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Introduction

Numerous publications have been devoted to calculations

of the leak location in gas pipelines and wells based

on a mathematical model of gas flow, starting with the

fundamental work of Vasiliev, Bondarev, Voevodin and

Kanibolotsky [1], up to the present, for example, papers [2–
5]. Success in solving this problem is impossible without

creating an adequate mathematical model of gas flow under

the conditions under study. Despite the availability of well-

known software systems (OLGA, PIPESIM, a number of

domestic software systems, for example, SINF), it is prema-

ture to consider as completed the creation of the adequate

mathematical model and the program for calculating gas

transportation in the general case. The reason for this is as

follows. The adequacy of the mathematical model is ensured

by a reasonable choice in the problem under study of

such hard-to-determine variables as the hydraulic resistance

coefficient λ and the total heat transfer coefficient β . The

universal method for calculating λ and β under actual

conditions is the method of identifying these parameters

from experimental data [1]. The above software systems

do not include the method of identifying the λ and β

parameters. For the adequacy of the mathematical model

of gas transportation, the choice of the equation of the

gas mixture state in the studied range of pressure p and

temperature T changes is also of great importance. Many

universal equations of state are known, for example, the

American Gas Association equation recommended in [6].
However, the cumbersomeness of this universal dependence

of the compressibility factor Z(p, T ) calls into question the

expediency of its use in problems where the range of p and

T changes is obviously limited.

For main and offshore gas pipelines our book [7] provides
a solution to the problem of identifying the parameters λ

and β, based on the iterative Bellman quasilinearization

method [8]. Besides, in book [7] the effect of errors

in setting these parameters on the flow characteristics

was studied. In paper [9] a method for plotting the

dependence Z(p, T ) from experimental data is proposed,

and its efficiency is demonstrated in the region of superhigh

pressures. Paper [9] also presents a solution of the problem

of calculating the coordinates of a stationary gas leak by

iteration using quasilinearization for superhigh pressures

(under the assumption of a stable flow pattern both before

the leak and some time after its occurrence). The solution

of the similar problem for medium pressures is given

in [5]. In this paper we consider the admissibility of using

relatively simple models for calculating the coordinate of

the stationary leak in gas pipelines, the pressure in which

does not exceed 100 atm. As it is well known [1], at such
pressures the Berthelot equation has proven itself well for

calculating the compressibility coefficient.

1. Mathematical model of non-isothermal
stable flow of mixture of gases
through a pipeline of constant circular
cross-section [1,7]

ρuS = Q0, (1)

d
dz

(p + ρu2) = −
λρu|u|
4R

+ ρg cosα(z ), (2)
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ρuc p
dT
dz

= ρuT

(

∂(1/ρ)

∂T

)

p

d p
dz

+
λρu2|u|
4R

− 2β
T − T∗

R
,

(3)
pV = RgT Z(p, T ),

Z(p, T ) = 1 + 0.07
p
pc

Tc

T

(

1− 6
T 2

c

T 2

)

, (4)

V = 1/ρ.

In the system of equations (1)−(4) V is specific volume

of gas; Rg , pc , Tc are gas constant, critical pressure and

temperature of the mixture of gases of a given composition;

z , L are coordinate along the pipeline axis and its length;

ρ, p, T, u are density, pressure, temperature and gas veloc-

ity, respectively; R, S are internal radius and cross-sectional

area of the gas pipeline; g is free fall acceleration; α(z ) is

angle between gravity direction and gas pipeline axis in z -
th section; λ is hydraulic resistance coefficient; β is total

heat transfer coefficient; c p is specific heat of gas mixture

at constant pressure;

In the general case, the variables λ, β, c p, and T ∗

can be functions of z coordinate, in particular, they can

depend on the pressure and temperature of the gas, on

the design parameters of the gas pipeline, and on external

conditions. The adequacy of the stationary mathematical

model (1)−(4), as noted, depends on the choice of the

variables λ, β, c p and on the choice of the type of

dependence Z(p, T ) of the compressibility coefficient in

the investigated range of pressure, temperature and flow

changes. The system of equations (1)−(4) is supplemented

by the boundary condition

z = 0 : p = P(0), T = T (0), (5)

where P(0), T (0) are dimensional pressure and temperature

at the gas pipeline inlet.

The solution of the system of equations (1)−(4) under

the boundary condition (5) exists and is unique in a wide

range of Q0, P(0), T (0), R and L. The numerical solution

can be obtained with high accuracy, for example, by the

Runge−Kutta method. The solution of the problem of

identifying the parameters λ and β from experimental data

on the pressure and flow rate at the outlet of the gas pipeline

section, within which these variables can be considered

constant, is given in [7].

2. Calculation of value c p(p, T)

The specific heat c p of a gas mixture at constant pressure

can be calculated using the well-known formula [10]:

c p(p, T ) = c0
p(T ) − T

p
∫

p0

(

∂2V/∂T 2
)

p
d p. (6)

Here c0
p(T ) is temperature dependence of the specific heat

capacity of the gas mixture at a constant pressure p0,

at which the mixture behaves like an ideal gas. In the

temperature range from 2 to 40◦C, the c0
p(T ) dependence

can be considered linear. The second derivative of V
with respect to T and the integral in equation (6) for the

Berthelot equation (4) are found analytically, resulting in

the following expression for the dependence of the isobaric

specific heat c p on pressure p and temperature T :

c p(p, T ) = k1 + k2

T
Tc

+ k3

T 3
c

T 3

(

p
pc

−
p0

pc

)

. (7)

The values of the dimensional constants k1, k2, k3,

depending on the composition of the gas mixture, are

given below (10). In the general case, the system of

equations (1)−(4) must be solved taking into account the

dependence c p(p, T ) (7). When solving problems in which

the range of pressure and temperature changes is not very

large, one can restrict oneself to the mean integral variable

〈c p〉 defined by the equality:

〈c p〉 =
1

(P(0) − PL)(T (0) − TL)

T (0)
∫

TL

P(0)
∫

PL

c p(p, T )d pdT.

(8)

In terms of dimensionless quantities T0 = T (0)/Tc ,

T1 = TL/Tc , p0 = P(0)/pc , pL = PL/pc , p0
c = p0/pc the

mean value of 〈c p〉 calculated by formula (8) is equal to

〈c p〉=k1+k2

(

T0+T1

2

)

+k3

(T0+T1)/2

T 2
0 T 2

1

(

p0+pL

2
−p0

c

)

.

(9)

In this paper all calculations were carried out for the gas

mixture of 12 components with a predominance of methane;

the composition and parameters of the mixture are given in

book [7]. For this mixture of gases, the critical parameters

and variables k1, k2, k3 are:

k1 = 1803.7 J/(kg ·K), k2 = (1.5Tc) J/(kg ·K),

k3 = 2.52Rg J/(kg · K),

Tc = 193.698K, pc = 4.5978MPa,

Rg = 493.501 J/(kg ·K). (10)

Expression (9) for the variable 〈c p〉 includes the values of

temperature and pressure at the outlet. These variables

either are measured experimentally or can be calculated

using the system of equations (1)−(4) with boundary

condition (5). In the second case, the variable 〈c p〉 is

calculated iteratively. In a zero approximation a reasonable

value 〈c p〉
(0) is given, from the solution of the system of

equations (1)−(4) the variables P(0)
L and T (0)

1 in the zero

approximation are determined, and by formula (9) the value
of 〈c p〉

(1) is calculated in the first iteration and etc. In the

examples below three iterations were sufficient to calculate

the variable 〈c p〉 with an accuracy of 10−4 J/(kg · K).
Further, in all calculations, the average value 〈c p〉,

denoted as c p, was used.
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3. Simplified models

The solution of the problem of calculating the coordinates

of the gas leak according to model (1)−(4) is given

in [5]. The analysis of these calculations showed that

there is a range of parameters Q0, P(0), T (0), R, L,
β, λ, T∗ change, in which, with an acceptable accuracy,

it is possible to calculate the pressure and temperature

distributions in the gas flow using simplified models. It

is essential that the simplified models lead to simple

formulas for calculating the coordinates of the stationary

gas leak.

About possible simplifications . For many problems

the pipeline route can be considered horizontal. The inlet

pressure, gas flow rate and inner radius of the gas pipeline

in actual problems are chosen in such a way that the

flow velocity at any point of the gas pipeline does not

exceed the critical value at which the pipeline begins to

vibrate. This leads to the fact that in actual problems of gas

transportation, the inertial forces in the flow are by several

orders of magnitude smaller than the pressure forces, and

the term ρu2 in the left side of the equation of motion

can be neglected compared to pressure. Thus, under the

conditions

∀z ∈ [0, L]

1) horizontal route,

2) p ≫ ρu2 →
d

dz
(p + ρu2) =

d p
dz

(11)

the equation of motion and the thermal equation of

model (1)−(4) are simplified and written as follows:

d p
dz

= −
λρu|u|
4R

, (12)

dT
dz

=
1

c p

(

T

(

∂V
∂T

)

p

−V

)

d p
dz

−
2β

Rρuc p
(T − T ∗). (13)

The multiplier in front of dp
dz in equation (13) is known [10]

Joule−Thomson coefficient D∗, this allows us to represent

thermal equation (13) in the form

dT
dz

= D∗

d p
dz

−
2β

Rρuc p
(T − T ∗). (14)

It follows from equation (14) that at T > T ∗ at any point of

the gas pipeline the temperature drop is due to two reasons:

gas cooling due to pressure drop (the so-called
”
throttle

effect“), and gas cooling as the result of heat exchange with

the environment.

The right side of equation of motion (12), taking into

account equations (1) and (4), can be expressed in terms of

T, p and Z(p, T ):

d p
dz

= −

(

λQ02Rg

4RS2

)

T Z(p, t)
p

. (15)

The simplified system of equations (1), (15), (14) and (4),
which follows from general system (1)−(4) under condi-

tions (11), is much simpler than system (1)−(4), however,
it also does not admit simple analytical solutions. The

situation is greatly simplified if we assume that the com-

pressibility factor Z(p, T ) can be considered as a constant

value:

Z(p, T ) = const = Z∗. (16)

Direct simplification (16), of course, remains undone

for non-ideal gases. The admissibility of its use in actual

problems can only be justified by the coincidence with

the required accuracy of calculations of the pressure and

temperature distributions, as well as the coordinates of the

gas leak according to the general and simplified models.

Under condition (16) the Joule−Thomson coefficient D∗

becomes zero, which allows us to split the closed system

of equations (14), (15). Thermal equation (14), when

condition (16) is satisfied, is simplified

dT
dz

= −
2β

Rρuc p
(T − T ∗) (17)

and is easily integrated. The integral of equation (17) is well-
known [11] V.G. Shukhov’s formula. When condition (16)
is satisfied, the equation of motion is also integrated

analytically.

Let us write the general and simplified models in dimen-

sionless form. Let us introduce dimensionless variables by

the formulas:

z̃ =
z
L
, T̃ =

T
Tc

, p̃ =
p
pc

, ρc =
pc

RgTcZc
,

Zc = Z(pc , Tc) = 0.65, ρ̃ =
ρ

ρc
, ũ =

uρcS
Q0

,

Ts =
T ∗

Tc
, p0 =

P(0)

pc
, T0 =

T (0)

Tc
, pL =

PL

pc
. (18)

The wave indication in dimensionless variables is omitted

wherever this does not lead to ambiguity.

For a horizontal route the general system of equa-

tions (1)−(4) and boundary condition (5) in dimensionless

form have the form

Model I



















































ρu = 1,

d
dz

(

p + m1

T Z
p

)

= −m2

TZ
p
,

dT
dz

=m3

T
p

(

Z+T
∂Z
∂T

)

d p
dz

+m2m3

(

T Z
p

)2

−m4(T−Ts),

p = ρT Z/Zc , Z = 1 + 0.07
p
T

− 0.42
p

T 3
.

(I)

z = 0 : p = p0, T = T0. (19)

When conditions (11), (16) are met, model (I) is trans-

formed into a simplified model.
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Model II











































ρu = 1,

d p
dz

= −m2

T Z∗

p
,

dT
dz

= −m4(T − Ts ),

ρ =
pZc

TZ(p, T )
.

(II)

In model II it is more accurate to calculate the dimension-

less density not at constant compressibility factor, but at the

compressibility factor determined by Berthelot equation (4),
in which the pressure and temperature values are found

by integrating the simplified system of equations. The

calculation of the effective constant compressibility factor Z∗

is given below (23).
The dimensionless complexes included in models I and II

are equal to

m1 =

(

Q0

S

)2
RgTc

p2
c

, m2 = m1

λL
4R

, m3 =
Rg

c p
,

m4 =
2LβS

Rc pQ0
, S = πR2. (20)

Calculation of pressure and temperature distributions

by model II

The temperature distribution is determined by integrating

the thermal equation of model II under boundary condi-

tion (19):

T (z ) = Ts + (T0 − Ts ) exp(−m4z ). (21)

The pressure distribution is found as a result of integrating

the equation of motion of model II with the found depen-

dence T (z ) (21) under boundary condition (19):

p(z ) =

[

p2
0 − 2m2Z∗Ts z + 2

m2

m4

Z∗
(

T0 − Ts
)

×
(

exp(−m4z ) − 1
)

]1/2

. (22)

The value of the effective compressibility factor Z∗ can

be determined in different ways. Calculations showed that

it is expedient to determine Z∗ by the value of the pressure

at the outlet of the gas pipeline, measured experimentally

or calculated using the general model of processes. In this

case Z∗ is defined by the equality

Z∗ =
p2
0 − p2

L

2m2

(

Ts −
(

T0 − Ts
)(

exp(−m4) − 1
)

/m4

) . (23)

Calculation of coordinates of gas leak according to

model II

In this paper, stable gas flow modes are considered, and

it is assumed that some time after the start of the stationary

gas leak δQ of low or medium intensity, a new stable flow

mode is established in the gas pipeline, in which the place

of gas leakage can be considered as a specific point in flow

distribution.

Let us denote by z a the dimensional coordinate of the

cross-section, in which the gas leak occurs, by l — the

dimensionless coordinate of the gas leak (l = z a/L). We

will divide the pipeline into two sections:

first section: z ∈ [0, l], second section: z ∈ [l, 1].

The gas flow rate in the first section is equal to the flow

rate Q0 at the gas pipeline inlet. The gas flow rate in the

second section in the new stable state is equal to the outlet

flow rate: QL = Q0 − δQ.

The distributions of pressure and temperature in the first

section are determined by dependences (21), (22). In

particular, the pressure pa and the temperature Ta at the

boundary of the first section (at z = l) are:

p2
a = p2

0 − 2m2Z∗Ts l + 2
m2

m4

Z∗
(

T0 − Ts
)(

exp(−m4l) − 1
)

,

(24)

Ta = Ts + (T0 − Ts) exp(−m4l). (25)

For the second section in the new stable state with a

known flow rate QL at the outlet in simplified model (II) the
values of the dimensionless complexes m2 → m̂2, m4 → m̂4

and the boundary condition change:

z = l : p = pa , T = Ta , (26)

m̂2 =

(

QL

S

)2 RgTc

p2
c

λL
4R

, m̂4 =
2LβS

Rc pQL
. (27)

As a result of integrating the thermal equation of model II

under boundary condition (26), we find the temperature

distribution in the second section:

z ∈ [l, 1] : T (z ) = Ts + (T0 − Ts) exp
(

−l(m4−m̂4)
)

× exp(−m̂4z ). (28)

As the result of integrating the equation of motion of

model II at T (z ) (28) under boundary condition (26), we
find the pressure distribution in the second section:

z ∈ [l, 1] : p(z )=

[

p2
a−2m̂2Z

∗Ts(z −l)+2
m̂2

m̂4

Z∗(T0−Ts)

× exp
(

−l(m4 − m̂4)
)(

exp(−m̂4z ) − exp(−m̂4l)
)

]1/2

.

(29)

In equality (29), the value p2
a is defined by equality (24).

Let the value of the dimensional pressure PL at the output

be experimentally determined.

Transcendental equation for determining the dimen-

sionless coordinate l of stationary gas leak from the

measured variables QL and PL follows from equation (29) at
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z = 1, pL = p(1) = PL/pc . This equation has the following

form:

p2
0−2m2Ts Z∗l+2

m2

m4

Z∗
(

T0 − Ts
)(

exp(−m4l) − 1
)

− 2m̂2Z∗Ts(1− l) + 2
m̂2

m̂4

Z∗(T0 − Ts) exp
(

−l(m4−m̂4)
)

×
(

exp(−m̂4) − exp(−m̂4l)
)

− p2
L = 0. (30)

The solution of transcendental equation (30) is not

difficult. The dimensional coordinate z a of the stationary

gas leak is determined by the found variable l : z a = l · L.

Simplified model III for thermal insulated gas pipeline

For a thermal insulated gas pipeline, the total heat transfer

coefficient β is equal to zero. The dimensionless complexes

m4 (20) and m̂4 (27) become zero. In thermal equation (14)
at β = 0, the only mechanism of gas cooling in the flow

is the temperature drop due to the pressure drop. If

compressibility factor (16) is constant, the Joule−Thomson

coefficient becomes zero, which leads to the constant

temperature in model III. Under boundary condition (19)
the following equality follows for the gas temperature: T =
const = T0.

Pressure distribution (22) at m4 = 0 taking into account

the passage to the limit

lim
m4→0

exp(−m4z ) − 1

m4

= −z

is written in the form

p(z ) =
[

p2
0 − 2m2Z∗T0z

]1/2
. (31)

Equality (23) for m4 = 0 leads to the following expression

for the effective compressibility factor Z∗

0 :

Z∗

0 =
p2
0 − p2

L

2m2T0

. (32)

In the presence of the stationary gas leak, the pressure

distribution in the first section is given by formula (31), in
particular, for z = l, the pressure pa in model III is equal

to

p2
a = p2

0 − 2m2Z∗

0T0l. (33)

In the second section, after the establishment of a

new stable mode in model III at m4 → 0, m̂4 → 0, from

formula (29) by passing to the limit we obtain the following

expression for the pressure distribution:

p(z ) =
[

p2
a − 2m̂2Z∗

0T0(z − l)
]1/2

, (34)

in which the variable pa is defined by equality (33).
As in the derivation of equation (30), we set z = 1:

pL = p(1) = PL/pc and obtain the following simple analyt-

ical formula for calculating the dimensionless coordinate l
of the gas leak in models III:

l =
p2
0 − p2

L − 2m̂2Z∗

0T0

2Z∗

0T0(m2 − m̂2)
. (35)

Formula (35), as follows from its derivation, can be used

to calculate the location of the stationary gas leak after

reaching a new stable flow mode at β → 0 and under

conditions (11), (16).

4. Examples of test calculations

Let us give examples of calculations using general

model I and simplified models II and III for four options

of the problem parameters. For all options we take the

following parameters as unchanged:

R = 0.5m, T (0) = 308.15K,

T ∗ = 278.15K, L = 5 · 104 m,

Tc =193.698K, pc =4.598MPa, Rg =493.501 J/(kg · K).
(36)

Option 1.

P(0) = 60 atm, Q0 = 250 kg/s, δQ = 25 kg/s,

β = 5W/(m2 · K), c p = 〈c p〉 = 2649.24 J/(kg ·K),

λ = 0.0087. (36.1)

Option 2.

P(0) = 90 atm, Q0 = 250 kg/s, δQ = 25 kg/s,

β = 5W/(m
2
· K), c p = 〈c p〉 = 2881.11 J/(kg ·K),

λ = 0.0087. (36.2)

Option 3.

P(0) = 90 atm, Q0 = 400 kg/s, δQ = 40 kg/s,

β = 5W/(m
2
· K), c p = 〈c p〉 = 2853.69 J/(kg ·K),

λ = 0.0085. (36.3)

Sets (36)−(36.3) contain rounded values of the variables;

their exact values were used in the calculations. The average

variable 〈c p〉 of the specific isobaric heat capacity for all

options was calculated using general model I in accordance

with iterative algorithm given above (9). The value of

the hydraulic resistance coefficient λ in real problems

Table 1. Option 1 (60 atm, 250 kg/s)

z , km 10 20 30 40 50

P II 59.017 58.036 57.053 56.065 55.069

δP 0.0115 0.0159 0.0147 0.0090 0

TII 28.665 23.669 19.727 16.617 14.165

δT 0.309 0.565 0.777 0.954 1.104

−7 Technical Physics, 2022, Vol. 67, No. 10
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should, as noted, be determined from the solution of

the inverse problem of identifying model parameters. In

the above test options, the hydraulic resistance coefficient

λ was calculated using the Haaland formula, which is

included, for example, in the software system OLGA, the

equivalent uniform-grain roughness coefficient was assumed

to be 10−5 m, the dynamic viscosity coefficient, which is

included in the expression for the Reynolds number, was

calculated by the Dean−Steele formula [7] for above gas

mixture (10). The results of calculations for models I and II

for options (36.1)−(36.3) are presented in Tables 1−3.

The following designations are accepted: P, P II —
pressure [atm] calculated by model I and by simplified

model II, respectively, δP = (PII−P) [atm] — error of pres-

sure calculation by model II; T, TII — temperature [◦C] cal-
culated from model I and simplified model II, respectively,

δT = (TII−T ) [◦C] — error of temperature calculation by

model II; z [km] — coordinate along the pipeline axis.

For each option of the test problem, for the given flow

rate and pressure at the outlet of the gas pipeline, the

coordinate z k [m] of the gas leak was calculated (k —
number of the parameter option, k = 1, 2, 3).

In view of the lack of experimental data for determining

the outlet pressure, for a given set of parameters, with

a given gas leak δQ and a given location z a [m], the

outlet pressure at gas pipeline outlet was calculated, which

was then taken as experimentally measured. Further, in

accordance with simplified model II, from the solution of

transcendental equation (30), the dimensionless value lk

for the k-th option was determined, and the dimensional

coordinate z k [m] of the gas leak was found from it, then the

error in determining the leak location was calculated using

simplified model II, characterized by the value δz k [m],
equal to: δz k = (z k − z a) [m], k =1,2,3 (Table 4).

Example of calculation by model III

Table 2. Option 2 (90 atm, 250 kg/s)

z , km 10 20 30 40 50

P II 89.381 88.769 88.162 87.557 86.954

δP 0.0116 0.0163 0.0153 0.0095 0

TII 29.122 24.395 20.595 17.539 15.082

δT 0.181 0.331 0.454 0.556 0.641

Table 3. Option 3 (90 atm, 400 kg/s)

z , km 10 20 30 40 50

P II 88.434 86.859 85.272 83.670 82.049

δP 0.0196 0.0282 0.0269 0.0171 0

TII 31.143 27.782 24.853 22.301 20.076

δT 0.476 0.905 1.293 1.646 1.968

Table 4. Error of calculation of coordinate of gas leak

z a , m 104 2 · 104 3 · 104 4 · 104 4.5 · 104

δz 1, m −81.3 58.8 105.9 76.6 45.1

δz 2, m −89.2 119.2 189.4 142.5 81.8

δz 3, m −103.9 57.0 117.1 92.4 53.6

Table 5. Option 4 (90 atm, 400 kg/s, β = 0)

z , km 10 20 30 40 50

P 88.400 86.766 85.103 83.407 81.677

δP 0.0007 0.0010 0.0010 0.0007 0

δT 0.51 1.04 1.57 2.12 2.69

Table 6. Error of calculation of gas leak place by model III

z a , m 104 2 · 104 3 · 104 4 · 104 4.5 · 104

δz 4, m 2.04 1.73 1.33 0.76 0.40

Consider option 3, setting β = 0 in it. As before,

in Table 5 we denote by P, P III the pressure [atm] calculated
by model I and by simplified model III, respectively,

δP = (P III−P) [atm] is error of pressure calculation by

model III; T is temperature [◦C] calculated by model I at

β = 0 for option of parameters 3 in simplified model III

the temperature is constant and equals to: T = const = T0.

Let us denote δT = (T0−T ) [◦C] is the error of temperature

calculation by model III; z [km] is coordinate along the

pipeline axis.

Option 4.

P(0) = 90 atm, Q0 = 400 kg/s, δQ = 40 kg/s,

β = 0, c p = 〈c p〉 = 2821.45 J/(kg · K), λ = 0.0085.

Table 6 shows the error values for calculating the

coordinates of the gas leak according to formula (35) of

simplified model III, z 4 = l4 · L [m], δz 4 = (z 4 − z a) [m].

Conclusions The performed calculations, some of which

are presented above, showed that there is a range of problem

parameters change, in which the coordinate of the stationary

gas leak can be calculated with an acceptable accuracy from

the transcendental equation obtained, which follows from

the simplified flow model. The data in Tables 3 and 4

indicate that an increasing of the inaccuracy of temperature

calculation (option of parameters 3) practically does not

affect the error of the location calculation of the gas leak.

This conclusion is also confirmed by calculations for other

options of parameters; it also follows from the data of

calculating the place of the stationary gas leak (Table 6) in

the simplified isothermal model, for which the temperature
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differs from the actual temperature calculated according to

the general model by more than 2◦C (Table 5).

Conclusion

The aim of the paper was to compare the accuracy of

calculation of the location of stationary gas leak in the

studied area based on the different degree of generality of

the mathematical models of stable gas transportation.

Analytical dependences on pressure and temperature of

the isobaric specific heat and its average integral value in

the studied area are obtained for the gas mixture meeting

the equation of state with the Berthelot compressibility

coefficient. These dependences, along with the algorithm

for identifying hard-to-determine model parameters, make it

possible to ensure the adequacy of the gas transportation

model in the stable state under actual conditions. The

paper uses the assumption that the processes are stationary

both before the formation of the stationary gas leak and

some time after it. This assumption narrows the area

of practical application of the obtained results. For a

simplified stationary model, which assumes the small inertia

forces and the predominant effect of heat exchange with

the environment on the gas temperature, a transcendental

equation is obtained for calculating the coordinates of the

stationary gas leak of low and medium intensity according

to experimental data of the pressure and flow rate at the

outlet of the studied section of the gas pipeline. The results

of a comparison of the flow characteristics calculated by

the general and simplified stationary models for different

options of parameters of practical interest are presented. The

conclusion is substantiated that the inaccuracy of calculating

gas temperature according to the simplified model has an

insignificant effect on the error in calculating the coordinates

of the stationary gas leak using the simplified model.

Simple analytical formulas obtained in the framework of

the simplified models can serve as a good initial approxima-

tion when calculating the coordinate of the stationary gas

leak of low and medium intensity in the iterative algorithm

given earlier for solving the problem of identifying the

stationary gas leak based on the general stationary model.
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