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Construction of an approximate solution for a dilute magnet based
on the solution for a pure magnet on the same lattice
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The paper proposes a method for approximate calculation of the magnetization of a dilute Ising magnet on
a certain lattice, based on the use of an exact or approximate solution for a pure Ising magnet on the same
lattice. Using the proposed method, it is possible to calculate the dependence of magnetization on temperature and
concentration of non-magnetic impurities and the Curie temperature as a function of concentration for a diluted
magnet. The proposed method is applied in the work to the solution in the mean field approximation, to the
solution in the beta approximation, and to the exact solution on a square lattice.
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1. Introduction

Properties of dilute and unordered magnets differ from
properties of pure magnets [1-5]. However, accurate
solutions for models of dilute magnetic systems can be
obtained only in rare cases [6]. That’s why it makes sense to
construct approximate solutions for dilute magnets. Some
of these solutions can be constructed by way of averaging
over interaction fields.

In our paper [7] we developed a common approach
based on averaging over interaction fields as applied to spin
clusters on a magnetic lattice. In the present paper, also
on the basis of the method of averaging over interaction
fields, we introduce a ,function of relation of effective
exchange interaction fields“. This function is defined as
a relation of values of exchange interaction fields at which
the cluster average value of spin is equal to the ensemble
average value. Thereat, we limit ourselves to clusters of
one and two magnetic atoms only. A relationship between
the relation function and spontaneous magnetization as a
temperature function is established in the paper. The
relationship makes it possible to calculate the relation
function if an approximate or accurate solution for the
Ising model is available. In this paper we assume that
the relation function as a function of spontaneous magne-
tization in case of non-magnetic dilution is approximately
the same as for a pure magnet. This conjecture is
based on the fact that, as demonstrated in [6,8,9], a
similar assumption for a Bethe lattice provides reasonable
results. Therefore, the goal of the present paper is to
study the outcome of the assumption of relation function’s
independence from non-magnetic dilution in a more general
case.

2. Averaging over interaction fields,
relation function for a pure
and dilute magnet

Let us consider an Ising model on a certain lattice. Let
each lattice site contain an Ising ,,spin“, which takes on
values +1 and —1, and let only the spins, located at adjacent
sites, interact. Then the Ising model Hamiltonian can be
written down as follows [10]:

H = —JZO’iO'j_HexZO'i’ (1)
(i,1) i

where J is the exchange interaction energy, Hex is the
external field; summation in the first sum is performed for
all pairs of adjacent spins, in the second one — for all sites.

Let us now select a certain spin oy on the lattice. Let h be
the sum of values of spins which directly interact with oy
(spins of the first coordination sphere). This sum will be
called the interaction field*. Then, as shown in [7], the
thermodynamic average (op) is obtained by averaging of
th (Kh) over the distribution function W (h):

{o0) = Y _W(h)th (Kh), (2)
h

where K = %, k is the Boltzmann constant, T is tem-
perature. In the general case, (ap) and W(h) depend on
the site where spin oy is located. If an Ising model is
assigned on a simple lattice with coordination number @,
then all (6p) = M, where M is the average magnetization
per site, while function W(h) does not depend on site
number. In this case, since magnetization M takes on values
from 0 to 1, for any distribution function W(h) there is a
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value of h = y; for which
M = th (Kz). 3)

This value of y; will be called the ,.effective field”.
Let us now take a cluster of two neighboring spins o
and o, (dimer). It was shown in [7] that the thermodynamic
o110\ -
average (=) is equal to

<"1 ;"2> =" W(hy, hy)

hy,hy

y Sh(K(hl —+ hz))
ch(K(hy + hy)) + ch(K(h; — hy)) exp(—2K)’

(4)

where h; and h, are interaction fields related to o7 and o>,
W (hy, hy) is their joint distribution function. Similarly to a
one-atom cluster, it follows from the normalization condition
for W(hy, hp) that there is such a value of hy =h, = p»
at which

sh(2Ky2)

" (2K X ®)

where X = exp(—2K), and y, is the effective field of the
dimer.

Many approximate methods in the theory of magnetism
can be treated as the introduction of additional correlations
between effective fields xi, x» and magnetization M. For
instance, by assuming x; = M, we obtain a known mean
field approximation [11], while correlation y, = (q—1)M
leads to a generalization of mean field approximation
discussed in [8]. By complementing equalities (3) and (5)
(a=1)

q

with correlation y, =

imation [10,11]. Let us consider in more detail a com-
mon correlation that can be represented as y» = y(M)y.
Function y(M) will be called the relation function. If
an accurate or approximate value of spontaneous mag-
netization as temperature function M = M(x) is known,
then (3) and (5) can be used to find y, x2 and relation
function y(M). Conversely, if function y(M) is known
from some considerations, then (3) and (5) can be used
to find dependence M = M(x) which corresponds to this
function. A low-temperature decomposition of the statistical
sum [10] can be used to show that for simple lattices with
coordination number qy; — g and y» — g—1 at X — 0,

X1, we obtain a Bethe approx-

ie. y(M) tends to q_;l within the low temperatures.

Let us now consider an Ising model with non-magnetic
dilution. The most interesting [4] case is the so-called
»rozen-in“ dilution: when some of sites randomly and
without correlation are filled with nonmagnetic impurities,
so that any lattice site can contain a magnetic atom
with probability b or an impurity with probability 1—b.
(Similarly, dilution for bonds can be considered: a bond
between neighboring spins exists with probability b or is
broken with probability 1—b [12].) The main difference of
systems with frozen-in impurities from pure magnets is in
the disruption of the lattice translation symmetry — the

thermodynamic average values, for instance, (op) in the
general case are not equal for different system spins. Here
we can opt for averaging over different configurations of
impurities, or, according to the self-averaging idea [4] —
over different spins in one and the same configuration.
Then, ,self-averaged” magnetization of a magnetic atom for
dilution both for sites and bonds is represented as [7]:

M = th (K1)- (6)

Here y; is the effective exchange field dependent on b.
Similarly, for a dimer

sh(2Kx2)

(7)

Finding of the accurate form of function xi(x,b) (or
x2(X, b)) for dilution for sites or for bonds is equivalent
to an accurate solution of the problem of magnetization of
a dilute Ising magnet. Let us consider this method of an
approximate solution of this problem. We will assume that
the relation of effective exchange fields x»/x1, expressed as a
function of M, does not depend on b. That is, it is assumed
that y» = y(M)x:, where y(M) is the relation function
determined above for a pure magnet. As demonstrated
below, this conjecture for a Bethe lattice is equivalent to
consideration of impurities on this lattice in a pseudo-chaotic
approximation [8,9].

That is, the proposed approximation to analysis of a dilute
magnet consists in the following. Let there be an accurate
or approximate value of magnetization of a pure magnet as
a temperature function M = u(x) (or an inverse function
X = v(M)). This can be, for instance, a solution in a mean
field approximation [10] or in a Bethe approximation [11]
(which can be interpreted as an accurate solution on a Bethe
lattice [10]) or an accurate Onsager solution on a square
lattice [10]. Using this solution, we obtain an expression for
relation function y(M) from correlations (3) and (5):

In(vM + /(VM)2 + (1 — M2)) —In(1 — M)
y(M) = In(1 + M) —In(1 — M) ‘
(8)
Using this expression, we obtain the following from (6)
and (7):
V(M) —yFi (M)

x(M, b) = , 9
M) = TR M) ®)
where y = IIT_b — measure of the ,dilution” magnet,
R—v/ vM 1
F(M)=2
1(M) R+1<1—M+R+vM>+v’
1-R+2v
FEM)= ——| 10
(M) = (10)

here R=+/(vM)2 + (1 — M2). For this, in order to find
a concentration dependence of Curie temperature Tc(b)
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or K¢(b) =J/kTe(b) we will go to limit M — 0 in (9)
and (10). Let us denote X¢(b) = exp(—2K¢(b)), we obtain

xc(b) = %orth Ke(b) = %th Ke(1). (11

It follows from formula (11) that Curie temperature
becomes zero at b =thK¢(1). It means that quantity
be =thK¢(1) can be considered an estimate of the per-
colation threshold value in the given approximation [12].
For an Ising model with dilution, the value of spontaneous
magnetization My(b) at T = 0 is the probability that a given
magnetic atom pertains to an infinite cluster [12]. This value
can be obtained from (9)—(10) in the limit T — 0. Mq(b)
satisfies the equation

V(Mo) :}/Fl(Mo) (12)

It should be noted that the above-mentioned method
can be used not only for one- and two-atom clusters, but
also for two clusters of a random size. Having determined
the corresponding relation function for a pure magnet and
assuming its independence from b, we obtain a more
common form of the approximation given in the present
paper. In such a common form there will be a difference
in dilution for sites and for bonds, but in this paper we will
consider only the simplest method implementation where
this difference is absent.

3. Mean field theory,
Bethe approximation
and Onsager solution

Let us now apply the above-mentioned method to an
Ising model on a square lattice. Selection of this lattice
is due to the fact that an accurate Onsager solution exists
for this lattice [10], in addition to approximate solutions.
Let us first consider the approximate solutions. In a mean
field approximation [11], spontaneous magnetization for this
lattice is determined by expression M = th (4KM), from

where N
b(M) = (i;_m) (13)

By substituting this function into (8), we obtain a relation
function y4(M) in the mean field approximation. The
plot of this function is shown in Fig. 1 (curve ). It is
easy to show that M — 1 y4(M) — 3/4, while v(M) — 0.
K¢ in the mean field approximation is equal to 1/4, then
Xc(1) = exp(—1/2) ~ 0.607.

Let us now apply this solution to the analysis of a dilute
magnet in compliance with the above-mentioned approach.
From (11) be = th (1/4) ~ 0.245. This value does not agree
well with the accurate values of percolation thresholds for
sites and for bonds either for a square or for a tetrahedral
lattice [12]. However, a percolation transition and a
percolation threshold are completely absent for a dilute
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Figure 1. Effective field relation functions in different approxima-
tions depending on spontaneous magnetization for a square lattice.
Curve I shows a mean field approximation, curve 2 shows a Bethe
approximation and curve 3 shows an accurate solution.

magnet in the conventional mean field approximation [12].
Using (13) and (12), let us now plot the function My(b) —
it is shown in Fig. 2 (curve 1).

Spontaneous magnetization on a lattice with coordination
number ¢ in a Bethe approximation [10] is equal to
M = (1-p9)/(1 + p%), where p is the root of equation
p=(Xx+pi~1)/(1+xpi=1). It can be easily shown that
atgq=4

V1 —M2
S VIEMA+VI-M

Substituting this expression into (8), we will obtain a
relation function in this approximation y,(M) = 3/4, that is,
it does not depend on M. As already mentioned, the
assertion that the relation function of the effective fields
included in (3) and (5) is equal to (q—1)/q can be
considered a definition of Bethe approximation [8,9]. It
can be seen from (14) that spontaneous magnetization
in a Bethe approximation disappears at Xc(1) = 1/2 or
Kec =(1/2)In2. Let us now use a Bethe approximation
in expressions (9)—(12). We obtain thKc(b) = 1/(3b)
or be =1/3. The plot of function My(b) in a Bethe
approximation is shown in Fig. 2, curve 2.

The authors of [8] considered a Bethe approximation
for a dilute magnet in a ,,pseudo-chaotic“ approximation.
The essence of this approximation is that mobile impurities
are considered instead of frozen-in impurities on a Bethe
lattice, with an additional condition of a zero correlation
in the location of impurities in neighboring sites. It turns
out that all the results obtained from (9)—(12) when using
a Bethe approximation match those obtained in a pseudo-
chaotic approximation for a Bethe lattice [8,9]. This makes
it possible to assume that the suggested approach to analysis
of a dilute magnet, based on the assumption that the relation
function does not depend on b, can be in the general case

v(M) (14)
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Figure 2. Spontaneous magnetization Mo(b) as a function of
magnetic atom concentration b on a square lattice. The plots were
constructed based on a mean field approximation (curve /), based
on a Bethe approximation (curve 2) and based on an accurate
solution (curve 3).

physically interpreted as a certain variant of a pseudo-chaotic
approximation.

It is to be recalled that the suggested approach to analysis
of a dilute magnet is based on the use of an approximate or
accurate solution for a pure magnet on the corresponding
lattice. As is well-known [10], an accurate expression for
spontaneous magnetization as a function of temperature can
be found for an Ising model on a square lattice

1
ME=1— ———. (15)
sh™(2K)
Hence

v (1 +M2)(1 4 M*
v(M) = V1 - M2 YA+ M+ ), (16)

1+ VI1I++vV1—-M8
It follows from these expressions that spontaneous
magnetization  disappears at X¢(1)=v2—-1 or

Ke = (1/2)In(v/2+1).  The relation function ye(M),
which corresponds to solution (16) is shown in Fig. 1,
curve 3. It can be shown that ye(M) — 3/4at M — 1.

Let us now use an accurate solution (16) as the basis
for analysis of a dilute magnet. From (9)—(12) we obtain
be = v2—1~0.414. Fig. 2 (curve 3) shows the plot of
function Mg (b) calculated as per (12) for solution (16).

4. Conclusion

In the present paper we have constructed a universal
relation function for an Ising model without non-magnetic
dilution y(M, x), which relates the effective fields of single-
atom and two-atom clusters. This function depends on
spontaneous magnetization M and temperature parameter
X = exp(—2K). It means that the relation between M and X,

obtained from an accurate or an approximate solution,
determines the relation function y(M) or y(x).

Assuming that function y(M) for a magnet with non-
magnetic dilution has the same form as for a pure one, we
have obtained the following main results.

1. The adopted conjecture results in a form of a concen-
tration dependence of the critical temperature parameter
Kc(b) = J/kTe(b), where T¢(b) is the Curie tempera-
ture. This form is expressed by a simple correlation
bthK¢(b) = thKc(1).

2. Based on any solution for a pure Ising magnet,
we obtain the existence of a percolation transition at
concentration b = thK¢(1). In particular, based on a mean
field approximation, we obtain b, =th (1/q) for a lattice
with coordination number Q.

3. The concentration dependence of spontaneous mag-
netization at zero temperature (which for an Ising model
can be understood as a probability of appurtenance of a
given magnetic atom to an infinite cluster) is determined by
expression (12).

4. Universality of the relation function for pure and
dilute Ising magnets on a Bethe lattice is equivalent to
the consideration of nonmagnetic impurities in a pseudo-
chaotic approximation [8,9]. We made an assumption
that such universality in the general case is equivalent to
certain additional conditions for correlation in the location
of impurities in a model with mobile impurities.
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