cdot 10^6$ K³. В таблице даны положения полос BE, рассчитанные по известным E(T) при 10 K [13], 100 K [5] в соответствии с изменением E(T) для FE_{lh} .

¹ Указываемые на рисунках интенсивности полос — это относительные значения, полученные из экспериментальных спектров, приведенных к одинаковым условиям регистрации.

Рис. 2. Влияние газостатирования на спектр катодолюминесценции CVD-ZnS. I — исходный скол, 2 — газостатированный. Уровень возбуждения 10^{22} см $^{-3} \cdot c^{-1}$, T=80 K. $[Zn]/[H_2S]=0.9$. Приведены длины волн в нм и (в скобках) интенсивности основных полос.

Рис. 3. Спектры импульсной катодолюминесценции тех же сколов, что и на рис. 2, при уровне возбуждения $10^{26}~{\rm cm}^{-3}\cdot{\rm c}^{-1}$ и $T=300~{\rm K}.~1$ — исходный ZnS, 2 — газостатированный.

410-415 нм. Согласно принятой классификации центров [1], возникновение коротковолновой компоненты связано с кислородными комплексами $\{O_S^* \cdot Zn_i^{\bullet} \cdot V_{Zn}''\}'$, образование которых возможно только при недостатке в кристалле межузельного цинка. Избыток цин-

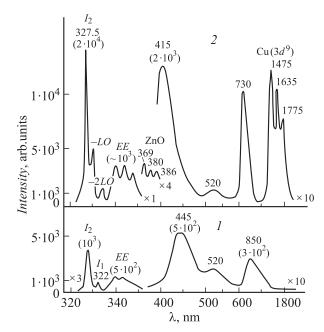
ка приводит к образованию донорно-акцепторных пар $\{O_S^* \cdot Z n_i^{\bullet} \cdot V_{Zn}''\}' - Z n_i^{\bullet}$, определяющих длинноволновую составляющую SA-свечения 445 нм.

Во-вторых, наряду с усилением SA-свечения, при Γ С исчезает полоса 850 нм, обусловленная $V_{\rm S}$. Это возможно при заполнении $V_{\rm S}$ кислородом, содержащимся в кристаллах в концентрации $\sim 10^{20}\,{\rm cm^{-3}}$. С увеличением концентрации растворенного кислорода согласуется усиление люминесценции на кислородных SA-центрах (415 нм). Отметим в связи с этим, что Γ С является более тонким методом воздействия на равновесный состав собственных точечных дефектов, чем отжиги в парах компонент соединения. Действительно, уменьшения концентрации межузельного цинка $[Zn_i^{\bullet}]$ можно добиться и отжигом в парах серы, но при этом возникают новые дефекты, в частности $V_{\rm Zn}$ [5].

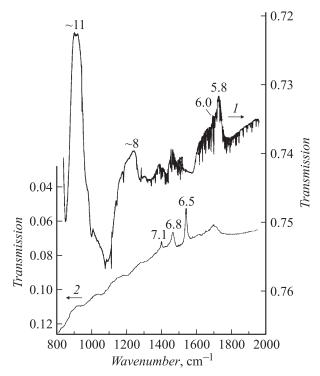
В-третьих, выявлена корреляция в поведении SA-свечения и полосы в области спектра связанного экситона — дублета I_1 , т.е. обнаруженной при $80\,\mathrm{K}$ полосы $331-332\,\mathrm{Hm}$. По спектральному положению наблюдаемые полосы дублета I_1 соответствуют 2 акцепторным уровням SA-центра в запрещенной зоне ZnS [1].

Поскольку полосы связанного экситона мало интенсивны при низком уровне возбуждения $(10^{22} \, \text{cm}^{-3} \cdot \text{c}^1)$, мы провели на тех же образцах исследование КЛ при более высоких интенсивностях возбуждения $(10^{26}\,{\rm cm}^{-3}\cdot{\rm c}^{-1})$. На рис. 3 представлены спектры КЛ при 300 К для исходного образца и после ГС [11]. При высоком уровне возбуждения в обоих спектрах превалирует полоса 342-343 нм полушириной ~ 60 мэВ (на полувысоте). После газостатирования наблюдается усиление по интенсивности этой полосы на порядок. Как видно из рис. 3, эта полоса связанного экситона является единственной в спектрах ZnS после ГС, т.е. в "бездефектной" матрице (кривая 2). В спектрах исходных сколов (кривая 1) она имеет длинноволновый хвост, который качественно соответствует полосам, присутствующим в КЛ при низком уровне возбуждения (рис. 2). Положение основной полосы КЛ при 300 К спектрально совпадает с расчетным положением дублетной полосы I_1 (см. таблицу).

В чистом ZnS, имеющем после ГС огромное количество только кислородных SA-центров, возникающую полосу связанного экситона можно считать обусловленной этими дефектами. Кроме того, обнаружена корреляция в положении максимума полосы 343 или 342 нм с компонентами SA-свечения — 445 или 415 нм соответственно. Последнее отчетливо прослеживается по спектрам КЛ, снятым при низком уровне возбуждения, которые выявляют соотношение интенсивностей коротковолновой (415 нм) и длинноволновой (445 нм) компонент SA-свечения. Представленные результаты принципиально схожи с результатами исследований [15], выполненных на ZnSe, а именно — при введении кислорода отмечались возникновение полос связанного экситона на акцепторных уровнях и рекомбинация на донорноакцепторных парах. Подобная интерпретация применима и к полученным ранее результатам [5,16].


Обнаруженные нами полосы связанного на кислородных SA-центрах экситона позволяют уточнить (по энергии связи ε) положение акцепторных уровней $E_A = 10\varepsilon$ [14]. В соответствии с двумя компонентами SA-свечения энергии уровней составляют 0.61 и 0.54 эВ. Полученные значения несколько меньше, чем E_A (0.69) и 0.59 эВ), определенные в [1] по спектрам возбуждения и люминесценции в соответствии с рекомбинационной моделью свечения. Если принять во внимание также отсутствие спектрального смещения кислородных полос [1,4,11] при изменении ширины запрещенной зоны с температурой, то следует заключить, что SA-излучение соответствует переходам не из зоны проводимости, а с возбужденного уровня центра на основной. В частности, возможна рекомбинация на близких донорноакцепторных парах в составе кислородных комплексов.

Возвращаясь к влиянию ГС на спектры КЛ ZnS при низких уровнях возбуждения (рис. 2), отметим, что при этом усиливаются также полосы, связанные с загрязнениями примесями I группы (EE) и Cu ($520-530\,\mathrm{hm}$), и возникают инфракрасные полосы 1475, 1635, 1775 нм, обусловленные внутрицентровыми переходами в ионе Cu_{Zn} ($3d^9$). Возникновение последних согласуется с перезарядкой ионов остаточной меди $3d^{10} \to 3d^9$ при уменьшении концентрации собственных доноров. При больших давлениях медь в решетке может заполнять вакансии цинка $V_{\rm Zn}$. Присутствие остаточной меди в кристаллах в концентрации $\sim 10^{16}\,\mathrm{cm}^{-3}$ возможно.


Особо следует отметить возникновение после ГС полосы 730 нм, обусловленной включениями ZnO в ZnS [9]. Эта полоса в спектрах КЛ исходных образцов отсутствует, но после ГС наблюдается как при 80 К (рис. 2), так и при 300 К, хотя при комнатной температуре ее интенсивность примерно вдвое ниже. Факт образования ZnO после ГС подтверждается появлением в ряде спектров (рис. 4) экситонных полос ZnO: 369, 380, 385 нм [17].

Полоса 730 нм более интенсивна, когда содержание кислорода в кристаллах заметно превышает предел его растворимости в ZnS, что достигается для образцов, выращенных при большем избытке серы. Так, конденсаты, спектры которых представлены на рис. 2 и 4, выращены при отношении [Zn] / [H₂S] $< 1 \ (0.9)$ и $> 1 \ (1.05)$. При большем содержании серы уменьшение концентрации $V_{\rm S}$ подтверждается уменьшением интенсивности полосы КЛ 850 нм (рис. 2 и 4, кривые 2). При этом относительная интенсивность полосы ZnO 730 нм ($I_{730}/I_{\rm exc}$) увеличивается от 0.1 до 0.3. В литературе отмечается, что свечение ZnO 730 нм типично для образцов, в которых образование межузельного цинка затруднено [9].

Для того чтобы проверить, возможна ли оценка присутствия ZnO по интенсивности полосы КЛ 730 нм, были исследованы спектры пропускания ZnS, поскольку в работе [18] показано, что даже при малых количествах ZnO выявляется по фурье-спектрам в области 5—15 мкм. На рис. 5 приведены спектры пропускания, снятые по этой методике. Видна характерная для включений ZnO

Рис. 4. Спектры катодолюминесценции сколов CVD-ZnS при уровне возбуждения $10^{22}\,\mathrm{cm^{-3}\cdot c^{-1}}$ и $T=80\,\mathrm{K}$. [Zn] / [H₂S] = 1.05. I — исходный ZnS, 2 — газостатированный. Приведены длины волн в нм и (в скобках) интенсивности основных полос.

Рис. 5. Спектры пропускания ZnS при $T = 300 \, \mathrm{K}$: I — конденсат после Γ C, представленный на рис. 2, 2 — монокристалл ZnS с включениями ZnO после старения [5]. Приведены длины волн основных полос в мкм.

группа узких полос поглощения 5.8, 6.5, 6.8, 7.1 мкм (кривая I). Сравнение этих полос по интенсивности для различных конденсатов подтвердило корреляцию с интенсивностью полосы КЛ 730 нм. Так, спектр пропускания с выраженной структурой в области 5–7 мкм (кривая I на рис. 5) соответствует образцу после ГС с более интенсивной полосой КЛ 730 нм. В пропускании исходных (до Γ C) образцов эта группа полос отсутствует или слабо просматривается на уровне фона.

В спектрах пропускания кроме группы узких полос наблюдалась и более длинноволновая широкая полоса поглощения $\sim 11\,$ мкм. Она совпадает с интенсивной полосой поглощения (LO+TO)-многофононного спектра монокристаллов ZnO [18,19] и аналогична полосе $10.2\,$ мкм ZnSe, которая наблюдалась на ранней стадии образования фазы оксида [18]. Для сравнения на рис. 5 приведен спектр (кривая 2) монокристалла ZnS: Cu $(10^{-3}\,\%\,\text{Cu})$ после старения, в котором выделение фазы ZnO (наиболее полное в присутствии меди) подтверждено исследованиями микро-КЛ в растровом электронном микроскопе [5]. В этом спектре широкая полоса $11\,$ мкм (ZnS) ослаблена, как и в аналогичных случаях для ZnSe [18]. После ГС конденсатов сульфида цинка полоса поглощения $11\,$ мкм несколько усиливается.

В качестве выводов можно отметить следующее.

Эффекты, наблюдаемые при газостатировании, связаны с ожидаемым при высоком давлении уменьшением объема элементарной ячейки ZnS. Подтверждается роль межузельных атомов цинка как быстро диффундирующих собственных доноров, участвующих в установлении равновесного взаимодействия собственных точечных дефектов. Газостатирование дает очень равномерное легирование с образованием устойчивых центров или твердых растворов в совершенной бездефектной матрице.

Проведенные исследования позволяют подтвердить классификацию кислородных центров. Установлено, что кислородные центры (комплексы), ответственные за SA-(и SAL-) свечение ZnS, имеют акцепторные уровни, которые могут связывать экситон. Этот канал определяет люминесценцию при больших уровнях возбуждения. Уточнены тип свечения и положение акцепторных уровней кислородных центров: ~ 0.25 эВ для SAL-свечения 355-370 нм; 0.61 и 0.54 эВ для 2 компонент 445 и 415 нм SA-свечения.

Подтверждена связь полосы люминесценции 730 нм в чистом по иновалентным примесям ZnS с присутствием фазы ZnO.

Список литературы

- [1] Н.К. Морозова, И.А. Каретников, В.В. Блинов, Е.М. Гаврищук. ФТП, **35** (1), 25 (2001).
- [2] Ю.Н. Дмитриев, В.Д. Рыжиков, Л.П. Гальчинецкий. *Термодинамика изовалентного легирования кристаллов полупроводниковых соединений типа* А^{II}В^{VI} (Харьков, ВНИИ монокристаллов, 1990, № ИМК-90-16).

- [3] Э.Д. Алукер, Д.Ю. Лусис, С.А. Чернов. Электронные возбуждения и радиолюминесценция щелочно-галоидных кристаллов (Рига, Зинатне, 1979).
- [4] Н.К. Морозова, Д.В. Жуков, В.Е. Мащенко, В.В. Блинов. Докл. XXXII Межд. научно-техн. сем. "Шумовые и деградационные процессы в полупроводниковых приборах" (М., МЭИ, 2002) с. 234.
- [5] Н.К. Морозова, В.А. Кузнецов. Сульфид цинка. Получение и оптические свойства, под ред. М.В. Фока (М., Наука, 1987).
- [6] Е.М. Гаврищук, Э.В. Яшина. Высокочистые вещества, № 5, **36**, (1994).
- [7] К. Руманс. Структурные исследования халькогенидов при высоких давлениях (М., Мир, 1969) с. 207.
- [8] В.М. Лисицын, В.И. Корепанов, В.И. Олешко, В.Ю. Яковлев. Изв. вузов. Физика, № 11, 5 (1996).
- [9] Н.П. Голубева, М.В. Фок. ЖПС, 17 (2), 261 (1972).
- [10] K. Leutwein, A. Rauber, J. Schneider. Sol. St. Commun., 5 (6), 783 (1967).
- [11] Н.К. Морозова, И.А. Каретников, Е.М. Гаврищук, В.М. Лисицын, В.И. Олешко, В.И. Корепанов. Докл. ХХХІІІ Межд. научно-техн. сем. "Шумовые и деградационные процессы в полупроводниковых приборах" (М., МЭИ, 2003) с. 12.
- [12] Nam Sungun, Rhee Jongkwang, O. Byungsung, Ki-Seon Lee. J. Korean Phys., 32 (2), 156 (1998).
- [13] N Lovergine, P. Prete, G. Leo, L. et al. Cryst. Res. Technol., 33 (2), 183 (1998).
- [14] Φ изика и химия соединений $A^{II}B^{VI}$, под ред. М. Авена, Д.С. Пренера (М., Мир, 1970).
- [15] K. Akimoto, T. Miyajima, Y. Mori. Phys. Rev. B, 39 (5), 3138 (1989).
- [16] А.М. Ахекян, В.И. Козловский, Ю.В. Коростелин, Я.К. Скасырский. Кр. сообщ. по физике, № 3, 44 (1988).
- [17] И.П. Кузьмина, В.А. Никитенко. Окись цинка (М., Наука, 1984) с. 165.
- [18] Н.К. Морозова, В.Г. Плотниченко, Е.М. Гаврищук, В.В. Блинов. Неорг. матер., **39** (8), 1105 (2003).
- [19] R.J. Collins, D.A. Kleiman. J. Phys. Chem. Sol., 11, 190 (1959).

Редактор Л.В. Шаронова

Transformation CVD-ZnS by GS of luminescence centers

N.K. Morozova, I.A. Karetnikov, V.G. Plotnichenko, E.M. Gavrishchuk, E.V. Yashina, V.B. Ikonnikov

Moscow Power Engineering Institute (Technical University), 111250 Moscow, Russia

Abstract The influence of a high pressure $\sim 1500\,\mathrm{atm}$ at $1000^{\circ}\mathrm{C}$ (GS) on the balance of intrinsic point defects in ZnS was investigated. ZnS crystals were grown by CVD technology with an excess of zinc. The cathodoluminescence spectra was examined at $80-300\,\mathrm{K}$ and excitation level 10^{22} and $10^{26}\,\mathrm{cm}^{-3}\cdot\mathrm{c}^{-1}$. Transmission spectra were investigated at $300\,\mathrm{K}$.